From 1460003bdb4a6c4a91c11bc4dd5f37c35e0028af Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 19 Oct 2021 20:18:07 +0200 Subject: fixes for chapter 10 --- buch/chapters/95-homologie/simplex.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'buch/chapters/95-homologie/simplex.tex') diff --git a/buch/chapters/95-homologie/simplex.tex b/buch/chapters/95-homologie/simplex.tex index a38a507..08583bb 100644 --- a/buch/chapters/95-homologie/simplex.tex +++ b/buch/chapters/95-homologie/simplex.tex @@ -68,7 +68,7 @@ wobei die beiden positiven reellen Zahlen $t_0,t_1\in\mathbb{R}$ die Bedingung $t_0 + t_1 = 1$ erfüllen. Für ein eindimensionales Objekt brauchen wir also zwei Punkte und zwei positive Parameter, die sich zu $1$ summieren. -Die Mengen $\triangle_1=\{ (t_0,t_1)\mid t_i\ge 0, t_0+t_1=1\}$ kann also +Die Menge $\triangle_1=\{ (t_0,t_1)\mid t_i\ge 0, t_0+t_1=1\}$ kann also ganz allgemein als Parameterraum zur Beschreibung eines eindimensionalen Objektes $\triangle_1$ mit den Endpunkten $0$ und $1$ dienen. @@ -128,7 +128,7 @@ t_1\vec{p}_1 + t_n\vec{p}_n \end{equation} -Eine solche Abbildung verallgemeinert also den Begriff einer Strecke +Eine solche Abbildung verallgemeinert den Begriff einer Strecke in einem Raum $\mathbb{R}^N$ auf höhere Dimensionen. Sie ist durch die Eckpunkte vollständig vorgegeben, es reicht also @@ -242,7 +242,7 @@ Die Adjazenzmatrix ordnet ihm die Linearkombination A(G)\colon e_k=[v_i,v_j] \mapsto -[v_i] +[v_j] = (-1)^0 [\widehat{v_i},v_j] + (-1)^1 [v_i,\widehat{v_j}] = -\partial_2 [v_i,v_j] +\partial_1 [v_i,v_j] \] zu. Die Adjazenzmatrix eines Graphen kann man also als den Randoperator @@ -304,7 +304,7 @@ Summe müssen die Teile vor und nach $i$ daher separat betrachtet werden: [P_0,\dots,\widehat{P_j},\dots,\widehat{P_i}\dots,P_l] - \sum_{j>i} (-1)^{i+j} -[P_0,\dots,\widehat{P_i},\dots,\widehat{P_j}\dots,P_l] +[P_0,\dots,\widehat{P_i},\dots,\widehat{P_j}\dots,P_l]. \notag \end{align} Auf der letzten Zeile sind die Summen über alle Paare @@ -393,7 +393,7 @@ nur die ``Gestalt'' oder ``Topologie'' des Objekts. Entfernungen zwischen Punkten sind ebenfalls von untergeordneter Bedeutung, da sie bei Deformation nicht erhalten bleiben. Der Begriff des ``topologischen Raumes'' fasst diese Ideen mathematisch -präzise ein, eine genaue Definition würde aber an dieser Stelle zu weit +präzise, eine genaue Definition würde aber an dieser Stelle zu weit führen. Stattdessen beschränken wir uns auf eine Klasse von Punktmengen, die man mit Simplizes beschreiben kann. @@ -419,7 +419,7 @@ auf ein dreidimensionales Simplex abgebildet werden. \begin{beispiel} \label{buch:homologie:projektion} Sei $T$ ein reguläres Tetraeder mit den Ecken auf der dreidimensionalen -Einheitskugel $B^3$. +Einheitsvollkugel $B^3$. Für jeden Richtungsvektor $x\ne 0$ sei $l(x)$ Entfernung vom Mittelpunkt des Tetraeders bis zum Durchstosspunkt einer Geraden durch den Mittelpunkt mit Richtungsvektor $x$ durch die Oberfläche des Tetraeders. -- cgit v1.2.1