From b1a909384ea96997c563d43e461cb514212f57e6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 15 Sep 2021 18:45:28 +0200 Subject: improve images --- buch/chapters/95-homologie/simplex.tex | 295 ++++++++++++++++++++++----------- 1 file changed, 195 insertions(+), 100 deletions(-) (limited to 'buch/chapters/95-homologie/simplex.tex') diff --git a/buch/chapters/95-homologie/simplex.tex b/buch/chapters/95-homologie/simplex.tex index 3bf1004..65ab441 100644 --- a/buch/chapters/95-homologie/simplex.tex +++ b/buch/chapters/95-homologie/simplex.tex @@ -12,10 +12,10 @@ die sogenannten Simplizes entwickeln müssen. \subsection{Simplizes und Rand \label{buch:subsection:simplices}} - -\subsubsection{Rand eines Dreiecks} Die Inzidenz-Matrix eines Graphen hat einer Kante die beiden Endpunkte mit verschiedenen Vorzeichen zugeordnet. + +\subsubsection{Rand eines Dreiecks} Dieses Idee soll jetzt verallgemeinert werden. Der Rand des Dreiecks $\triangle$ in Abbildung~\ref{buch:homologie:figure:zusammenziehbar} @@ -47,7 +47,7 @@ Wir können diese Zuordnung wieder mit einer Matrix ausdrücken. \end{pmatrix*} \] -\subsubsection{Simplizes} +\subsubsection{Standardsimplizes} Punkte, Kanten und Dreiecke sind die einfachsten Fälle sogenannter Simplizes. Wir formulieren die Definition dieser Objekte auf eine Weise, @@ -88,16 +88,29 @@ Anfangspunkt $s_1(0)$ mit einem negativen Vorzeichen versehen wird. Für höhere Dimensionen brauchen wir auf analoge Weise erst wieder einen geeigneten Parameterraum. Die Menge -\[ +\begin{equation} \triangle_n = -\{(t_0,\dots,t_n)\in\mathbb{R}^{n+1}\,|\, t_i\ge 0,t_0+t_1+\dots+t_n=1\} -\] +\{(t_0,\dots,t_n)\in\mathbb{R}^{n+1}\mid t_i\ge 0,t_0+t_1+\dots+t_n=1\} +\subset\mathbb{R}^{n+1} +\label{buch:homologie:eqn:standardsimplex} +\end{equation} beschreibt zum Beispiel für $n=2$ ein Dreieck und für $n=3$ ein Tetraeder. +\index{Tetraeder}% + +\begin{definition} +Die Menge $\triangle_n$ von \eqref{buch:homologie:eqn:standardsimplex} +heisst das $n$-dimensionale Standardsimplex. +\index{Standardsimplex}% +\end{definition} + +Die Standardbasisvektoren von $\mathbb{R}^{n+1}$ werden $e_0,\dots,e_n$ +bezeichnet und sind die Ecken des $n$-dimensionalen Standardsimplex. +\subsubsection{Simplizes in $\mathbb{R}^N$} Gegeben $n+1$-Punkte $P_0,\dots,P_n$ mit Ortsvektoren -$\vec{p}_0,\dots,\vec{p}_n$ können wir eine Abbildung +$\vec{p}_0,\dots,\vec{p}_n\in\mathbb{R}^N$, können wir eine Abbildung \begin{equation} s_n \colon @@ -116,121 +129,203 @@ t_1\vec{p}_1 t_n\vec{p}_n \end{equation} Eine solche Abbildung verallgemeinert also den Begriff einer Strecke +in einem Raum $\mathbb{R}^N$ auf höhere Dimensionen. +Sie ist durch die Eckpunkte vollständig vorgegeben, es reicht also +die Punkte $P_0,\dots,P_n\in\mathbb{R}^N$ zu kennen. + +%\begin{definition} +%\label{buch:def:simplex} +%Ein $n$-dimensionales {\em Simplex} oder {\em $n$-Simplex} in $X$ ist eine +%stetige Abbildung $s_n\colon\triangle_n\to X$. +%\end{definition} +% +%Die Ecken des $n$-Simplex $\triangle_n$ sind die Standardbasisvektoren +%in $\mathbb{R}^{n+1}$. +%Mit $e_k$ bezeichnen wird die Ecke, deren Koordinaten $t_i=0$ sind für +%$k\ne i$, ausser der Koordinaten $t_k$, die den Wert $t_k=1$ hat. + \begin{definition} -\label{buch:def:simplex} -Ein $n$-dimensionales {\em Simplex} oder {\em $n$-Simplex} ist eine -stetige Abbildung $s_n\colon\triangle_n\to X$. +Ein $n$-Simplex in $\mathbb{R}^N$ ist die stückweise lineare Abbildung +$s\colon \triangle_n\to \mathbb{R}^N$ gegeben durch die Bilder der Eckpunkte +$P_i = s(e_i)$. +Wir schreiben auch $[P_0,P_1,\dots,P_n]$ für dieses Simplex. \end{definition} -Die Ecken des $n$-Simplex $\triangle_n$ sind die Standardbasisvektoren -in $\mathbb{R}^{n+1}$. -Mit $e_k$ bezeichnen wird die Ecke, deren Koordinaten $t_i=0$ sind für -$k\ne i$, ausser der Koordinaten $t_k$, die den Wert $t_k=1$ hat. - \subsubsection{Rechnen mit Simplizes} -Damit wir leichter mit Simplizes rechnen können, betrachten wir +Wir möchten später ein geometrisches Objekt aus Simplizes zusammensetzen. +Dazu müssen wir mehrere Simplizes so ein einen Raum abbilden können, dass +sie an den Rändern zusammenpassen. +Dazu müssen wir mit ``Kombinationen'' von Simplizes rechnen können. +Wir betrachten daher jedes Simplex als einen Basisvektor eines abstrakten Vektorraumes. -Zu einem $n$-Simplex gehören Vektorräume $C_l$ für jede Dimension -$l=0$ bis $l=n$. -Der Vektorraum $C_0$ besteht aus Linearkombinationen -\[ -C_0 -= -\{ x_0 P_0 + \dots + x_n P_n \,| x_i\in\mathbb{R} \}, -\] -$C_0$ ist ein $n$-dimensionaler Raum. -Der Vektorraum $C_1$ besteht aus Linearkombinationen der Kanten -\[ -C_1 -= -\biggl\{ -\sum_{ii} (-1)^{j-1} +[P_0,\dots,\widehat{P_i},\dots,\widehat{P_j}\dots,P_l] +\biggr) +\label{buch:homologie:eqn:randrand} +\\ +&= +\sum_{ji} (-1)^{i+j} +[P_0,\dots,\widehat{P_i},\dots,\widehat{P_j}\dots,P_l] +\notag +\end{align} +Der Exponent $j-1$ im zweiten Term von +\eqref{buch:homologie:eqn:randrand} +trägt der Tatsache Rechnung, +dass der Index $i$ übersprungen worden ist. +In der zweiten Summe kann man die Summationsindizes umbenennen, +also $i$ durch $j$ ersetzen und umgekehrt, dann entsteht +\begin{align*} +\partial_{l-1}\partial_l[P_0,\dots,P_l] +&= +\sum_{jj} (-1)^{j+i} +[P_0,\dots,\widehat{P_j},\dots,\widehat{P_i}\dots,P_l] +\\ +&=0. +\qedhere +\end{align*} +\end{proof} + \subsection{Polyeder} \begin{figure} \centering @@ -253,8 +348,8 @@ Die Vereinigung ist aber nicht beliebig, vielmehr ist die Schnittmenge zweier beliebiger 1-Simplizes immer entweder leer, eine Menge mit nur einem Vertex oder ein ganzes 1-Simplex. -Dies reicht aber nicht, wie Abbildung~\ref{buch:homologie:polyeder} -zeigt. +Für höhere Dimensionen muss diese Idee ausgedehnt werden auf +höherdimensionale Simplizes. In einem Graphen dürfen sich Kanten nicht in einem inneren Punkt treffen, sondern nur in Endpunkten. Verallgemeinert auf höherdimensionale Simplizes kann man dies als die @@ -279,7 +374,7 @@ ist kein Polyeder, kann aber leicht zu einem Polyeder gemacht werden, indem man einzelne Kanten mit zusätzlichen Punkten unterteilt. Auch müssen die zweidimensionalen Simplizes aufgeteilt werden. -Die Abbildung~\ref{buch:homologie:figure:polyeder} zeigt auch, dass +Abbildung~\ref{buch:homologie:figure:polyeder} zeigt auch, dass die Darstellung einer Punktmenge als Polyeder nicht eindeutig ist. Man kann die Kanten und Flächen jederzeit weiter unterteilen, ohne dass sich die Gestalt der gesamten Menge dadurch ändert. @@ -287,7 +382,7 @@ dass sich die Gestalt der gesamten Menge dadurch ändert. \subsection{Triangulation \label{buch:subsection:triangulation}} Unser Ziel ist, geometrische Objekte besser verstehen zu können. -Dabei sind uns Deformationen ja sogar Knicke egal, es interessiert uns +Dabei sind uns Deformationen und sogar Knicke egal, es interessiert uns nur die ``Gestalt'' des Objekts. Entfernungen zwischen Punkten sind ebenfalls von untergeordneter Bedeutung, da sie bei Deformation nicht erhalten bleiben. -- cgit v1.2.1