From 0ead33dd72a7dd09ab8f855e672cb81e38623ef1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 22 Aug 2021 21:43:09 +0200 Subject: euler char, traces, telescoping sums --- buch/chapters/95-homologie/induzierteabb.tex | 204 +++++++++++++++++++++++++++ 1 file changed, 204 insertions(+) create mode 100644 buch/chapters/95-homologie/induzierteabb.tex (limited to 'buch/chapters/95-homologie/induzierteabb.tex') diff --git a/buch/chapters/95-homologie/induzierteabb.tex b/buch/chapters/95-homologie/induzierteabb.tex new file mode 100644 index 0000000..bf9f617 --- /dev/null +++ b/buch/chapters/95-homologie/induzierteabb.tex @@ -0,0 +1,204 @@ +\subsection{Induzierte Abbildung +\label{buch:subsection:induzierte-abbildung}} +Früher haben wurde eine Abbildung $f_*$ zwischen Kettenkomplexen $C_*$ und +$D_*$ so definiert, +dass sie mit den Randoperatoren verträglich sein muss. +Diese Forderung bewirkt, dass sich auch eine lineare Abbildung +\[ +H_k(f) \colon H_k(C) \to H_k(D) +\] +zwischen den Homologiegruppen ergibt, wie wir nun zeigen wollen. + +\subsubsection{Definition der induzierten Abbildung} +Um eine Abbildung von $H_k(C)$ nach $H_k(D)$ zu definieren, müssen wir +zu einem Element von $H_k(C)$ ein Bildelement konstruieren. +Ein Element in $H_k(C)$ ist eine Menge von Zyklen in $Z^C_k$, die sich +nur um einen Rand in $B_k$ unterscheiden. +Wir wählen also einen Zyklus $z\in Z_k$ und bilden ihn auf $f_k(z)$ ab. +Wegen $\partial^D_kf(z)=f\partial^C_kz = f(0) =0 $ ist auch $f_k(z)$ +ein Zyklus. +Wir müssen jetzt aber noch zeigen, dass eine andere Wahl des Zyklus +das gleiche Element in $H_k(D)$ ergibt. +Dazu genügt es zu sehen, dass sich $f(z)$ höchstens um einen Rand +ändert, wenn man $z$ um einen Rand ändert. +Sei also $b\in B^C_k$ ein Rand, es gibt also ein $w\in C_{k+1}$ mit +$\partial^C_{k+1}w=b$. +Dann gilt aber auch +\[ +f_k(z+b) += +f_k(z) + f_k(b) += +f_k(z) + f_k(\partial^C_{k+1}w) += +f_k(z) + \partial^D_{k+1}(f_k(w)). +\] +Der letzte Term ist ein Rand in $D_k$, somit ändert sich $f_k(z)$ nur +um diesen Rand, wenn man $z$ um einen Rand ändert. +$f_k(z)$ und $f_k(z+b)$ führen auf die selbe Homologieklasse. + +\subsubsection{Matrixdarstellung} +In Abschnitt~\ref{buch:subsection:basiswahl} wurde gezeigt, wie man +für die Vektorräume der Zyklen eine Basis derart finden kann, +dass die Ränder von einer Teilmenge der Basis aufgespannt werden. +Eine solche Basis kann man immer erweitern zu einer Basis von $C_k$. +Für das Folgende bezeichnen wir die Vektoren einer solche Basis von $C_k$ +mit +\[ +\{ +b_1,\dots, b_r, +z_1,\dots,z_l, +c_1,\dots,c_s +\}. +\] +wobei die Vektoren die folgende Bedeutung haben: +\begin{center} +\begin{tabular}{|l|l|} +\hline +Vektoren&Bedeutung\\ +\hline +$b_1,\dots,b_r$ & Basis für $B_k(C)$ \\ +$z_1,\dots,z_l$ & zusätzliche Vektoren für eine Basis von $Z_k(C)$ \\ +$c_1,\dots,c_s$ & zusätzliche Vektoren für eine Basis von $C_k$ \\ +\hline +\end{tabular} +\end{center} + +Wählt man eine Basis dieser Art sowohl in $C_*$ wie auch in $D_*$, +dann kann man die induzierte Abbildung als $3\times 3$-Blockmatrix +schreiben. +Man verwendet dabei, dass $f_k$ die Unterräume $B_k(C)$ und +$Z_k(C)$ in die entsprechenden Unterräume $B_k(D)$ und $Z_k(D)$ +abbildet, also +\[ +f_k(B_k(C)) \subset B_k(D) +\qquad\text{und}\qquad +f_k(Z_k(C)) \subset Z_k(D). +\] +In der Matrixdarstellung äussert sich das darin, dass die Blöcke +links unten zu Null werden. +Die Matrixdarstellung von $f_k$ hat daher die Form +\[ +f_k += +\begin{pmatrix} +f_{k,B} & * & * \\ + 0 & f_{k,Z} & * \\ + 0 & 0 & f_{k,*} +\end{pmatrix}. +\] +Genauso kann man natürlich auch die Randoperatoren in dieser Basis +ausdrücken. +Sie bilden die Zyklen auf $0$ ab und aus den Vektoren $c_1,\dots,c_s$ +werden Ränder. +Die Matrix hat daher die Form +\[ +\partial_k += +\begin{pmatrix} +0& 0 & \Delta_k \\ +0& 0 & 0 \\ +0& 0 & 0 +\end{pmatrix} +\] +\begin{figure} +\centering +\includegraphics{chapters/95-homologie/images/complexbasis.pdf} +\caption{Basiswahl für den Kettenkomplex $C_k$. +Der Randoperator $\partial_k$ bildet $Z_k$ auf $0$ ab, der blaue +Unterraum, aufgespannt von den Vektoren $c_i$ wird bijektiv auf $B_{k-1}$ +abgebildet. +Eine Basis kann immer so gefunden werden, dass die Vektoren $c_i$ +von $\partial_k$ auf die Basisvektoren von $B_{k-1}$ abgebildet werden. +In dieser Basis ist $\Delta_k$ eine Einheitsmatrix. +\label{buch:homologie:fig:komplexbasis}} +\end{figure}% +Die Bedingung \eqref{buch:komplex:abbildung} für die Komplexabbildung +bekommt jetzt die Matrixform +\begin{equation} +\left. +\begin{aligned} +\partial_k^{D}\circ f_k +&= +\begin{pmatrix} +0&0&\Delta_k^{(D)}\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +\begin{pmatrix} +f_{k,B} & * & * \\ + 0 & f_{k,Z} & * \\ + 0 & 0 & f_{k,*} +\end{pmatrix} += +\begin{pmatrix} +0&0&\Delta_k^{(D)}f_{k,*}\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +\\ +f_{k-1}\circ \partial_k^C +&= +\begin{pmatrix} +f_{k-1,B}& * & * \\ + 0 &f_{k-1,Z}& * \\ + 0 & 0 &f_{k-1,*} +\end{pmatrix} +\begin{pmatrix} +0&0&\Delta_k^{(C)}\\ +0&0&0\\ +0&0&0 +\end{pmatrix} += +\begin{pmatrix} +0&0&f_{k-1,B}\Delta_k^{(C)}\\ +0&0&0\\ +0&0&0 +\end{pmatrix} +\end{aligned} +\right\} +\Rightarrow +\Delta_k^{(D)}f_{k,*} += +f_{k-1,B}\Delta_k^{(C)}. +\label{buch:homologie:matrixform} +\end{equation} +Für die induzierte Abbildung in Homologie ist ausschliesslich der +Block $f_{k,Z}$ notwendig, die Matrix von $H_k(f)$ in der gewählten +Basis von $H_k(C)$ bzw.~$H_k(D)$ ist also genau die Matrix $f_{k,Z}$. + + +Wie Abbildung~\ref{buch:homologie:fig:komplexbasis} können die +Basisvektoren $c_*$ in $C_k$ so gewählt werden, dass sie vom Randoperator +$\partial_k$ auf die Basisvektoren von $Z_{k-1}$ abgebildet werden. +Bei dieser Wahl wird die Matrix $\Delta_k$ eine Einheitsmatrix. + +\subsubsection{Spur} +Wir betrachten jetzt den Fall einer Selbstabbildung $f_*\colon C_*\to C_*$. +Die Basis soll so gewählt werden, dass $\Delta_k$ eine Einheitsmatrix ist. +Aus~\eqref{buch:homologie:matrixform} kann man ablesen, dass für diese +Basiswahl $f_{k,*}=f_{k-1,B}$ gilt. +Die Matrizen von $f_k$ haben daher die Form +\[ +f_k += +\begin{pmatrix} +f_{k,B} & * & * \\ + 0 & f_{k,Z} & * \\ + 0 & 0 & f_{k-1,B} +\end{pmatrix}. +\] +Entsprechend ist die Spur +\begin{equation} +\operatorname{Spur} f_k += +\operatorname{Spur} f_{k,B} ++ +\operatorname{Spur} f_{k,Z} ++ +\operatorname{Spur} f_{k-1,B}. +\label{buch:homologie:eqn:spur} +\end{equation} + + + -- cgit v1.2.1 From e786624d1494ff73b8d3652ea7b45feffc8d07e1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 22 Aug 2021 21:56:03 +0200 Subject: typo --- buch/chapters/95-homologie/induzierteabb.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/chapters/95-homologie/induzierteabb.tex') diff --git a/buch/chapters/95-homologie/induzierteabb.tex b/buch/chapters/95-homologie/induzierteabb.tex index bf9f617..13591d7 100644 --- a/buch/chapters/95-homologie/induzierteabb.tex +++ b/buch/chapters/95-homologie/induzierteabb.tex @@ -106,7 +106,7 @@ Die Matrix hat daher die Form \includegraphics{chapters/95-homologie/images/complexbasis.pdf} \caption{Basiswahl für den Kettenkomplex $C_k$. Der Randoperator $\partial_k$ bildet $Z_k$ auf $0$ ab, der blaue -Unterraum, aufgespannt von den Vektoren $c_i$ wird bijektiv auf $B_{k-1}$ +Unterraum, aufgespannt von den Vektoren $c_i$, wird bijektiv auf $B_{k-1}$ abgebildet. Eine Basis kann immer so gefunden werden, dass die Vektoren $c_i$ von $\partial_k$ auf die Basisvektoren von $B_{k-1}$ abgebildet werden. -- cgit v1.2.1