From 063038e94ac789b3d7b7cf2884d8f3e948b0a926 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 31 Jan 2021 21:15:06 +0100 Subject: Markov-Ketten --- buch/chapters/80-wahrscheinlichkeit/markov.tex | 783 +++++++++++++++++++++++++ 1 file changed, 783 insertions(+) (limited to 'buch/chapters/80-wahrscheinlichkeit/markov.tex') diff --git a/buch/chapters/80-wahrscheinlichkeit/markov.tex b/buch/chapters/80-wahrscheinlichkeit/markov.tex index 5fb156a..0d77926 100644 --- a/buch/chapters/80-wahrscheinlichkeit/markov.tex +++ b/buch/chapters/80-wahrscheinlichkeit/markov.tex @@ -6,5 +6,788 @@ \section{Diskrete Markov-Ketten und Wahrscheinlichkeitsmatrizen \label{buch:section:diskrete-markov-ketten}} \rhead{Diskrete Markov-Ketten} +Die einführend im Abschnitt~\ref{buch:section:google-matrix} +vorgestellte Google-Matrix ist nur ein Beispiel für ein +Modell eines stochastischen Prozesses, der mit Hilfe von Matrizen +modelliert werden kann. +In diesem Abschnitt soll diese Art von Prozessen etwas formalisiert +werden. + +% +% Beschreibung der Markov-Eigenschaft +% +\subsection{Markov-Eigenschaft} +% XXX Notation, Zustände, Übergangswahrscheinlichkeit +Ein stochastischer Prozess ist eine Familie von Zustandsvariablen +$X_t$ mit Werten in einer Menge $\mathcal{S}$ von Zuständen. +Der Parameter $t$ wird üblicherweise als die Zeit interpretiert, +er kann beliebige reelle Werte oder diskrete Werte annahmen, im letzten +Fall spricht man von einem Prozess mit diskreter Zeit. + +Das Ereignis $\{X_t=x\}$ wird gelesen als ``zur Zeit $t$ befindet sich +der Prozess im Zustand $x$''. +Mit $P(X_t = x)$ wir die Wahrscheinlichkeit bezeichnet, dass sich +der Prozess zur Zeit $t$ im Zustand $x$ befindet. +Die Funktion $t\mapsto X_t$ beschreiben also den zeitlichen Ablauf +der vom Prozess durchlaufenen Zustände. +Dies ermöglicht, Fragen nach dem Einfluss früherer Zustände, +also des Eintretens eines Ereignisses $\{X_{t_0}=x\}$ auf das Eintreten eines +Zustands $s\in\mathcal{S}$ zu einem späteren Zeitpunkt $t_1>t_0$ +zu studieren. +Das Ereignis $\{X_t = x\}$ kann man sich als abhängig von der Vorgeschichte +vorstellen. +Die Vorgeschichte besteht dabei aus dem Eintreten gewisser Ereignisse +\[ +\{X_0=x_0\}, +\{X_1=x_1\}, +\{X_2=x_2\}, +\dots, +\{X_n=x_n\} +\] +zu früheren Zeiten $t_0s$ bestimmen das +zeitliche Verhalten der Wahrscheinlichkeiten vollständig. +Wir schreiben daher auch +\[ +p_{xy}(t, s) += +P(X_t = x|X_s=y) +\] +für die sogenannte {\em transiente Übergangswahrscheinlichkeit}. +Für eine endliche Menge von Zuständen, können die transienten +Übergangswahrscheinlichkeiten auch als zeitabhängige +quadratische Matrix $P(s,t)$ geschrieben werden, deren +Einträge +\[ +(P(s,t))_{xy} += +p_{xy}(t,s) +\] +mit den Zuständen $x,y\in\mathcal{S}$ indiziert sind. + +\subsubsection{Die Chapman-Kolmogorov-Gleichung} +% XXX Chapman-Kolmogorov-Gleichung +Man beachte, dass in der Definition der Markov-Eigenschaft +keine Voraussetzungen darüber gemacht werden, wie nahe +am Zeitpunkt $t$ der letzte Zeitpunkt $t_n$ der Vorgeschichte liegt. +Die transienten Übergangswahrscheinlichkeiten $p_{xy}(s,t)$ werden +aber im allgemeinen davon abhängen, wie weit in der Vergangenheit +der Zeitpunkt $s