From 5388a7aad33813f7795d601ce7a2ae21fddd9590 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 26 Sep 2021 20:03:41 +0200 Subject: torus perfektioniert --- buch/chapters/95-homologie/basiswahl.tex | 74 +++++++++++++++++++++----------- 1 file changed, 48 insertions(+), 26 deletions(-) (limited to 'buch/chapters/95-homologie/basiswahl.tex') diff --git a/buch/chapters/95-homologie/basiswahl.tex b/buch/chapters/95-homologie/basiswahl.tex index 391ebf2..31ec208 100644 --- a/buch/chapters/95-homologie/basiswahl.tex +++ b/buch/chapters/95-homologie/basiswahl.tex @@ -664,32 +664,6 @@ liegenden Vektoren ausdrücken lassen. Die auszuwählenden Vektoren sind daher genau diejenigen, die für $\mathcal{Z}_k'$ ausgewählt werden müssen. -Um den Algorithmus durchzuführen, bilden wir daher das Gauss-Tableau -in Abbildung~\ref{buch:homologie:beispiel:gausstableau}, -bestehend aus den Vektoren $\partial_2e_i^{(2)}$ in den ersten 9 -Zeilen und den Zyklen $z_1,\dots,z_{13}$ in den folgenden 13 Zeilen. -Das reduzierte Tableau nach der Vorwärtsreduktion ist in -Abbildung~\ref{buch:homologie:beispiel:gausstableaureduziert} -dargestellt, amn erkennt, dass die Zyklen $z_1$ bis $z_4$, $z_7$ und $z_8$, -$z_9$ und $z_{10}$ sowie $z_{13}$ weggelassen werden müssen. -Es bleiben die folgenden Zyklen: -\begin{center} -\begin{tabular}{>{$}l<{$}l} -\text{Zyklus}&Eigenschaft\\ -\hline -z_5 &Zyklus umschliesst das kleine weisse Dreieck links unten\\ -z_6 &Zyklus umschliesst das kleine weisse Dreieck rechts unten\\ -z_9 &Zyklus umschliesst das grosse weisse Dreieck\\ -z_{12}&Zyklus umschliesst das kleine weisse Dreicke oben\\ -\hline -\end{tabular} -\end{center} -Die Zyklen, die nach der Reduktion übrig bleiben, sind in -Abbildung~\ref{buch:homologie:beispiel:homoclasses} zusammengestellt. -Jede solche Klasse entspricht genau einem der ``Löcher'', der weissen -Dreiecke. -Die Homologie kann man also als eine exakte Version der Idee eines -Vektorraums erzeugt von den ``Löchern'' eines Polygons verstehen. \begin{figure} \centering @@ -804,6 +778,43 @@ also genau ein weisses Dreieck. \label{buch:homologie:beispiel:homoclasses}} \end{figure} +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/95-homologie/torus/torus.jpg} +\caption{Basis der Homologiegruppen eines Torus $T^2$. +Der Algorithmus findet zwei Basisklassen für $H(T^2)$, der eine Zyklus +geht durch das ``Loch'' des Torus (blau), der andere folgt mehr oder +weniger dem Äquator. +\label{buch:homologie:fig:torus}} +\end{figure} + +Um den Algorithmus durchzuführen, bilden wir daher das Gauss-Tableau +in Abbildung~\ref{buch:homologie:beispiel:gausstableau}, +bestehend aus den Vektoren $\partial_2e_i^{(2)}$ in den ersten 9 +Zeilen und den Zyklen $z_1,\dots,z_{13}$ in den folgenden 13 Zeilen. +Das reduzierte Tableau nach der Vorwärtsreduktion ist in +Abbildung~\ref{buch:homologie:beispiel:gausstableaureduziert} +dargestellt, amn erkennt, dass die Zyklen $z_1$ bis $z_4$, $z_7$ und $z_8$, +$z_9$ und $z_{10}$ sowie $z_{13}$ weggelassen werden müssen. +Es bleiben die folgenden Zyklen: +\begin{center} +\begin{tabular}{>{$}l<{$}l} +\text{Zyklus}&Eigenschaft\\ +\hline +z_5 &Zyklus umschliesst das kleine weisse Dreieck links unten\\ +z_6 &Zyklus umschliesst das kleine weisse Dreieck rechts unten\\ +z_9 &Zyklus umschliesst das grosse weisse Dreieck\\ +z_{12}&Zyklus umschliesst das kleine weisse Dreicke oben\\ +\hline +\end{tabular} +\end{center} +Die Zyklen, die nach der Reduktion übrig bleiben, sind in +Abbildung~\ref{buch:homologie:beispiel:homoclasses} zusammengestellt. +Jede solche Klasse entspricht genau einem der ``Löcher'', der weissen +Dreiecke. +Die Homologie kann man also als eine exakte Version der Idee eines +Vektorraums erzeugt von den ``Löchern'' eines Polygons verstehen. + \subsubsection{Basis von $H_k(C)$} Die im vorangegangenen Abschnitt konstruierte Basis kann jetzt auch dazu verwendet werden, eine Basis von $H_k(C)$ zu finden. @@ -815,3 +826,14 @@ von $H_k(C)$. Die von obigem Algorithmus ausgewählten Zyklen bilden also automatisch eine Basis von Zyklen, die nicht Rand irgend einer Kette in $C_{k+1}$ sein können. + + +Führt man das beschriebene Verfahren für einen zweidimensionalen Torus $T^2$ durch, +findet es die beiden in Abbildung~\ref{buch:homologie:fig:torus} dargestellten +Zyklen. +Sie zeigen schön, wie die Homologieklassen die beiden Arten von ``Löchern'' +erkennen. +Zum einen ist da der blaue Zyklus, der das ``Loch'' im inneren des Torus +umschliesst. +Der rote Zyklus dagegen folgt mehr oder weniger dem Äquator und repräsentiert +damit die ``Ringform'' des Torus. -- cgit v1.2.1