From 1567db66f863c3e7bb731864228bf43a61071df0 Mon Sep 17 00:00:00 2001 From: Malarius1999 Date: Mon, 23 Aug 2021 11:04:41 +0200 Subject: letzter Commit? MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit \, zwischen || Bei "Fehlendes Verb" bin ich mir ein wenig unsicher. Es Handelt sich doch um eine Aufzählung: Man kann dabei mit zwei verschiedenen Systemen arbeiten. - Mit den Eulerischen Winkeln, ... - Mit den Quaternionen, ... Falls doch ein Verb fehlen würde müsste doch bei den Eulerischen Winkeln auch noch etwas fehlen... --- buch/papers/clifford/9_KomplexeZahlen.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/papers/clifford/9_KomplexeZahlen.tex') diff --git a/buch/papers/clifford/9_KomplexeZahlen.tex b/buch/papers/clifford/9_KomplexeZahlen.tex index e29885f..12fa546 100644 --- a/buch/papers/clifford/9_KomplexeZahlen.tex +++ b/buch/papers/clifford/9_KomplexeZahlen.tex @@ -18,14 +18,14 @@ j^2 = -1\quad\text{und}\quad\mathbf{e}_{12}^2 = -1 besitzen. Die Kommutativität \begin{align} \begin{split} -\mathbf{g}_1\mathbf{g}_2 = \mathbf{g}_2\mathbf{g}_1 \enspace&\Leftrightarrow\enspace (a + b \mathbf{e}_{12})(f + g \mathbf{e}_{12}) = (f + g \mathbf{e}_{12})(a + b \mathbf{e}_{12})\\ &\Leftrightarrow\enspace |\mathbf{g}_1||\mathbf{g}_2|e^{(\theta_{g_1} + \theta_{g_2})\mathbf{e}_{12}} = |\mathbf{g}_2||\mathbf{g}_1|e^{(\theta_{g_2} + \theta_{g_1})\mathbf{e}_{12}}, +\mathbf{g}_1\mathbf{g}_2 = \mathbf{g}_2\mathbf{g}_1 \enspace&\Leftrightarrow\enspace (a + b \mathbf{e}_{12})(f + g \mathbf{e}_{12}) = (f + g \mathbf{e}_{12})(a + b \mathbf{e}_{12})\\ &\Leftrightarrow\enspace |\mathbf{g}_1|\,|\mathbf{g}_2|e^{(\theta_{g_1} + \theta_{g_2})\mathbf{e}_{12}} = |\mathbf{g}_2|\,|\mathbf{g}_1|e^{(\theta_{g_2} + \theta_{g_1})\mathbf{e}_{12}}, \end{split} \end{align} welche wir schon von den komplexen Zahlen her kennen, ist dabei eine in der geometrischen Algebra nur selten anzutreffende Eigenschaft. Beispielsweise ist das geometrische Produkt von \begin{align} \mathbf{g}_1\mathbf{v}\not= \mathbf{v}\mathbf{g}_1 \quad\Leftrightarrow\quad(a + b \mathbf{e}_{12})(x\mathbf{e}_1+y\mathbf{e}_2)\not= (x\mathbf{e}_1+y\mathbf{e}_2)(a + b \mathbf{e}_{12}) \end{align} -und auch die im folgenden Kapitel behandelten Quaternionen nicht kommutativ. +und auch die im folgenden Kapitel behandelten Quaternionen sind nicht kommutativ. Um später die Auswirkung der Quaternionen auf Vektoren besser zu verstehen, möchten wir kurz darauf eingehen, was ein $\mathbf{g}_n$ für eine Auswirkung auf einen Vektor hat. Wir kennen diesen Effekt schon von den komplexen Zahlen. Wenn eine komplexe Zahl $c_1=a+bj$ mit einer zweiten $c_2=f+gj$ multipliziert wird, dann kann man -- cgit v1.2.1