From 0ead33dd72a7dd09ab8f855e672cb81e38623ef1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 22 Aug 2021 21:43:09 +0200 Subject: euler char, traces, telescoping sums --- buch/chapters/95-homologie/basiswahl.tex | 812 +++++++++++++++++++++++++++++++ 1 file changed, 812 insertions(+) create mode 100644 buch/chapters/95-homologie/basiswahl.tex (limited to 'buch/chapters/95-homologie/basiswahl.tex') diff --git a/buch/chapters/95-homologie/basiswahl.tex b/buch/chapters/95-homologie/basiswahl.tex new file mode 100644 index 0000000..6cf49c2 --- /dev/null +++ b/buch/chapters/95-homologie/basiswahl.tex @@ -0,0 +1,812 @@ +\subsection{Basiswahl +\label{buch:subsection:basiswahl}} +Die Definition der Homologiegruppen $H_k(C)$ als Quotient von +Vektorräumen ist ziemlich abstrakt. +Sie besteht aus Klassen von Zyklen, die sich höchstens um einen +Rand unterscheiden. +% XXX Verweise auf Visualisierung +Indem wir eine geeignete Basis wählen, können wir konkrete Zyklen +identifizieren, die eine Basis für den Vektorraum $H_k(C)$ bilden. + +\begin{figure} +\centering +\includegraphics{chapters/95-homologie/images/gausshomoex.pdf} +\caption{Beispiel für die Berechnung von Basisvektoren und Homologieklassen +mit Hilfe des Gauss-Algorithmus +\label{buch:homologie:fig:gausshomoex}} +\end{figure} + +\subsubsection{Basis von $Z_k(C)$} +Um eine Basis für $H_k(C)$ zu konstruieren, ist es zunächst nötig, +eine Basis der Zyklen $Z_k(C)$ zu bestimmen. +Ausgehend von einer beliebigen Basis der $C_k$ und einer +zugehörigen Darstellung des Randoperators $\partial_k$ als +Matrix, kann eine Basis von Zyklen mit Hilfe des Gauss-Algorithmus +gefunden werden. +Wir bezeichnen die Menge dieser Zyklen mit +\[ +\mathcal{Z}_k += +\{ +z_1^{(k)}, +z_2^{(k)}, +\dots, +z_l^{(k)} +\}. +\] +$\mathcal{Z}_k$ erzeugt den $l$-dimensionalen Vektorraum $Z_k(C)$. + +\begin{beispiel} +\label{buch:homologie:beispiel:gausshomo} +In Abbildung~\ref{buch:homologie:fig:gausshomoex} ist ein Polyeder +dargestellt, dessen Homologiegruppe $H_1$ berechnet werden soll. +Um eine Basis für die Zyklen zu berechnen, wird zunächst die Matrix +des Randoperators $\partial_1$ aufgestellt. +Sie ist +\[ +\setcounter{MaxMatrixCols}{27} +\partial_1 += +\tiny +\setlength\arraycolsep{2pt} +\begin{pmatrix*}[r] +%1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 +-1& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 1 + 1&-1& 0& 0& 0&-1& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 2 + 0& 1&-1& 0& 0& 0& 0&-1& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 3 + 0& 0& 1&-1& 0& 0& 0& 0& 0&-1& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 4 + 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 5 + 0& 0& 0& 0& 1& 1& 0& 0& 0& 0& 0& 0&-1& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 6 + 0& 0& 0& 0& 0& 0&-1& 1& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 7 + 0& 0& 0& 0& 0& 0& 0& 0&-1& 1& 0& 0& 0&-1& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 8 + 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&-1& 1& 0& 1& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ % 9 + 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&-1& 1& 0& 0&-1& 0& 1& 0& 0& 0& 0& 0& 0\\ %10 + 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 1& 0& 0& 0& 0\\ %11 + 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&-1& 1& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ %12 + 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&-1& 1& 0& 0&-1& 1& 0\\ %13 + 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&-1& 1& 1& 0&-1\\ %14 + 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&-1& 1\\ %15 +\end{pmatrix*} +\] +Die reduzierte Zeilenstufenform von $\partial_1$ ist +\begin{center} +\tiny +\setlength\tabcolsep{3pt} +\begin{tabular}{|>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|} +\hline +&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16&17&18&19&20&21&22&23&24&25&26&27\\ +\hline + 1&1& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 2&0& 1& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 3&0& 0& 1& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 4&0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 5&0& 0& 0& 0& 1&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 6&0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 0&-1& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 7&0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ + 8&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 9&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ +10&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ +11&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 1& 1& 0&-1\\ +12&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 1& 0&-1\\ +13&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1&-1& 0& 1\\ +14&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1\\ +15&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ +\hline +\end{tabular}. +\end{center} +Daraus kann man die Zyklen wie folgt ablesen: +{ +\begin{align*} +z_1 +&= +\tiny +\begin{pmatrix*}[r] +\phantom{-} + 1\\ + 0\\ + 0\\ + 0\\ + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_2 +&= +\tiny +\begin{pmatrix*}[r] +\phantom{-} + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_3 +&= +\tiny +\begin{pmatrix*}[r] +\phantom{-} + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_4 % variable 12 = 1 +&= +\tiny +\begin{pmatrix*}[r] +\phantom{-} + 0\\ + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_5 % variable 13 = 1 +&= +\tiny +\begin{pmatrix*}[r] +-1\\ + 0\\ + 0\\ + 0\\ +-1\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_6 % variable 14 = 1 +&= +\tiny +\begin{pmatrix*}[r] + 0\\ + 0\\ +-1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ +-1\\ + 0\\ + 1\\ + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_7 % variable 16 = 1 +&= +\tiny +\begin{pmatrix*}[r] + 1\\ + 0\\ + 0\\ + 0\\ + 1\\ + 0\\ +-1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*},\\ +z_8 % variable 18 = 1 +&= +\tiny +\begin{pmatrix*}[r] + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 0\\ +-1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_9 % variable 20 = 1 +&= +\tiny +\begin{pmatrix*}[r] +-1\\ +-1\\ + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ +-1\\ + 0\\ + 1\\ + 0\\ + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0 +\end{pmatrix*}, +&z_{10} % variable 22 = 1 +&= +\tiny +\begin{pmatrix*}[r] +\phantom{-} + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ %5 + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ %10 + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ %15 + 0\\ + 0\\ + 0\\ + 1\\ + 0\\ %20 + 1\\ + 1\\ + 0\\ + 0\\ + 0\\ %25 + 0\\ + 0 +\end{pmatrix*}, +&z_{11} % variable 24 = 1 +&= +\tiny +\begin{pmatrix*}[r] + 1\\ + 1\\ + 0\\ + 0\\ + 1\\ %5 + 0\\ + 0\\ + 0\\ +-1\\ + 0\\ %10 + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ %15 + 0\\ +-1\\ + 0\\ +-1\\ + 0\\ %20 + 0\\ + 0\\ + 1\\ + 1\\ + 0\\ %25 + 0\\ + 0 +\end{pmatrix*}, +&z_{12} % variable 25 = 1 +&= +\tiny +\begin{pmatrix*}[r] + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ %10 + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ %15 + 0\\ + 0\\ + 0\\ +-1\\ + 0\\ %20 +-1\\ + 0\\ + 1\\ + 0\\ + 1\\ %25 + 0\\ + 0 +\end{pmatrix*}, +&z_{13} % variable 27 = 1 +&= +\tiny +\begin{pmatrix*}[r] + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 0\\ + 1\\ + 0\\ %20 + 1\\ + 0\\ +-1\\ + 0\\ + 0\\ %25 + 1\\ + 1 +\end{pmatrix*} +\end{align*} +} +\begin{figure} +\centering +\includegraphics{chapters/95-homologie/images/homocycles.pdf} +\caption{Zyklen des Randoperators $\partial_1$ im Beispiel von +Seite~\pageref{buch:homologie:beispiel:gausshomo}. +\label{buch:homologie:fig:homocycles}} +\end{figure} +Die Zyklen sind in Abbildung~\ref{buch:homologie:fig:homocycles} {\color{red}rot} dargestellt. +\end{beispiel} + +\subsubsection{Basis für $B_k(C)$} +Da $B_k(C)\subset Z_k(C)$ gilt, lässt sich für jedes $c_{k+1}\in C_{k+1}$ +der Rand $\partial_{k+1}c_{k+1}$ als Linearkombination der im +vorangegangenen Schritt gefundenen Basiszyklen finden. +Wir können also aus der Standardbasis $e^{(k+1)}_i\in C_{k+1}$ eine Menge +von Vektoren $\partial_{k+1}e^{(k+1)}_i$ gewinnen, die mit Sicherheit +ganz $B_k(C)$ aufspannen. +Es ist aber davon auszugehen, dass diese Vektoren nicht linear unabhängig +sind. +Es ist also nötig, eine Teilmenge +\[ +\mathcal{B}_k += +\{ +\partial_{k+1}e^{(k+1)}_{i_1}, +\partial_{k+1}e^{(k+1)}_{i_2}, +\dots, +\partial_{k+1}e^{(k+1)}_{i_m} +\} +\] +von Vektoren auszuwählen, die linear +unabhängig sind. +Diese bilden eine Basis von $B_k(C)$. + +\begin{figure} +\centering +\includegraphics{chapters/95-homologie/images/homoboundaries.pdf} +\caption{Die Ränder $\partial_2e_i^{(2)}$ für das Beispiel von +Seite~\pageref{buch:homologie:beispiel:gausshomo}. +Die grauen Dreiecke bilden die Standardbasis $e_i^{(2)}$ von $C_2$, +die blauen Dreiecke sind die Ränder $\partial_2e_i^{(2)}$ dieser +Dreiecke. +\label{buch:homologie:fig:homoboundaries}} +\end{figure} + +Aus den Abbildungen~\ref{buch:homologie:fig:homocycles} und +\ref{buch:homologie:fig:homoboundaries} kann man auch ablesen, +wie die Ränder $\partial_2e_i^{(2)}$ aus den Zyklen von $\mathcal{Z}_1$ +linear kombiniert werden können. +Man erhält so die Beziehungen. +\begin{equation} +\setcounter{MaxMatrixCols}{29} +\setlength\arraycolsep{1pt} +\begin{array}{lcrcrcrcrcrcrcrcrcrcrcrcrcr} +\partial_2e_1^{(2)} &=&z_1& & & & & & & & & & & & & & & & & & & & & & & & \\ +\partial_2e_2^{(2)} &=& & &z_2& & & & & & & & & & & & & & & & & & & & & & \\ +\partial_2e_3^{(2)} &=& & & & &z_3& & & & & & & & & & & & & & & & & & & & \\ +\partial_2e_4^{(2)} &=& & & & & & &z_4& & & & & & & & & & & & & & & & & & \\ +\partial_2e_5^{(2)} &=& & & & & & & &-&z_5& & &+&z_7& & & & & & & & & & & & \\ +\partial_2e_6^{(2)} &=& & & & & & & & & &-&z_6& & &+&z_8& & & & & & & & & & \\ +\partial_2e_7^{(2)} &=& & & & & & & & & & & & & & & & & & &z_{10}& & & & & & \\ +\partial_2e_8^{(2)} &=& & & & & & & & & & & & & & & & & & & & &z_{11}& & & & \\ +\partial_2e_9^{(2)} &=& & & & & & & & & & & & & & & & & & & & & &-&z_{12}&+&z_{13} +\end{array} +\end{equation} +Dies reicht jedoch nicht, um herauszufinden, welche der blauen Dreiecke +linear unabhängig sind. +Im vorliegenden Fall ist dies einfach: jedes blaue Dreieck besteht aus +Kanten, die in keinem anderen blauen Dreieck vorkommen, daher müssen +sie alle linear unabhängig sein. + +\begin{figure} +\centering +\includegraphics{chapters/95-homologie/images/gausshomobasis.pdf} +\caption{Bestimmung einer Basis für die Homologiegruppe $H_k(C)$ mit +Hilfe der Vorwärtsreduktion des Gaussalgorithmus. +Die schwarzen Nullzeilen zeigen an, welche Zeilenvektoren zusammen mit +den darüberliegenden Vektoren nicht linear unabhängig sind und damit nicht +in Frage kommen für die besuchte Basis. +Übrig bleiben die {\color{red}rot} und {\color{darkgreen}grün} hervorgehobenen +Vektoren. +\label{buch:homologie:fig:gausshomobasis}} +\end{figure} + +Diese Auswahl lässt sich sehr leicht mit Hilfe der folgenden +Variante des Gauss-Algorithmus realisieren. +Dazu werden die $n_{k+1}$ Zeilen Gauss-Tableau zunächst mit den Vektoren +$\partial_{k+1}{e_i^{(k+1)}}^t$ gefüllt. +Führt man in diesem Tableau die Vorwärtsreduktion durch, wobei man +entstehende Nullzeilen einfach überspringt, bleiben nur noch Zeilen +übrig, die linear unabhängig sind. +Diese Zeilen entsprechen den linear unabhängigen Vektoren von $\mathcal{B}_k$, +die Zeilennummern sind $i_1,i_2,\dots,i_m$. +Dieses Vorgehen ist schematisch im oberen Teil der +Abbildung~\ref{buch:homologie:fig:gausshomobasis} dargestellt. + +\subsubsection{Basis für die Homologiegruppe $H_k(C)$} +Um eine Basis von $H_k(C)$ zu konstruieren, müssen wir jetzt eine +Basis von Zyklen finden, die sich nicht nur um einen Rand unterscheiden, +die also zu verschiedenen Homologie-Klassen in $H_k(C)$ gehören. +Gesucht sind jetzt also Vektoren $\mathcal{Z}'_k$ derart, dass +die Vektoren von $\mathcal{Z}'_k\cup\mathcal{B}_k$ immer noch $Z_k(C)$ +aufspannen, aber zusätzlich linear unabhängig sind. + +Dazu kann man wie folgt vorgehen. +\begin{enumerate} +\item +Man beginnt mit $\mathcal{D}_0=\emptyset$ und setzt $j=0$. +\item +Dann testet man der Reihe nach alle noch nicht getesteten Vektoren +von $z_i^{(k)}\in\mathcal{Z}_k$ daraufhin, ob sie von den Vektoren +$\mathcal{B}_k\cup \mathcal{D}_j$ linear unabhängig sind. +Wenn ja, bildet man $\mathcal{D}_{j+1} = \mathcal{D}\cup\{z^{(k)}_i\}$ und +setzt $j=1$. +Andernfalls ignoriert man $z^{(k)}_i$. +\item +Schritt 2 wird wiederholt, bis man alle Vektoren von $\mathcal{Z}_k$ +getestet hat. +Die gesuchte Basis setzt sich zusammen aus $\mathcal{B}_k$ und +$\mathcal{D}_l$, +also +$ +\mathcal{Z}_k' += +\mathcal{B}_k +\cup +\mathcal{D}_l. +$ +\end{enumerate} + +Dieser Algorithmus kann ebenfalls mit der oben angesprochenen Variante +des Gauss-Algorithmus durchgeführt werden. +Dazu werden die Zeilen $n_k+1$ bis $n_k+1+|\mathcal{Z}_k|$ mit den +Vektoren $z_i^t$. +Dann führt man die Vorwärtsreduktion im ganzen Tableau durch, wobei +man wieder die Nullzeilen stehen lässt. +Nullzeilen zeigen wieder Vektoren an, die sich linear durch die darüber +liegenden Vektoren ausdrücken lassen. +Die auszuwählenden Vektoren sind daher genau diejenigen, die für +$\mathcal{Z}_k'$ ausgewählt werden müssen. + +Um den Algorithmus durchzuführen, bilden wir daher das Gauss-Tableau +in Abbildung~\ref{buch:homologie:beispiel:gausstableau}, +bestehend aus den Vektoren $\partial_2e_i^{(2)}$ in den ersten 9 +Zeilen und den Zyklen $z_1,\dots,z_{13}$ in den folgenden 13 Zeilen. +Das reduzierte Tableau nach der Vorwärtsreduktion ist in +Abbildung~\ref{buch:homologie:beispiel:gausstableaureduziert} +dargestellt, amn erkennt, dass die Zyklen $z_1$ bis $z_4$, $z_7$ und $z_8$, +$z_9$ und $z_{10}$ sowie $z_{13}$ weggelassen werden müssen. +Es bleiben die folgenden Zyklen: +\begin{center} +\begin{tabular}{>{$}l<{$}l} +\text{Zyklus}&Eigenschaft\\ +\hline +z_5 &Zyklus umschliesst das kleine weisse Dreieck links unten\\ +z_6 &Zyklus umschliesst das kleine weisse Dreieck rechts unten\\ +z_9 &Zyklus umschliesst das grosse weisse Dreieck\\ +z_{12}&Zyklus umschliesst das kleine weisse Dreicke oben\\ +\hline +\end{tabular} +\end{center} +Die Zyklen, die nach der Reduktion übrig bleiben, sind in +Abbildung~\ref{buch:homologie:beispiel:homoclasses} zusammengestellt. +Jede solche Klasse entspricht genau einem der ``Löcher'', der weissen +Dreiecke. +Die Homologie kann man also als eine exakte Version der Idee eines +Vektorraums erzeugt von den ``Löchern'' eines Polygons verstehen. + +\begin{figure} +\centering +\setlength\tabcolsep{1pt} +\begin{tabular}{|>{$}c<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|} +\hline +&\scriptstyle 1&\scriptstyle 2&\scriptstyle 3&\scriptstyle 4 &\scriptstyle 5 +&\scriptstyle 6 &\scriptstyle 7 &\scriptstyle 8 &\scriptstyle 9 &\scriptstyle 10 +&\scriptstyle 11 &\scriptstyle 12 &\scriptstyle 13 &\scriptstyle 14 &\scriptstyle 15 +&\scriptstyle 16 &\scriptstyle 17 &\scriptstyle 18 &\scriptstyle 19 &\scriptstyle 20 +&\scriptstyle 21 &\scriptstyle 22 &\scriptstyle 23 &\scriptstyle 24 &\scriptstyle 25 +&\scriptstyle 26 &\scriptstyle 27 +\\ +% 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 +\hline +\scriptstyle\partial_2e_1^{(2)}& 1& & & & 1&\phantom{-}1& & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_2^{(2)}& & 1& & & & & 1&\phantom{-}1& & & & & & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_3^{(2)}& & & 1& & & & & &\phantom{-}1&\phantom{-}1& & & & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_4^{(2)}& & & &\phantom{-}1& & & & & & & 1&\phantom{-}1& & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_5^{(2)}& & & & & & & & & & & & & 1& & 1&\phantom{-}1& & & & & & & & & & & \\ +\scriptstyle\partial_2e_6^{(2)}& & & & & & & & & & & & & &\phantom{-}1& & & 1&\phantom{-}1& & & & & & & & & \\ +\scriptstyle\partial_2e_7^{(2)}& & & & & & & & & & & & & & & & & & & 1& &\phantom{-}1& 1& & & & & \\ +\scriptstyle\partial_2e_8^{(2)}& & & & & & & & & & & & & & & & & & & &\phantom{-}1& & & 1&\phantom{-}1& & & \\ +\scriptstyle\partial_2e_9^{(2)}& & & & & & & & & & & & & & & & & & & & & & & & &\phantom{-}1&\phantom{-}1&\phantom{-}1\\ +\hline +% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 +\scriptstyle z_{ 1}& 1& & & & 1& 1& & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 2}& & 1& & & & & 1& 1& & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 3}& & & 1& & & & & & 1& 1& & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 4}& & & & 1& & & & & & & 1& 1& & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 5}&-1& & & &-1& & 1& & & & & & 1& & & & & & & & & & & & & & \\ +\scriptstyle z_{ 6}& & &-1& & & & & &-1& & 1& & & 1& & & & & & & & & & & & & \\ +\scriptstyle z_{ 7}& 1& & & & 1& &-1& & & & & & & & 1& 1& & & & & & & & & & & \\ +\scriptstyle z_{ 8}& & & 1& & & & & & 1& &-1& & & & & & 1& 1& & & & & & & & & \\ +\scriptstyle z_{ 9}&-1&-1& & & 1& & & & 1& & & & & &-1& & 1& 1& 1& & & & & & & & \\ +\scriptstyle z_{10}& & & & & & & & & & & & & & & & & & 1& & 1& 1& & & & & & \\ +\scriptstyle z_{11}& 1& 1& & & 1& & & &-1& & & & & & 1& &-1& &-1& & & & 1& 1& & & \\ +\scriptstyle z_{12}& & & & & & & & & & & & & & & & & & &-1& &-1& & 1& & 1& & \\ +\scriptstyle z_{13}& & & & & & & & & & & & & & & & & & & 1& & 1& &-1& & & 1& 1\\ +\hline +\end{tabular} +\caption{Gauss-Tableau für die Bestimmung einer Basis von +$H_1$ für das Beispiel. +Die ersten neuen Zeilen bestehen aus den Bildern der +Basisvektoren von $C_2$. +Im vorliegenden Fall kann man sofort sehen, dass alle diese +Zeilen linear unabhängig sind. +Die folgenden Zeilen sind die Zyklen in $\mathbb{Z}_2$, sie +sind ebenfalls linear unabhängig. +Mit Hilfe der Vorwärtsreduktion müssen jetzt diejenigen +Zeilen elminiert werden, die bereits aus anderen Zyklen +mit Hilfe von Rändern der Zeilen 1--9 kombiniert werden können. +\label{buch:homologie:beispiel:gausstableau}} +\end{figure} + +\begin{figure} +\centering +\setlength\tabcolsep{1pt} +\begin{tabular}{|>{$}c<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|} +\hline +&\scriptstyle 1&\scriptstyle 2&\scriptstyle 3&\scriptstyle 4 &\scriptstyle 5 +&\scriptstyle 6 &\scriptstyle 7 &\scriptstyle 8 &\scriptstyle 9 &\scriptstyle 10 +&\scriptstyle 11 &\scriptstyle 12 &\scriptstyle 13 &\scriptstyle 14 &\scriptstyle 15 +&\scriptstyle 16 &\scriptstyle 17 &\scriptstyle 18 &\scriptstyle 19 &\scriptstyle 20 +&\scriptstyle 21 &\scriptstyle 22 &\scriptstyle 23 &\scriptstyle 24 &\scriptstyle 25 +&\scriptstyle 26 &\scriptstyle 27 +\\ +% 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 +\hline +\scriptstyle\partial_2e_1^{(2)}&\phantom{-}1& & & &\phantom{-}1&\phantom{-}1& & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_2^{(2)}& &\phantom{-}1& & & & &\phantom{-}1&\phantom{-}1& & & & & & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_3^{(2)}& & &\phantom{-}1& & & & & &\phantom{-}1&\phantom{-}1& & & & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_4^{(2)}& & & &\phantom{-}1& & & & & & &\phantom{-}1&\phantom{-}1& & & & & & & & & & & & & & & \\ +\scriptstyle\partial_2e_5^{(2)}& & & & & & & & & & & & & 1& & 1&\phantom{-}1& & & & & & & & & & & \\ +\scriptstyle\partial_2e_6^{(2)}& & & & & & & & & & & & & &\phantom{-}1& & & 1&\phantom{-}1& & & & & & & & & \\ +\scriptstyle\partial_2e_7^{(2)}& & & & & & & & & & & & & & & & & & & 1& &\phantom{-}1& 1& & & & & \\ +\scriptstyle\partial_2e_8^{(2)}& & & & & & & & & & & & & & & & & & & &\phantom{-}1& & & 1&\phantom{-}1& & & \\ +\scriptstyle\partial_2e_9^{(2)}& & & & & & & & & & & & & & & & & & & & & & & & &\phantom{-}1&\phantom{-}1&\phantom{-}1\\ +\hline +% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 +\scriptstyle z_{ 1}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 2}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 3}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 4}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 5}& & & & & & 1& 1& & & & & & & &-1&-1& & & & & & & & & & & \\ +\scriptstyle z_{ 6}& & & & & & & & & & 1& 1& & & & & &-1&-1& & & & & & & & & \\ +\scriptstyle z_{ 7}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 8}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 9}& & & & & & & & 1& 1& & & & & & & 1& 1& & & &-1&-1&-1&-1& & & \\ +\scriptstyle z_{10}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{11}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{12}& & & & & & & & & & & & & & & & & & & & & & 1& 1& & &-1&-1\\ +\scriptstyle z_{13}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\hline +\end{tabular} +\caption{Nach Durchführung der Vorwärtsreduktion kann man die Zyklen +ablesen, die nicht für eine Basis von $H_1$ gebraucht werden. +\label{buch:homologie:beispiel:gausstableaureduziert}} +\end{figure} + +\begin{figure} +\centering +\includegraphics{chapters/95-homologie/images/homoclasses.pdf} +\caption{Repräsentanten für die Reduzierten Klassen aus dem +Tableau von +Abbildung~\ref{buch:homologie:beispiel:gausstableaureduziert}, +sie bilden eine Basis der Homologie-Gruppe $H_1$. +Jeder dieser Repräsentanten umschliesst genau ein ``Loch'', +also genau ein weisses Dreieck. +\label{buch:homologie:beispiel:homoclasses}} +\end{figure} + +\subsubsection{Basis von $H_k(C)$} +Die im vorangegangenen Abschnitt konstruierte Basis kann jetzt auch +dazu verwendet werden, eine Basis von $H_k(C)$ zu finden. +Die Vektoren in $\mathcal{B}_k$ bilden eine Basis von $B_k(C)$ +und die Vektoren in $\mathcal{Z}_k'$ sind davon unabhängig. +Die Klassen der Vektoren von $\mathcal{Z}_k'$ in $H_k(C)$ sind +daher ebenfalls linear unabhängig und bilden damit eine Basis +von $H_k(C)$. +Die von obigem Algorithmus ausgewählten Zyklen bilden also automatisch +eine Basis von Zyklen, die nicht Rand irgend einer Kette in $C_{k+1}$ +sein können. -- cgit v1.2.1 From 13304c02851094180b714d71451f279966fb582f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 24 Aug 2021 17:21:53 +0200 Subject: simpliziale Approximation --- buch/chapters/95-homologie/basiswahl.tex | 87 +++++++++++++++++--------------- 1 file changed, 47 insertions(+), 40 deletions(-) (limited to 'buch/chapters/95-homologie/basiswahl.tex') diff --git a/buch/chapters/95-homologie/basiswahl.tex b/buch/chapters/95-homologie/basiswahl.tex index 6cf49c2..f720c76 100644 --- a/buch/chapters/95-homologie/basiswahl.tex +++ b/buch/chapters/95-homologie/basiswahl.tex @@ -4,9 +4,9 @@ Die Definition der Homologiegruppen $H_k(C)$ als Quotient von Vektorräumen ist ziemlich abstrakt. Sie besteht aus Klassen von Zyklen, die sich höchstens um einen Rand unterscheiden. -% XXX Verweise auf Visualisierung Indem wir eine geeignete Basis wählen, können wir konkrete Zyklen identifizieren, die eine Basis für den Vektorraum $H_k(C)$ bilden. +Dies soll im Folgenden schrittweise durchgeführt werden. \begin{figure} \centering @@ -47,7 +47,7 @@ Sie ist \setcounter{MaxMatrixCols}{27} \partial_1 = -\tiny +\footnotesize \setlength\arraycolsep{2pt} \begin{pmatrix*}[r] %1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 @@ -69,32 +69,37 @@ Sie ist \end{pmatrix*} \] Die reduzierte Zeilenstufenform von $\partial_1$ ist +(Pivotpositionen in {\color{red}rot}, frei wählbare Variablen +in {\color{darkgreen}grün}) \begin{center} -\tiny +%\tiny +\scriptsize +%\footnotesize \setlength\tabcolsep{3pt} \begin{tabular}{|>{$}r<{$}|>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}>{$}r<{$}|} \hline -&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16&17&18&19&20&21&22&23&24&25&26&27\\ + & 1& 2& 3& 4& 5&{\color{darkgreen}6}& 7&{\color{darkgreen}8}& 9&{\color{darkgreen}10}&11&{\color{darkgreen}12}&{\color{darkgreen}13}&{\color{darkgreen}14}&15&{\color{darkgreen}16}&17&{\color{darkgreen}18}&19&{\color{darkgreen}20}&21&{\color{darkgreen}22}&23&{\color{darkgreen}24}&{\color{darkgreen}25}&26&{\color{darkgreen}27}\\ \hline - 1&1& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ - 2&0& 1& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ - 3&0& 0& 1& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 4&0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 5&0& 0& 0& 0& 1&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ - 6&0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 0&-1& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 7&0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ - 8&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ - 9&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ -10&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ -11&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0&-1& 0& 1& 1& 0&-1\\ -12&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1& 0& 0& 1& 0&-1\\ -13&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1&-1& 0& 1\\ -14&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1&-1\\ -15&0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 1&\phantom{-}{\color{red}1}& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 2& 0&\phantom{-}{\color{red}1}& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 3& 0& 0&\phantom{-}{\color{red}1}& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 4& 0& 0& 0&\phantom{-}{\color{red}1}& 0& 0& 0& 0& 0& 0& 0&-1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 5& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 0& 0& 0& 1& 0& 0&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ + 6& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 0&-1& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 7& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ + 8& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ + 9& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 0& 1& 0& 0& 0&-1& 0& 0& 0\\ +10& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0&-1& 0& 0& 0& 1& 0& 0& 0\\ +11& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0&-1& 0& 1& 1& 0&-1\\ +12& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1& 0& 0& 1& 0&-1\\ +13& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1&-1& 0& 1\\ +14& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0&\phantom{-}{\color{red}1}&-1\\ +15& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ \hline \end{tabular}. \end{center} -Daraus kann man die Zyklen wie folgt ablesen: +Daraus kann man die Zyklen wie folgt ablesen, indem man jeweils +genau eine frei wählbare Variable auf $1$ setzt: { \begin{align*} z_1 @@ -365,7 +370,7 @@ z_8 % variable 18 = 1 -1\\ 0\\ 0\\ - 1\\ +-1\\ 0\\ 0\\ 0\\ @@ -569,7 +574,7 @@ Aus den Abbildungen~\ref{buch:homologie:fig:homocycles} und \ref{buch:homologie:fig:homoboundaries} kann man auch ablesen, wie die Ränder $\partial_2e_i^{(2)}$ aus den Zyklen von $\mathcal{Z}_1$ linear kombiniert werden können. -Man erhält so die Beziehungen. +Man erhält so die Beziehungen \begin{equation} \setcounter{MaxMatrixCols}{29} \setlength\arraycolsep{1pt} @@ -578,11 +583,11 @@ Man erhält so die Beziehungen. \partial_2e_2^{(2)} &=& & &z_2& & & & & & & & & & & & & & & & & & & & & & \\ \partial_2e_3^{(2)} &=& & & & &z_3& & & & & & & & & & & & & & & & & & & & \\ \partial_2e_4^{(2)} &=& & & & & & &z_4& & & & & & & & & & & & & & & & & & \\ -\partial_2e_5^{(2)} &=& & & & & & & &-&z_5& & &+&z_7& & & & & & & & & & & & \\ -\partial_2e_6^{(2)} &=& & & & & & & & & &-&z_6& & &+&z_8& & & & & & & & & & \\ +\partial_2e_5^{(2)} &=& & & & & & & & &z_5& & &+&z_7& & & & & & & & & & & & \\ +\partial_2e_6^{(2)} &=& & & & & & & & & & &z_6& & &+&z_8& & & & & & & & & & \\ \partial_2e_7^{(2)} &=& & & & & & & & & & & & & & & & & & &z_{10}& & & & & & \\ \partial_2e_8^{(2)} &=& & & & & & & & & & & & & & & & & & & & &z_{11}& & & & \\ -\partial_2e_9^{(2)} &=& & & & & & & & & & & & & & & & & & & & & &-&z_{12}&+&z_{13} +\partial_2e_9^{(2)} &=& &\phantom{+}& &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & &\phantom{+} & & &z_{12}&+&z_{13} \end{array} \end{equation} Dies reicht jedoch nicht, um herauszufinden, welche der blauen Dreiecke @@ -766,31 +771,33 @@ mit Hilfe von Rändern der Zeilen 1--9 kombiniert werden können. \scriptstyle\partial_2e_8^{(2)}& & & & & & & & & & & & & & & & & & & &\phantom{-}1& & & 1&\phantom{-}1& & & \\ \scriptstyle\partial_2e_9^{(2)}& & & & & & & & & & & & & & & & & & & & & & & & &\phantom{-}1&\phantom{-}1&\phantom{-}1\\ \hline -% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 -\scriptstyle z_{ 1}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 2}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 3}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 4}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 5}& & & & & & 1& 1& & & & & & & &-1&-1& & & & & & & & & & & \\ -\scriptstyle z_{ 6}& & & & & & & & & & 1& 1& & & & & &-1&-1& & & & & & & & & \\ -\scriptstyle z_{ 7}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 8}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{ 9}& & & & & & & & 1& 1& & & & & & & 1& 1& & & &-1&-1&-1&-1& & & \\ -\scriptstyle z_{10}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{11}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ -\scriptstyle z_{12}& & & & & & & & & & & & & & & & & & & & & & 1& 1& & &-1&-1\\ -\scriptstyle z_{13}& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 +\scriptstyle z_{ 1}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 2}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 3}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 4}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 5}'& & & & & & 1& 1& & & & & & & &-1&-1& & & & & & & & & & & \\ +\scriptstyle z_{ 6}'& & & & & & & & & & 1& 1& & & & & &-1&-1& & & & & & & & & \\ +\scriptstyle z_{ 7}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 8}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{ 9}'& & & & & & & & 1& 1& & & & & & & 1& 1& & & &-1&-1&-1&-1& & & \\ +\scriptstyle z_{10}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{11}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ +\scriptstyle z_{12}'& & & & & & & & & & & & & & & & & & & & & & 1& 1& & &-1&-1\\ +\scriptstyle z_{13}'& & & & & & & & & & & & & & & & & & & & & & & & & & & \\ \hline \end{tabular} \caption{Nach Durchführung der Vorwärtsreduktion kann man die Zyklen ablesen, die nicht für eine Basis von $H_1$ gebraucht werden. +Die resultierenden Zyklen sind in Abbildung~\ref{buch:homologie:beispiel:homoclasses} +dargestellt. \label{buch:homologie:beispiel:gausstableaureduziert}} \end{figure} \begin{figure} \centering \includegraphics{chapters/95-homologie/images/homoclasses.pdf} -\caption{Repräsentanten für die Reduzierten Klassen aus dem +\caption{Repräsentanten für die reduzierten Klassen aus dem Tableau von Abbildung~\ref{buch:homologie:beispiel:gausstableaureduziert}, sie bilden eine Basis der Homologie-Gruppe $H_1$. -- cgit v1.2.1 From c2e5769ae3749663985e36adf278d06c2c45f5fa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 24 Aug 2021 20:00:12 +0200 Subject: new image: tetraeder --- buch/chapters/95-homologie/basiswahl.tex | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) (limited to 'buch/chapters/95-homologie/basiswahl.tex') diff --git a/buch/chapters/95-homologie/basiswahl.tex b/buch/chapters/95-homologie/basiswahl.tex index f720c76..aacfa9f 100644 --- a/buch/chapters/95-homologie/basiswahl.tex +++ b/buch/chapters/95-homologie/basiswahl.tex @@ -100,7 +100,6 @@ in {\color{darkgreen}grün}) \end{center} Daraus kann man die Zyklen wie folgt ablesen, indem man jeweils genau eine frei wählbare Variable auf $1$ setzt: -{ \begin{align*} z_1 &= @@ -524,14 +523,13 @@ z_8 % variable 18 = 1 1 \end{pmatrix*} \end{align*} -} \begin{figure} \centering \includegraphics{chapters/95-homologie/images/homocycles.pdf} \caption{Zyklen des Randoperators $\partial_1$ im Beispiel von Seite~\pageref{buch:homologie:beispiel:gausshomo}. \label{buch:homologie:fig:homocycles}} -\end{figure} +\end{figure}% Die Zyklen sind in Abbildung~\ref{buch:homologie:fig:homocycles} {\color{red}rot} dargestellt. \end{beispiel} -- cgit v1.2.1