From 13304c02851094180b714d71451f279966fb582f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 24 Aug 2021 17:21:53 +0200 Subject: simpliziale Approximation --- buch/chapters/95-homologie/basiswahl.tex | 87 +++++++++++++++++--------------- 1 file changed, 47 insertions(+), 40 deletions(-) (limited to 'buch/chapters/95-homologie/basiswahl.tex') diff --git a/buch/chapters/95-homologie/basiswahl.tex b/buch/chapters/95-homologie/basiswahl.tex index 6cf49c2..f720c76 100644 --- a/buch/chapters/95-homologie/basiswahl.tex +++ b/buch/chapters/95-homologie/basiswahl.tex @@ -4,9 +4,9 @@ Die Definition der Homologiegruppen $H_k(C)$ als Quotient von Vektorräumen ist ziemlich abstrakt. Sie besteht aus Klassen von Zyklen, die sich höchstens um einen Rand unterscheiden. -% XXX Verweise auf Visualisierung Indem wir eine geeignete Basis wählen, können wir konkrete Zyklen identifizieren, die eine Basis für den Vektorraum $H_k(C)$ bilden. +Dies soll im Folgenden schrittweise durchgeführt werden. \begin{figure} \centering @@ -47,7 +47,7 @@ Sie ist \setcounter{MaxMatrixCols}{27} \partial_1 = -\tiny +\footnotesize \setlength\arraycolsep{2pt} \begin{pmatrix*}[r] %1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 @@ -69,32 +69,37 @@ Sie ist \end{pmatrix*} \] Die reduzierte Zeilenstufenform von $\partial_1$ ist +(Pivotpositionen in {\color{red}rot}, frei wählbare Variablen +in {\color{darkgreen}grün}) \begin{center} -\tiny +%\tiny +\scriptsize +%\footnotesize \setlength\tabcolsep{3pt} \begin{tabular}{|>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|} \hline -&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16&17&18&19&20&21&22&23&24&25&26&27\\ + & 1& 2& 3& 4& 5&{\color{darkgreen}6}& 7&{\color{darkgreen}8}& 9&{\color{darkgreen}10}&11&{\color{darkgreen}12}&{\color{darkgreen}13}&{\color{darkgreen}14}&15&{\color{darkgreen}16}&17&{\color{darkgreen}18}&19&{\color{darkgreen}20}&21&{\color{darkgreen}22}&23&{\color{darkgreen}24}&{\color{darkgreen}25}&26&{\color{darkgreen}27}\\ \hline - 1&1& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ - 2&0& 1& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ - 3&0& 0& 1& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 4&0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 5&0& 0& 0& 0& 1&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ - 6&0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 0&-1& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 7&0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ - 8&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 9&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ -10&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ -11&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 1& 1& 0&-1\\ -12&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 1& 0&-1\\ -13&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1&-1& 0& 1\\ -14&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1\\ -15&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 1&\phantom{-}{\color{red}1}& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 2& 0&\phantom{-}{\color{red}1}& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 3& 0& 0&\phantom{-}{\color{red}1}& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 4& 0& 0& 0&\phantom{-}{\color{red}1}& 0& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 5& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 6& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 0&-1& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 7& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ + 8& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 9& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ +10& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ +11& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0&-1& 0& 1& 1& 0&-1\\ +12& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 1& 0&-1\\ +13& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1&-1& 0& 1\\ +14& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1\\ +15& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ \hline \end{tabular}. \end{center} -Daraus kann man die Zyklen wie folgt ablesen: +Daraus kann man die Zyklen wie folgt ablesen, indem man jeweils +genau eine frei wählbare Variable auf $1$ setzt: { \begin{align*} z_1 @@ -365,7 +370,7 @@ z_8 % variable 18 = 1 -1\\ 0\\ 0\\ - 1\\ +-1\\ 0\\ 0\\ 0\\ @@ -569,7 +574,7 @@ Aus den Abbildungen~\ref{buch:homologie:fig:homocycles} und \ref{buch:homologie:fig:homoboundaries} kann man auch ablesen, wie die Ränder $\partial_2e_i^{(2)}$ aus den Zyklen von $\mathcal{Z}_1$ linear kombiniert werden können. -Man erhält so die Beziehungen. +Man erhält so die Beziehungen \begin{equation} \setcounter{MaxMatrixCols}{29} \setlength\arraycolsep{1pt} @@ -578,11 +583,11 @@ Man erhält so die Beziehungen. \partial_2e_2^{(2)} &=& & &z_2& & & & & & & & & & & & & & & & & & & & & & \\ \partial_2e_3^{(2)} &=& & & & &z_3& & & & & & & & & & & & & & & & & & & & \\ \partial_2e_4^{(2)} &=& & & & & & &z_4& & & & & & & & & & & & & & & & & & \\ -\partial_2e_5^{(2)} &=& & & & & & & &-&z_5& & &+&z_7& & & & & & & & & & & & \\ -\partial_2e_6^{(2)} &=& & & & & & & & & &-&z_6& & &+&z_8& & & & & & & & & & \\ +\partial_2e_5^{(2)} &=& & & & & & & & &z_5& & &+&z_7& & & & & & & & & & & & \\ +\partial_2e_6^{(2)} &=& & & & & & & & & & &z_6& & &+&z_8& & & & & & & & & & \\ \partial_2e_7^{(2)} &=& & & & & & & & & & & & & & & & & & &z_{10}& & & & & & \\ \partial_2e_8^{(2)} &=& & & & & & & & & & & & & & & & & & & & &z_{11}& & & & \\ -\partial_2e_9^{(2)} &=& & & & & & & & & & & & & & & & & & & & & &-&z_{12}&+&z_{13} +\partial_2e_9^{(2)} &=& &\phantom{+}& &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & & &z_{12}&+&z_{13} \end{array} \end{equation} Dies reicht jedoch nicht, um herauszufinden, welche der blauen Dreiecke @@ -766,31 +771,33 @@ mit Hilfe von Rändern der Zeilen 1--9 kombiniert werden können. \scriptstyle\partial_2e_8^{(2)}& & & & & & & & & & & & & & & & & & & &\phantom{-}1& & & 1&\phantom{-}1& & & \\ \scriptstyle\partial_2e_9^{(2)}& & & & & & & & & & & & & & & & & & & & & & & & &\phantom{-}1&\phantom{-}1&\phantom{-}1\\ \hline -% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 -\scriptstyle z_{ 1}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 2}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 3}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 4}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 5}& & & & & & 1& 1& & & & & & & &-1&-1& & & & & & & & & & & \\ -\scriptstyle z_{ 6}& & & & & & & & & & 1& 1& & & & & &-1&-1& & & & & & & & & \\ -\scriptstyle z_{ 7}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 8}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 9}& & & & & & & & 1& 1& & & & & & & 1& 1& & & &-1&-1&-1&-1& & & \\ -\scriptstyle z_{10}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{11}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{12}& & & & & & & & & & & & & & & & & & & & & & 1& 1& & &-1&-1\\ -\scriptstyle z_{13}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 +\scriptstyle z_{ 1}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 2}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 3}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 4}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 5}'& & & & & & 1& 1& & & & & & & &-1&-1& & & & & & & & & & & \\ +\scriptstyle z_{ 6}'& & & & & & & & & & 1& 1& & & & & &-1&-1& & & & & & & & & \\ +\scriptstyle z_{ 7}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 8}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 9}'& & & & & & & & 1& 1& & & & & & & 1& 1& & & &-1&-1&-1&-1& & & \\ +\scriptstyle z_{10}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{11}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{12}'& & & & & & & & & & & & & & & & & & & & & & 1& 1& & &-1&-1\\ +\scriptstyle z_{13}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline \end{tabular} \caption{Nach Durchführung der Vorwärtsreduktion kann man die Zyklen ablesen, die nicht für eine Basis von $H_1$ gebraucht werden. +Die resultierenden Zyklen sind in Abbildung~\ref{buch:homologie:beispiel:homoclasses} +dargestellt. \label{buch:homologie:beispiel:gausstableaureduziert}} \end{figure} \begin{figure} \centering \includegraphics{chapters/95-homologie/images/homoclasses.pdf} -\caption{Repräsentanten für die Reduzierten Klassen aus dem +\caption{Repräsentanten für die reduzierten Klassen aus dem Tableau von Abbildung~\ref{buch:homologie:beispiel:gausstableaureduziert}, sie bilden eine Basis der Homologie-Gruppe $H_1$. -- cgit v1.2.1