From 31548335509e2fe2e81ef0223346abdbcb36edda Mon Sep 17 00:00:00 2001 From: Malarius1999 Date: Mon, 12 Jul 2021 15:32:00 +0200 Subject: =?UTF-8?q?Verbessrungsvorschl=C3=A4ge=20umgesetzt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Ab Kapitel Dirac Matrizen bis Quaternionen. Anmerkung: Ich denke das definiton von v_prep, v_parallel nicht nötig da in Bild schlussendlich ersichtlich? --- buch/papers/clifford/7_Reflektion.tex | 58 ++++++++++++++++++++++------------- 1 file changed, 37 insertions(+), 21 deletions(-) (limited to 'buch/papers/clifford/7_Reflektion.tex') diff --git a/buch/papers/clifford/7_Reflektion.tex b/buch/papers/clifford/7_Reflektion.tex index d4942e0..1c6d590 100644 --- a/buch/papers/clifford/7_Reflektion.tex +++ b/buch/papers/clifford/7_Reflektion.tex @@ -3,31 +3,47 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Reflektion/ Spiegelung} -\rhead{Reflektion/ Spiegelung} -Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die Geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Reflektion auch eine einfache, praktische Formulierung besitzen. \\HIER BILD -\subsection{linearen Algebra} -Aus der linearen Algebra ist bekannt, dass man eine Reflektion wie folgt beschreiben kann. -\begin{align} \label{RefLinAlg} - \mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}} +\section{Reflexion/ Spiegelung} +\rhead{Reflexion/ Spiegelung} + +Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die Geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Reflexion auch eine einfache, praktische Formulierung besitzen. \\HIER BILD +\subsection{Linearen Algebra} +Aus der linearen Algebra ist bekannt, dass man eine Spiegelung wie folgt beschreiben kann. +\begin{definition} + Spiegelungsgleichung in der linearen Algebra + \begin{equation} \label{RefLinAlg} + \mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}} + \end{equation} +\end{definition} + +$\mathbf{u}$ repräsentiert die Spiegelachse und $\mathbf{v_{\perp u}}$ senkrecht auf dieser Achse steht und den orthogonalen Anteil von $\mathbf{v}$ zu $\mathbf{u}$ bildet. Es scheint für diese Formel aber umständlich zu sein, weitere Spiegelungen, mit weiteren Spiegelachsen, anzufügen. Man kann die Abbildung des Vektors auf den gespiegelten Vektor auch als Matrix schreiben, welche aus den Komponenten des zu der Spiegelachse orthonormalen Vektors $\mathbf{\hat{n}}$ besteht. +\begin{align} + \mathbf{\hat{n}}\perp \mathbf{u}\quad \land \quad |\mathbf{\hat{n}}| = 1 \end{align} -Dabei stellt $\mathbf{u}$ die Spiegelachse dar. -Es scheint für diese Formel aber umständlich zu sein, weitere Reflektionen, mit weiteren Spiegelachsen, anzufügen. Man kann die Abbildung des Vektors auf den Reflektierten Vektor auch als Matrix schreiben, welche aus den Komponenten des zu der Spiegelachse orthonormalen Vektors $\mathbf{\hat{n}}$ besteht. -\\MATRIZEN O(2) und O(3) zeigen\\ -Diese Matrizen gehören der Matrizengruppe $O(n)$ an.... -\subsection{geometrischen Algebra} -Die Geometrische Algebra leitet aus der obigen Formel (\ref{RefLinAlg}) eine einfache und intuitive Form her, welche auch für weitere Operationen einfach erweitert werden kann. -\begin{align} - \mathbf{v'} = \mathbf{uvu^{-1}} -\end{align} -wobei die Inverse eines Vektors so definiert ist, dass multipliziert mit sich selbst das neutrale Element 1 ergibt. -\begin{align} - u^{-1} = \dfrac{u}{|u|^2} \Rightarrow uu^{-1} = 1 +\begin{align} \label{Spiegelmatrizen} + Spiegelmatrizen... \end{align} +Diese Matrizen Spiegelmatrizen gehören der orthogonalen Matrizengruppe $S\in \text{O}(n)$ an. Diese haben die Eigenschaft $S^t S = E$, was bedeutet, dass zweimal eine Spiegelung an der selben Achse keinen Effekt hat. +\subsection{Geometrische Algebra} +Die Geometrische Algebra leitet aus der obigen Formel \eqref{RefLinAlg} eine einfache und intuitive Form her, welche auch für weitere Operationen einfach erweitert werden kann. +\begin{definition} + Spiegelungsgleichung in der geometrischen Algebra + \begin{align}\label{RefGA} + \mathbf{v}' = \mathbf{uvu}^{-1} + \end{align} +\end{definition} + +Die Inverse eines Vektors ist dabei so definiert, dass multipliziert mit sich dem Vektor selbst das neutrale Element 1 ergibt. +\begin{definition} + Inverse eines Vektors + \begin{align} + \mathbf{u}^{-1} = \dfrac{\mathbf{u}}{|\mathbf{u}|^2} \Rightarrow \mathbf{uu}^{-1} = \dfrac{\mathbf{u}^2}{|\mathbf{u}|^2} = 1 + \end{align} +\end{definition} + verwendet man für $\mathbf{u}$ nur einen Einheitsvektor $\mathbf{\hat{u}}$, welcher die Länge 1 besitzt, wird somit die Formel reduziert zu einer beidseitigen Multiplikation von $\mathbf{\hat{u}}$. \begin{align} \mathbf{v'} = \mathbf{\hat{u}v\hat{u}} \end{align} -Im Gegensatz zu den Abbildungen in der linearen Algebra, welche in jeder anderen Dimension durch andere Matrizen beschrieben werden müssen, ist es in der geometrischen Algebra immer der gleiche Vorgehensweise. -Zudem ist diese kompakte Schreibweise in der linearen Algebra nicht möglich, da keine Multiplikation von Vektoren definiert ist. +Im Gegensatz zu den Abbildungen in der linearen Algebra, welche in jeder anderen Dimension, wie bei der Definition \eqref{Spiegelmatrizen} ersichtlich, durch andere Matrizen beschrieben werden müssen, ist es in der geometrischen Algebra immer der gleiche Vorgehensweise. Zudem ist diese kompakte Schreibweise in der linearen Algebra nicht möglich, da bis auf das Vektorprodukt in der dritten Dimension keine Multiplikation von Vektoren definiert ist. \\BEISPIEL? \ No newline at end of file -- cgit v1.2.1 From 563f5b49ab5ba582ebf9e94d0708b6564823c8e2 Mon Sep 17 00:00:00 2001 From: Malarius1999 Date: Wed, 14 Jul 2021 15:29:21 +0200 Subject: Verbesserungen & Bilder MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit -Verbesserung von Herrn Müller hinzugefügt (Weiss aber nicht ob "Sätze" überall gut & Kapitel Komplexe Zahlen doch nicht verschoben) -Bilder hinzugefügt (noch nicht in Buch included) -Graphiken mit Tikz erstellt -Weitere Beispiele hinzugefügt --- buch/papers/clifford/7_Reflektion.tex | 61 ++++++++++++++++++++++++++--------- 1 file changed, 45 insertions(+), 16 deletions(-) (limited to 'buch/papers/clifford/7_Reflektion.tex') diff --git a/buch/papers/clifford/7_Reflektion.tex b/buch/papers/clifford/7_Reflektion.tex index 1c6d590..6c92711 100644 --- a/buch/papers/clifford/7_Reflektion.tex +++ b/buch/papers/clifford/7_Reflektion.tex @@ -3,39 +3,69 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Reflexion/ Spiegelung} -\rhead{Reflexion/ Spiegelung} +\section{Spiegelung} +\rhead{Spiegelung} + +Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die Geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Reflexion auch eine einfache, praktische Formulierung besitzen. +\begin{figure} + \centering + \begin{tikzpicture} + \draw[thin,gray!40] (-3,-1) grid (3,3); + \draw[<->] (-3,0)--(3,0) node[right]{$a_1$}; + \draw[<->] (0,-1)--(0,3) node[above]{$a_2$}; + \draw[line width=2pt,black,-stealth](0,0)--(2,2) node[anchor=south east]{$\boldsymbol{v}$}; + \draw[line width=1.5pt,blue,-stealth](0,0)--(0,2.5) node[anchor=south east]{$\boldsymbol{u}$}; + \draw[line width=2pt,black,-stealth](0,0)--(-2,2) node[anchor=south east]{$\boldsymbol{v'}$}; + \draw[line width=1.5pt,gray,-stealth](0,0)--(1,0) node[anchor=north]{$\boldsymbol{e_1}$}; + \draw[line width=1.5pt,gray,-stealth](0,0)--(0,1) node[anchor=north east]{$\boldsymbol{e_2}$}; + \draw[line width=1.5pt,red,-stealth](0,2)--(2,2) node[xshift=-1cm, yshift= + 0.25cm]{$\boldsymbol{v_{\perp u}}$}; + \draw[line width=1.5pt,red,-stealth](-2,2)--(0,2) node[xshift=-1cm, yshift= + 0.25cm]{$\boldsymbol{v_{\perp u}}$}; + \draw[line width=1.5pt,purple,-stealth](0,1.5)--(1,1.5) node[xshift=-0.5cm, yshift=-0.25cm]{$\boldsymbol{\hat{n}}$}; + \end{tikzpicture} + \caption{Spiegelung des Vektors \textbf{v} an Spiegelachse bzw. Vektor \textbf{u}} + \label{BildSpiegelung} +\end{figure} -Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die Geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Reflexion auch eine einfache, praktische Formulierung besitzen. \\HIER BILD \subsection{Linearen Algebra} -Aus der linearen Algebra ist bekannt, dass man eine Spiegelung wie folgt beschreiben kann. +Aus der linearen Algebra ist bekannt, dass man eine Spiegelung an einer Ebene wie folgt beschreiben kann. \begin{definition} - Spiegelungsgleichung in der linearen Algebra + Die Spiegelungsgleichung in der linearen Algebra mit dem Normalenvektor $\mathbf{\hat{n}}$ zur Spiegelebene \begin{equation} \label{RefLinAlg} - \mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}} + \mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\parallel \hat{n}}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}} \end{equation} + Per Definition sind $\mathbf{v_{\parallel \hat{n}}} = \mathbf{v_{\perp u}}$. In der geometrischen Algebra verwenden wir aber in den Formeln Vektoren, welche Spiegelachsen repräsentieren. \end{definition} - -$\mathbf{u}$ repräsentiert die Spiegelachse und $\mathbf{v_{\perp u}}$ senkrecht auf dieser Achse steht und den orthogonalen Anteil von $\mathbf{v}$ zu $\mathbf{u}$ bildet. Es scheint für diese Formel aber umständlich zu sein, weitere Spiegelungen, mit weiteren Spiegelachsen, anzufügen. Man kann die Abbildung des Vektors auf den gespiegelten Vektor auch als Matrix schreiben, welche aus den Komponenten des zu der Spiegelachse orthonormalen Vektors $\mathbf{\hat{n}}$ besteht. +Es scheint für diese Formel aber umständlich zu sein, weitere Spiegelungen, mit weiteren Spiegelachsen, anzufügen. Man kann dafür aber die Abbildung des Vektors auf den gespiegelten Vektor auch als Matrix schreiben, welche aus den Komponenten des Normalenvektors $\mathbf{\hat{n}}$ der Ebene besteht. \begin{align} \mathbf{\hat{n}}\perp \mathbf{u}\quad \land \quad |\mathbf{\hat{n}}| = 1 \end{align} \begin{align} \label{Spiegelmatrizen} - Spiegelmatrizen... + S = E - 2\dfrac{1}{|\mathbf{n}|^2}\mathbf{nn}^t \enspace\Rightarrow\enspace + S_2 = \begin{pmatrix} + 1-2n_1^2 & -2n_1n_2 \\ + -2n_1n_2 & 1-2n_2^2 + \end{pmatrix} \quad + S_2 = \begin{pmatrix} + 1-2n_1^2 & -2n_1n_2 & -2n_1n_3\\ + -2n_1n_2 & 1-2n_2^2 & -2n_2n_3\\ + -2n_1n_3 & -2n_2n_3 & 1-2n_3^2\\ + \end{pmatrix} \end{align} -Diese Matrizen Spiegelmatrizen gehören der orthogonalen Matrizengruppe $S\in \text{O}(n)$ an. Diese haben die Eigenschaft $S^t S = E$, was bedeutet, dass zweimal eine Spiegelung an der selben Achse keinen Effekt hat. +Diese Spiegelmatrizen gehören der orthogonalen Matrizengruppe $S\in \text{O}(n)$ an. Die Matrizengruppe $\text{O}(n)$ haben die Eigenschaft $S^t S = E$, was bedeutet, dass die Länge und Winkel bei der Abbildung beibehalten bleiben. Zusätzlich sind die Spiegelmatrizen symmetrisch $S^t = S$. Somit liefert zweimal dieselbe Spiegelung wieder die identische Abbildung. \subsection{Geometrische Algebra} -Die Geometrische Algebra leitet aus der obigen Formel \eqref{RefLinAlg} eine einfache und intuitive Form her, welche auch für weitere Operationen einfach erweitert werden kann. +Die Geometrische Algebra leitet aus der obigen Formel \eqref{RefLinAlg} für eine Spiegelung eine einfache und intuitive Form her, welche auch für weitere Operationen erweitert werden kann. \begin{definition} - Spiegelungsgleichung in der geometrischen Algebra + Die Spiegelungsgleichung in der geometrischen Algebra mit der Spiegelachse $\mathbf{u}$ \begin{align}\label{RefGA} \mathbf{v}' = \mathbf{uvu}^{-1} \end{align} \end{definition} -Die Inverse eines Vektors ist dabei so definiert, dass multipliziert mit sich dem Vektor selbst das neutrale Element 1 ergibt. +Die Inverse $\mathbf{u}^{-1}$ eines Vektors $\mathbf{u}$ existiert in der geometrischen Algebra und ist dabei so definiert. \begin{definition} - Inverse eines Vektors + Die Inverse multipliziert mit dem Vektor selbst ergibt das neutrale Element 1 \begin{align} \mathbf{u}^{-1} = \dfrac{\mathbf{u}}{|\mathbf{u}|^2} \Rightarrow \mathbf{uu}^{-1} = \dfrac{\mathbf{u}^2}{|\mathbf{u}|^2} = 1 \end{align} @@ -45,5 +75,4 @@ verwendet man für $\mathbf{u}$ nur einen Einheitsvektor $\mathbf{\hat{u}}$, wel \begin{align} \mathbf{v'} = \mathbf{\hat{u}v\hat{u}} \end{align} -Im Gegensatz zu den Abbildungen in der linearen Algebra, welche in jeder anderen Dimension, wie bei der Definition \eqref{Spiegelmatrizen} ersichtlich, durch andere Matrizen beschrieben werden müssen, ist es in der geometrischen Algebra immer der gleiche Vorgehensweise. Zudem ist diese kompakte Schreibweise in der linearen Algebra nicht möglich, da bis auf das Vektorprodukt in der dritten Dimension keine Multiplikation von Vektoren definiert ist. -\\BEISPIEL? \ No newline at end of file +Im Gegensatz zu den Abbildungen in der linearen Algebra, welche in jeder anderen Dimension, wie bei der Definition \eqref{Spiegelmatrizen} ersichtlich, durch andere Matrizen beschrieben werden müssen, ist es in der geometrischen Algebra immer der gleiche Vorgehensweise. Zudem ist diese kompakte Schreibweise in der linearen Algebra nicht möglich, da bis auf das Vektorprodukt in der dritten Dimension keine Multiplikation von Vektoren definiert ist. \ No newline at end of file -- cgit v1.2.1 From d8d62868efed71aa3c787efacd844eae4148e797 Mon Sep 17 00:00:00 2001 From: Malarius1999 Date: Thu, 15 Jul 2021 14:00:40 +0200 Subject: Verbesserungen 18.2, 18.3 Pauli-Matrizen letzte Verbesserungen Spieglungen 1. Versuch Verbesserungen --- buch/papers/clifford/7_Reflektion.tex | 49 +++++++++++++++++++---------------- 1 file changed, 27 insertions(+), 22 deletions(-) (limited to 'buch/papers/clifford/7_Reflektion.tex') diff --git a/buch/papers/clifford/7_Reflektion.tex b/buch/papers/clifford/7_Reflektion.tex index 6c92711..bdfb4e8 100644 --- a/buch/papers/clifford/7_Reflektion.tex +++ b/buch/papers/clifford/7_Reflektion.tex @@ -6,7 +6,7 @@ \section{Spiegelung} \rhead{Spiegelung} -Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die Geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Reflexion auch eine einfache, praktische Formulierung besitzen. +Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man weitere, wie beispielsweise die später beschriebene Rotation, ableiten kann. Da die geometrische Algebra für geometrische Anwendungen ausgelegt ist, sollte die Spiegelung auch eine einfache, praktische Formulierung besitzen. \begin{figure} \centering \begin{tikzpicture} @@ -31,48 +31,53 @@ Die Spiegelung ist eine grundlegende, geometrische Operation, aus welcher man we \subsection{Linearen Algebra} Aus der linearen Algebra ist bekannt, dass man eine Spiegelung an einer Ebene wie folgt beschreiben kann. \begin{definition} - Die Spiegelungsgleichung in der linearen Algebra mit dem Normalenvektor $\mathbf{\hat{n}}$ zur Spiegelebene + Die Spiegelungsgleichung in der linearen Algebra mit dem Normalenvektor $\mathbf{\hat{n}}$ zur Spiegelebene ist \begin{equation} \label{RefLinAlg} - \mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\parallel \hat{n}}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}} + \mathbf{v^{'}} = \mathbf{v} - 2 \cdot \mathbf{v_{\parallel \hat{n}}} = \mathbf{v} - 2 \cdot \mathbf{v_{\perp u}}. \end{equation} - Per Definition sind $\mathbf{v_{\parallel \hat{n}}} = \mathbf{v_{\perp u}}$. In der geometrischen Algebra verwenden wir aber in den Formeln Vektoren, welche Spiegelachsen repräsentieren. + Per Definition sind $\mathbf{v_{\parallel \hat{n}}} = \mathbf{v_{\perp u}}$. In der geometrischen Algebra verwenden wir aber in den Formeln Vektoren, welche Spiegelachsen, nicht Spiegelebenen, repräsentieren. \end{definition} -Es scheint für diese Formel aber umständlich zu sein, weitere Spiegelungen, mit weiteren Spiegelachsen, anzufügen. Man kann dafür aber die Abbildung des Vektors auf den gespiegelten Vektor auch als Matrix schreiben, welche aus den Komponenten des Normalenvektors $\mathbf{\hat{n}}$ der Ebene besteht. -\begin{align} - \mathbf{\hat{n}}\perp \mathbf{u}\quad \land \quad |\mathbf{\hat{n}}| = 1 +Es scheint für diese Formel aber umständlich zu sein, weitere Spiegelungen mit weiteren Spiegelebenen anzufügen. Man kann diese Abbildung aber auch als Matrix schreiben. Sei $\mathbf{\hat{n}}$ ein Normalenvektor auf die Spiegelungs-Achse bzw. -Ebene, also $\mathbf{\hat{n}}\perp \mathbf{u}$, und sei ausserdem normiert $|\mathbf{\hat{n}}| = 1$, dann kann man die Spiegelung durch die Matrix +\begin{align} + S = E - 2\dfrac{1}{|\mathbf{n}|^2}\mathbf{nn}^t \end{align} +beschrieben werden. In der zweiten und dritten Dimension ergibt die Berechnung \begin{align} \label{Spiegelmatrizen} - S = E - 2\dfrac{1}{|\mathbf{n}|^2}\mathbf{nn}^t \enspace\Rightarrow\enspace S_2 = \begin{pmatrix} 1-2n_1^2 & -2n_1n_2 \\ -2n_1n_2 & 1-2n_2^2 \end{pmatrix} \quad - S_2 = \begin{pmatrix} + S_3 = \begin{pmatrix} 1-2n_1^2 & -2n_1n_2 & -2n_1n_3\\ -2n_1n_2 & 1-2n_2^2 & -2n_2n_3\\ -2n_1n_3 & -2n_2n_3 & 1-2n_3^2\\ - \end{pmatrix} + \end{pmatrix}. +\end{align} +Diese Spiegelmatrizen gehören der orthogonalen Matrizengruppe $S\in \text{O}(n)$ an. Die Matrizengruppe $\text{O}(n)$ haben die Eigenschaft $S^t S = E$, was bedeutet, dass die Länge und Winkel bei der Abbildung beibehalten bleiben. Zusätzlich sind die Spiegelmatrizen symmetrisch, es gilt $S^t = S$. Somit liefert zweimal dieselbe Spiegelung wieder die identische Abbildung, wie man aus +\begin{align} + S^t S = S^2 = E \end{align} -Diese Spiegelmatrizen gehören der orthogonalen Matrizengruppe $S\in \text{O}(n)$ an. Die Matrizengruppe $\text{O}(n)$ haben die Eigenschaft $S^t S = E$, was bedeutet, dass die Länge und Winkel bei der Abbildung beibehalten bleiben. Zusätzlich sind die Spiegelmatrizen symmetrisch $S^t = S$. Somit liefert zweimal dieselbe Spiegelung wieder die identische Abbildung. +schliessen kann. + \subsection{Geometrische Algebra} -Die Geometrische Algebra leitet aus der obigen Formel \eqref{RefLinAlg} für eine Spiegelung eine einfache und intuitive Form her, welche auch für weitere Operationen erweitert werden kann. +Um die folgenden Formeln zu verstehen, definieren wir zuerst die Inverse eines Vektors, welche in dieser Form nicht in der linearen Algebra nicht existiert. \begin{definition} - Die Spiegelungsgleichung in der geometrischen Algebra mit der Spiegelachse $\mathbf{u}$ - \begin{align}\label{RefGA} - \mathbf{v}' = \mathbf{uvu}^{-1} + Die Inverse eines Vektors wird definiert als + \begin{align} + \mathbf{u}^{-1} = \dfrac{\mathbf{u}}{|\mathbf{u}|^2} \Rightarrow \mathbf{uu}^{-1} = \dfrac{\mathbf{u}^2}{|\mathbf{u}|^2} = 1. \end{align} + Wie schon aus anderen algebraischen Strukturen bekannt, ergibt ein Element, hier $\mathbf{u}$, multipliziert mit dessen Inversen, hier $\mathbf{u}^{-1}$, das neutrale Element der Struktur, hier 1. \end{definition} - -Die Inverse $\mathbf{u}^{-1}$ eines Vektors $\mathbf{u}$ existiert in der geometrischen Algebra und ist dabei so definiert. +Die geometrische Algebra leitet aus der obigen Formel \eqref{RefLinAlg} für eine Spiegelung eine einfache und intuitive Form her, welche auch für weitere Operationen erweitert werden kann. \begin{definition} - Die Inverse multipliziert mit dem Vektor selbst ergibt das neutrale Element 1 - \begin{align} - \mathbf{u}^{-1} = \dfrac{\mathbf{u}}{|\mathbf{u}|^2} \Rightarrow \mathbf{uu}^{-1} = \dfrac{\mathbf{u}^2}{|\mathbf{u}|^2} = 1 + Die Spiegelungsgleichung in der geometrischen Algebra mit der Spiegelachse $\mathbf{u}$ ist definiert als + \begin{align}\label{RefGA} + \mathbf{v}' = \mathbf{uvu}^{-1} \end{align} \end{definition} -verwendet man für $\mathbf{u}$ nur einen Einheitsvektor $\mathbf{\hat{u}}$, welcher die Länge 1 besitzt, wird somit die Formel reduziert zu einer beidseitigen Multiplikation von $\mathbf{\hat{u}}$. +verwendet man für $\mathbf{u}$ nur einen Einheitsvektor $\mathbf{\hat{u}}$, welcher die Länge 1 besitzt, wird die Gleichung zu \begin{align} \mathbf{v'} = \mathbf{\hat{u}v\hat{u}} \end{align} -Im Gegensatz zu den Abbildungen in der linearen Algebra, welche in jeder anderen Dimension, wie bei der Definition \eqref{Spiegelmatrizen} ersichtlich, durch andere Matrizen beschrieben werden müssen, ist es in der geometrischen Algebra immer der gleiche Vorgehensweise. Zudem ist diese kompakte Schreibweise in der linearen Algebra nicht möglich, da bis auf das Vektorprodukt in der dritten Dimension keine Multiplikation von Vektoren definiert ist. \ No newline at end of file +vereinfacht. Im Gegensatz zu den Abbildungen in der linearen Algebra, welche in jeder anderen Dimension, durch andere Matrizen \eqref{Spiegelmatrizen} beschrieben werden müssen, ist es in der geometrischen Algebra immer der gleiche Vorgehensweise. Zudem ist diese kompakte Schreibweise in der linearen Algebra nicht möglich, da bis auf das Vektorprodukt in der dritten Dimension keine Multiplikation von Vektoren definiert ist. \ No newline at end of file -- cgit v1.2.1