From 080d4d175478af1f5170d861f0b7c0dc50baefc0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 27 Jul 2021 10:47:25 +0200 Subject: add example on homology --- buch/chapters/95-homologie/komplex.tex | 104 +++++++++++++++++++++++++++++++-- 1 file changed, 100 insertions(+), 4 deletions(-) (limited to 'buch/chapters/95-homologie/komplex.tex') diff --git a/buch/chapters/95-homologie/komplex.tex b/buch/chapters/95-homologie/komplex.tex index 6dd8efb..c1b5698 100644 --- a/buch/chapters/95-homologie/komplex.tex +++ b/buch/chapters/95-homologie/komplex.tex @@ -6,9 +6,105 @@ \section{Kettenkomplexe \label{buch:section:komplex}} \rhead{Kettenkomplexe} +Die algebraische Struktur, die in Abschnitt~\ref{buch:subsection:triangulation} +konstruiert wurde, kann noch etwas abstrakter konstruiert werden. +Es ergibt sich das Konzept eines Kettenkomplexes. +Die Triangulation gibt also Anlass zu einem Kettenkomplex. +So lässt sich zu einem geometrischen Objekt ein algebraisches +Vergleichsobjekt konstruieren. +Im Idealfall lassens ich anschliessend geometrische Eigenschaften mit +algebraischen Rechnungen zum Beispiel in Vektorräumen mit Matrizen +beantworten. -\subsection{Randoperator von Simplexen -\label{buch:subsection:randoperator-von-simplexen}} +\subsection{Definition +\label{buch:subsection:kettenkomplex-definition}} +Die Operation $\partial$, die für Simplizes konstruiert worden ist, +war linear und hat die Eigenschaft $\partial^2$ gehabt. +Diese Eigenschaften reichen bereits für Definition eines Kettenkomplexes. + +\begin{definition} +Eine Folge $C_0,C_1,C_2,\dots$ von Vektorräumen über dem Körper $\Bbbk$ +mit einer Folge von linearen Abbildungen +$\partial_k\colon C_k \to C_{k-1}$, dem {\em Randoperator}, +heisst ein Kettenkomplex, wenn $\partial_{k-1}\partial_k=0$ gilt +für alle $k>0$. +\end{definition} + +Die aus den Triangulationen konstruieren Vektorräme von +Abschnitt~\ref{buch:subsection:triangulation} bilden einen +Kettenkomplex. + +XXX nachrechnen: $\partial^2 = 0$ ? + +\subsection{Abbildungen +\label{buch:subsection:abbildungen}} +Wenn man verschiedene geometrische Objekte mit Hilfe von Triangulationen +vergleichen will, dann muss man auch das Konzept der Abbildungen zwischen +den geometrischen Objekten in die Kettenkomplexe transportieren. + +Eine Abbildung zwischen Kettenkomplexen muss einerseits eine lineare +Abbildung der Vektorräume $C_k$ sein, andererseits muss sich eine +solche Abbildung mit dem Randoperator vertragen. +Wir definieren daher + +\begin{definition} +Eine Abbildung $f_*$ zwischen zwei Kettenkomplexe $(C_*,\partial^C_*)$ und +$(D_*,\partial^D_*)$ heisst eine Abbildung von Kettenkomplexen, wenn +für jedes $k$ +\begin{equation} +\partial^D_k +\circ +f_{k} += +f_{k+1} +\circ +\partial^C_k +\label{buch:komplex:abbildung} +\end{equation} +gilt. +\end{definition} + +Die Beziehung~\eqref{buch:komplex:abbildung} kann übersichtlich als +kommutatives Diagramm dargestellt werden. +\begin{equation} +\begin{tikzcd} +0 \arrow[r] + & C_0 \arrow[r, "\partial_0^C"] + \arrow[d, "f_0"] + & C_1 \arrow[r,"\partial_1^C"] + \arrow[d, "f_1"] + & C_2 \arrow[r,"\partial_2^C"] + \arrow[d, "f_2"] + & \dots \arrow[r] + \arrow[r, "\partial_{k-1}^C"] + & C_k + \arrow[r, "\partial_k^C"] + \arrow[d, "f_k"] + & C_{k+1}\arrow[r, "\partial_{k+1}^C"] + \arrow[d, "f_{k+1}"] + & \dots +\\ +0 \arrow[r] + & D_0 \arrow[r, "\partial_0^D"] + & D_1 \arrow[r,"\partial_1^D"] + & D_2 \arrow[r,"\partial_2^D"] + & \dots \arrow[r] + \arrow[r, "\partial_{k-1}^D"] + & D_k + \arrow[r, "\partial_k^D"] + & D_{k+1}\arrow[r, "\partial_{k+1}^D"] + & \dots +\end{tikzcd} +\label{buch:komplex:abbcd} +\end{equation} +Die Relation~\eqref{buch:komplex:abbildung} drückt aus, dass man jeden +den Pfeilen im Diagram~\eqref{buch:komplex:abbcd} folgen kann und +dabei zwischen zwei Vektorräumen unabhängig vom Weg die gleiche Abbildung +resultiert. + +Die Verfeinerung einer Triangulation erzeugt eine solche Abbildung von +Komplexen. + + +% XXX simpliziale Approximation -\subsection{Kettenkomplexe und Morphismen -\label{buch:subsection:kettenkomplex}} -- cgit v1.2.1 From eab9aa83268309cdcba5b83df1cb221418e18f93 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 27 Jul 2021 11:23:52 +0200 Subject: induzierte Abbildung --- buch/chapters/95-homologie/komplex.tex | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) (limited to 'buch/chapters/95-homologie/komplex.tex') diff --git a/buch/chapters/95-homologie/komplex.tex b/buch/chapters/95-homologie/komplex.tex index c1b5698..fa2d8e1 100644 --- a/buch/chapters/95-homologie/komplex.tex +++ b/buch/chapters/95-homologie/komplex.tex @@ -68,31 +68,31 @@ Die Beziehung~\eqref{buch:komplex:abbildung} kann übersichtlich als kommutatives Diagramm dargestellt werden. \begin{equation} \begin{tikzcd} -0 \arrow[r] - & C_0 \arrow[r, "\partial_0^C"] +0 + & C_0 \arrow[l, "\partial_0^C"] \arrow[d, "f_0"] - & C_1 \arrow[r,"\partial_1^C"] + & C_1 \arrow[l,"\partial_1^C"] \arrow[d, "f_1"] - & C_2 \arrow[r,"\partial_2^C"] + & C_2 \arrow[l,"\partial_2^C"] \arrow[d, "f_2"] - & \dots \arrow[r] - \arrow[r, "\partial_{k-1}^C"] + & \dots \arrow[l] + \arrow[l, "\partial_{k-1}^C"] & C_k - \arrow[r, "\partial_k^C"] + \arrow[l, "\partial_k^C"] \arrow[d, "f_k"] - & C_{k+1}\arrow[r, "\partial_{k+1}^C"] + & C_{k+1}\arrow[l, "\partial_{k+1}^C"] \arrow[d, "f_{k+1}"] & \dots \\ -0 \arrow[r] - & D_0 \arrow[r, "\partial_0^D"] - & D_1 \arrow[r,"\partial_1^D"] - & D_2 \arrow[r,"\partial_2^D"] - & \dots \arrow[r] - \arrow[r, "\partial_{k-1}^D"] +0 + & D_0 \arrow[l, "\partial_0^D"] + & D_1 \arrow[l,"\partial_1^D"] + & D_2 \arrow[l,"\partial_2^D"] + & \dots \arrow[l] + \arrow[l, "\partial_{k-1}^D"] & D_k - \arrow[r, "\partial_k^D"] - & D_{k+1}\arrow[r, "\partial_{k+1}^D"] + \arrow[l, "\partial_k^D"] + & D_{k+1}\arrow[l, "\partial_{k+1}^D"] & \dots \end{tikzcd} \label{buch:komplex:abbcd} -- cgit v1.2.1