From 55f1d6047f738272e41035c13167b6fd0c0b03d6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 6 Sep 2021 21:58:54 +0200 Subject: editorial edits clifford --- buch/papers/clifford/2_QuadratVektoren.tex | 65 +++++++++++++++++------------- 1 file changed, 36 insertions(+), 29 deletions(-) (limited to 'buch/papers/clifford/2_QuadratVektoren.tex') diff --git a/buch/papers/clifford/2_QuadratVektoren.tex b/buch/papers/clifford/2_QuadratVektoren.tex index 80d4f03..8916e15 100644 --- a/buch/papers/clifford/2_QuadratVektoren.tex +++ b/buch/papers/clifford/2_QuadratVektoren.tex @@ -1,6 +1,7 @@ \subsection{Quadrat von Vektoren} \subsubsection{Ziel der Multiplikation} -Was eine Addition von Vektoren bedeutet ist sehr intuitiv und auch leicht geometrisch darzustellen wie in Abbildung \ref{figure:addition}. Was allerdings das Produkt von Vektoren ergibt mag anfänglich unintuitiv wirken. +\index{Multiplikation}% +Was eine Addition von Vektoren bedeutet ist sehr intuitiv und auch leicht geometrisch darzustellen wie in Abbildung \ref{figure:addition}. Was allerdings das Produkt von Vektoren ergibt, mag anfänglich unintuitiv wirken. \begin{figure}[tb] \centering \begin{tikzpicture} @@ -20,20 +21,22 @@ Um sinnvoll eine neue Operation zwischen zwei Elementen einer Algebra, in diesem \label{clifford:ziel} Der Vektorraum der $n$-dimensionalen Vektoren soll zu einer Algebra so erweitert werden, dass das Quadrat von Vektoren durch die Länge des Vektors ausgedrückt werden kann. \end{ziel} -Zusätzlich soll auch das Assoziativgesetz für die Multiplikation von Vektoren gelten, dass heisst wir dürfen wie in -\begin{equation} +Zusätzlich soll auch das Assoziativgesetz für die Multiplikation von Vektoren gelten, das heisst wir dürfen wie in +\index{Assoziativgesetz}% +\begin{equation*} \label{eq:assoziativ} \textbf{e}_i(\textbf{e}_j + \textbf{e}_k) = \textbf{e}_i\textbf{e}_j + \textbf{e}_i\textbf{e}_k -\end{equation} +\end{equation*} ausklammern. -Allerdings gilt das Kommutativgesetz leider, oder wie man sehen wird zum Glück, nur für skalare Elemente wie in +Allerdings gilt das Kommutativgesetz leider oder, wie man sehen wird, zum Glück nur für skalare Elemente wie in +\index{Kommutativgesetz}% \begin{equation} \label{eq:kommSkalar} a\textbf{e}_ib\textbf{e}_j = - ab\textbf{e}_i\textbf{e}_j \qquad a,b \in \mathbb{R} + ab\textbf{e}_i\textbf{e}_j \qquad a,b \in \mathbb{R}, \end{equation} aber nicht für Vektoren. Im Allgemeinen wird \begin{equation} @@ -44,15 +47,17 @@ aber nicht für Vektoren. Im Allgemeinen wird \end{equation} sein. \subsubsection{Quadrieren eines Vektors} -Betrachten wir nun mit diesen Regeln das Quadrat eines Vektors. Zuerst werden die Vektoren als Linearkombinationen geschrieben: +\index{Quadrieren}% +Betrachten wir nun mit diesen Regeln das Quadrat eines Vektors. +Zuerst werden die Vektoren als Linearkombinationen geschrieben: \begin{equation} \textbf{a}^2 = - \left ( + \biggl( \sum_{i=1}^{n} a_i \textbf{e}_i - \right ) - \left ( + \biggr) + \biggl( \sum_{i=1}^{n} a_i \textbf{e}_i - \right ) + \biggr) \label{eq:quad_a_1}. \end{equation} Das Quadrat kann nun in zwei Summen @@ -64,46 +69,48 @@ Das Quadrat kann nun in zwei Summen \label{eq:quad_a_2} \end{equation} aufgeteilt werden, wobei die roten Summe die quadrierten Terme und die blaue Summe die Mischterme beinhaltet. -Wie zuvor in \ref{clifford:ziel} definiert, ergibt das Quadrat eines Vektors dessen Länge. Da die Basisvektoren orthonormiert sind muss $\textbf{e}_i^2 = 1$ gelten. +Wie zuvor in Ziel~\ref{clifford:ziel} definiert, ergibt das Quadrat eines Vektors dessen Länge + Da die Basisvektoren orthonormiert sind, muss $\textbf{e}_i^2 = 1$ gelten: \begin{equation} \textbf{a}^2 = \textcolor{red}{\sum_{i=1}^{n} a_i^2} + \textcolor{blue}{\sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n a_ia_j\textbf{e}_i\textbf{e}_j}. \label{eq:quad_a_3} \end{equation} \begin{beispiel} Das Quadrat des Vektor $\textbf{a}$ in $\mathbb{R}^2$ ist -\begin{equation} - \begin{split} +\begin{align*} \textbf{a}^2 - &= (a_1\textbf{e}_1+a_2\textbf{e}_2)(a_1\textbf{e}_1+a_2\textbf{e}_2) \\\ + &= (a_1\textbf{e}_1+a_2\textbf{e}_2)(a_1\textbf{e}_1+a_2\textbf{e}_2) \\ &= \textcolor{red}{a_1^2\textbf{e}_1^2 + a_2^2\textbf{e}_2^2} - + \textcolor{blue}{a_1\textbf{e}_1a_2\textbf{e}_2 + a_2\textbf{e}_2a_1\textbf{e}_2} \\\ + + \textcolor{blue}{a_1\textbf{e}_1a_2\textbf{e}_2 + a_2\textbf{e}_2a_1\textbf{e}_2} \\ & = \textcolor{red}{a_1^2 + a_2^2} + \textcolor{blue}{a_1b\textbf{e}_1a_2\textbf{e}_2 + a_2\textbf{e}_2a_1\textbf{e}_2}. - \end{split} -\end{equation} +\qedhere +\end{align*} \end{beispiel} -Der rote Teil von \ref{eq:quad_a_3} ist nun bereits die Länge im Quadrat, also das zuvor definierte Ziel der Multiplikation. +Der rote Teil von \eqref{eq:quad_a_3} ist nun bereits die Länge im Quadrat, also das zuvor definierte Ziel der Multiplikation. Daraus lässt sich schliessen, dass der restliche Teil dieser Gleichung \begin{equation} \label{eq:Mischterme_Null} - \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n a_ia_j\textbf{e}_i\textbf{e}_j = \textcolor{red}{a_1a_2(\textbf{e}_1\textbf{e}_2 + \textbf{e}_2\textbf{e}_1)} + a_1a_3(\textbf{e}_1\textbf{e}_3 + \textbf{e}_3\textbf{e}_1) + \dots = 0. + \sum_{\begin{subarray}{l}i,j=1\\i \neq j\end{subarray}}^n a_ia_j\textbf{e}_i\textbf{e}_j = \textcolor{blue}{a_1a_2(\textbf{e}_1\textbf{e}_2 + \textbf{e}_2\textbf{e}_1)} + a_1a_3(\textbf{e}_1\textbf{e}_3 + \textbf{e}_3\textbf{e}_1) + \dots = 0. \end{equation} ergeben muss. Aus dieser Erkenntnis können weitere Eigenschaften für die Multiplikation hergeleitet werden. -Da dies für beliebige $a_i$ gelten muss werden alle Terme bis auf $a_1$ und $a_2$ gleich null gesetzt. Somit fallen alle Terme bis auf den roten weg. Wird dies weiter vereinfacht, ergibt sich -\begin{equation} -\begin{split} +Da dies für beliebige $a_i$ gelten muss, werden alle Terme bis auf $a_1$ und $a_2$ gleich null gesetzt. +Somit fallen alle Terme bis auf den blauen weg. +Wird dies weiter vereinfacht, ergibt sich +\begin{equation*} +\begin{aligned} a_1a_2(\textbf{e}_1\textbf{e}_2 + \textbf{e}_2\textbf{e}_1) &= 0 \\ a_1a_2\textbf{e}_1\textbf{e}_2 &= -a_1a_2\textbf{e}_2\textbf{e}_1 \\ \textbf{e}_1\textbf{e}_2 &= -\textbf{e}_2\textbf{e}_1. -\end{split} -\end{equation} +\end{aligned} +\end{equation*} \begin{satz} - Die Multiplikation von orthogonalen Vektoren ist antikommutativ - \begin{equation} - \textbf{e}_i\textbf{e}_j = -\textbf{e}_j\textbf{e}_i \quad \textrm{für} \quad \textbf{e}_i \perp \textbf{e}_j. - \end{equation} + Die Multiplikation von orthogonalen Vektoren ist antikommutativ: + \begin{equation*} + \mathbf{e}_i\mathbf{e}_j = -\mathbf{e}_j\mathbf{e}_i \quad \textrm{für} \quad \mathbf{e}_i \perp \mathbf{e}_j. + \end{equation*} \end{satz} Dieses Wissen reicht nun bereits, um alle Produkte der Basisvektoren zu berechnen, was in Tabelle \ref{tab:multip_vec} gemacht wurde. \begin{table} -- cgit v1.2.1