From 180789bb3f452a49dca3f3769630e0899357208e Mon Sep 17 00:00:00 2001 From: Alain Date: Sat, 19 Jun 2021 18:17:20 +0200 Subject: imporvements --- buch/papers/ifs/teil2.tex | 77 ++++++++++++++++++++++++++++++----------------- 1 file changed, 50 insertions(+), 27 deletions(-) (limited to 'buch/papers/ifs/teil2.tex') diff --git a/buch/papers/ifs/teil2.tex b/buch/papers/ifs/teil2.tex index 5de3d4b..be3d354 100644 --- a/buch/papers/ifs/teil2.tex +++ b/buch/papers/ifs/teil2.tex @@ -65,7 +65,7 @@ Ausserdem bestimmen wir drei Funktionen \frac{1}{2} \end{pmatrix}, \end{align*} -welche die gesamte Menge auf eine ihrer kleineren Kopien abbildet +welche die gesamte Menge auf eine ihrer kleineren Kopien abbildet. $f_1$ bildet das Dreieck auf das Teilstück unten links ab, $f_2$ auf das Teilstück unten rechts und $f_3$ auf das obere Teilstück. Wendet man alle drei Funktionen auf das Sierpinski-Dreieck an \begin{align*} @@ -99,31 +99,36 @@ Der Abstand zum Original wird immer kleiner, und konvergiert gegen null. In diesem Abschnitt wollen wir die Erkenntnis, wie wir aus einer beliebigen Menge ein Sierpinski-Dreieck generieren können, verallgemeinern. -$S_1,...,S_n$ sind Kontraktionen auf die Menge $D \subset \mathbb{R}^n$. Es gilt +$S_1,\dots,S_n$ sind Kontraktionen auf die Menge $D \subset \mathbb{R}^n$. Es gilt \begin{align} |S_i(x) - S_i(y)| \leq c_i|x - y| \end{align} -für jedes i mit einem $c_i < 1$. Dann existiert eine eindeutige kompakte Menge $F$ für die gilt +für jedes i mit einem $c_i < 1$. +Der Banachsche Fixpunktsatz besagt, dass für solche Kontraktionen ein Eindeutiges $A$ existiert, für das $S(A) = A$ gilt. +Den Beweis kann man in \cite{ifs:Rousseau2012} nachlesen. +Hat man nicht nur eine sondern mehrere Kontraktionen, dann existiert eine eindeutige kompakte Menge $F$ für die gilt \begin{equation} - F = \bigcup\limits_{i = 1}^{m} S_i(F) + F = \bigcup\limits_{i = 1}^{m} S_i(F). \end{equation} -Weiter definieren wir die Transformation S auf kompakte Mengen ohne die leere Menge. +Weiter definieren wir die Transformation S auf kompakte Mengen $E$ ohne die leere Menge. \begin{equation} S(E) = \bigcup\limits_{i = 1}^m S_i(E) \end{equation} Wird diese Transformation Iterativ ausgeführt, das heisst $S^0(E) = E, S^k(E) = S(S^{k-1}(E))$, und für jedes $i$ $S_i(E) \subset E$, gilt \begin{equation} F = \bigcap\limits_{k = 1}^{\infty} S^k(E). + \label{ifs:ifsForm} \end{equation} In Worte gefasst bedeutet das, dass jede Gruppe von Kontraktionen iterativ ausgeführt, gegen eine eindeutige Menge konvergiert. Diese Menge ist auch als Attraktor des IFS bekannt. -Dies für jede Startmenge, solange diese ihre Transformierten wieder beinhaltet. -Auf den Beweis wird verzichtet. +Der Beweis für die Existenz eines eindeutigen Attraktors ist in \cite{ifs:fractal-geometry} beschrieben. +Aus diesem Beweis folgt, dass die Startmenge $E$, anders als in \ref{ifs:ifsForm} beschrieben ist, beliebig sein kann, \subsection{Beispiel: Barnsley-Farn} Der Barnsley-Farn, Abbildung \ref{ifs:farn}, ist ein Beispiel eines Fraktal, welches mit einem IFS generiert werden kann. Wie man schnell erkennen kann, besteht der Farn aus Blättern, welche eine grosse Ähnlichkeit zum ganzen Farn haben. -\begin{align*} - {S_1(x,y)} +Die vier affinen Transformationen +\begin{align} + & {S_1(x,y)} = \begin{pmatrix} 0 & 0 \\ @@ -132,9 +137,9 @@ Wie man schnell erkennen kann, besteht der Farn aus Blättern, welche eine gross \begin{pmatrix} x\\ y\\ - \end{pmatrix}, \quad + \end{pmatrix}, \quad & {S_2(x,y)} - = + &= \begin{pmatrix} 0.85 & 0.04 \\ -0.04 & 0.85 \\ @@ -148,7 +153,7 @@ Wie man schnell erkennen kann, besteht der Farn aus Blättern, welche eine gross 0 \\ 1.6 \end{pmatrix}\\ - {S_3(x,y)} + & {S_3(x,y)} = \begin{pmatrix} 0.2 & -0.26 \\ @@ -162,9 +167,9 @@ Wie man schnell erkennen kann, besteht der Farn aus Blättern, welche eine gross \begin{pmatrix} 0 \\ 1.6 - \end{pmatrix}, \quad + \end{pmatrix}, \quad & {S_4(x,y)} - = + &= \begin{pmatrix} -0.15 & 0.28 \\ 0.26 & 0.24 \\ @@ -178,26 +183,44 @@ Wie man schnell erkennen kann, besteht der Farn aus Blättern, welche eine gross 0 \\ 0.44 \end{pmatrix}\\ -\end{align*} -In der Abbildung \ref{ifs:farncolor} sehen wir die vier Transformationen farblich dargestellt. - + \label{ifs:farnFormel} +\end{align} +, welche für die konstruktion des Farns benötigt werden sind in der Abbildung \ref{ifs:farncolor} farblich dargestellt. +Das gesamte Farnblatt ist in der schwarzen Box. +Auf diese werden die Transformationen angewendet $S_1$ erstellt den Stiel des Farnblattes (rot). Die Transformation bildet das Gesamte Blatt auf die Y-Achse ab. $S_2$ (grün) erstellt den Hauptteil des Farnes. Sie verkleinert und dreht das gesamte Bild und stellt es auf das Ende des Stiels aus $S_1$. $S_3$ bildet das gesamte Blatt auf das blaue Teilblatt unten Links ab. $S_4$ spiegelt das Blatt und bildet es auf das magentafarbene Teilblatt ab. -\subsection{Chaosspiel} -Wir führen im Zusammenhang mit dem Barnsley-Farn \cite{ifs:barnsleyfern} noch eine weitere Methode ein, um ein IFS zu zeichnen. +\subsection{Erzeugung eines Bildes mit einem IFS} +Es gibt zwei verschiedene Methoden um ein Bild mit einem IFS zu erzeugen. +Die erste Methode ist wahrscheinlich die intuitivste. +Wir beginnen mit einm Startbild, zum Beispiel ein Schwarzes Quadrat, und bilden dieses mit den affinen Transformationen des IFS ab. +Das neue Bild, dass entsteht, ist die nächste Iterierte. +Dieses wird wieder mit den Transformationen abgebildet. +Wir wiederholen den letzten schritt, bis wir zufrieden mit der neusten Iterierten sind. +Diesen Vorgang haben wir beim Sierpinski-Dreieck in Abbildung \ref{ifs:sierpconst} gebraucht. + + +Die zweite Methode ist das Chaosspiel \cite{ifs:chaos}. Bis jetzt wurde immer davon gesprochen, die Transformationen auf die gesamte Menge anzuwenden. -Bei komplizierteren IFS welche viele Iterationen brauchen, bis man den Attraktor erkennen kann, ist diese Methode ziemlich rechenintensiv. -Eine Alternative ist das Chaosspiel \cite{ifs:chaos}. -Bei dieser Methode werden die Transformationen nicht auf die Menge angewendet, sondern nur auf einen einzelnen Punkt. +Bei komplizierteren IFS welche viele Iterationen brauchen, bis man den Attraktor erkennen kann, ist die erste Methode ziemlich rechenintensiv. +Beim Chaosspiel werden die Transformationen nicht auf die Menge angewendet, sondern nur auf einen einzelnen Punkt. Der Startpunkt kann dabei ein beliebiger Punkt in $E$ sein. Es wird bei jedem Iterationsschritt nur eine Transformation, welche zufällig gewählt wurde, angewendet. -Da, wie wir beim Barnsley-Farn gut sehen, dass nicht jede Transformation gleich viel des Bildes ausmacht, werden diese beim Chaosspiel gewichtet. -Die Gewichtung erfolgt über den Anteil der Gesamtmasse. -Im Fall des Barnsley-Fern wird $S_1$ in $1\%$, $S_2$ in $85\%$ und $S_3 \& S_4$ in $7\%$ der Iterationen ausgeführt. +Da, wie wir beim Barnsley-Farn gut sehen, nicht jede Transformation gleich viel des Bildes ausmacht, werden diese beim Chaosspiel gewichtet. +Je mehr eine Transformation kontrahiert, desto weniger Punkte braucht es um die resultierende Teilabbildung darzustellen. +Im Fall des Barnsley-Fern wird $S_1$ in $1\%$, $S_2$ in $85\%$ und $S_3 \& S_4$ in $7\%$ der Iterationen ausgeführt. +Wir sehen auch in Abbildung \ref{ifs:farncolor} gut, dass der rote Stiel, $S_1$, einiges weniger Punkte braucht als der grüne Hauptteil des Blattes, $S_2$. + +In Abbildung \ref{ifs:farnNoWeight} wurden die vier gleich stark gewichtet. +Man sieht, dass trotzt gleich vieler Iterationen wie in Abbildung \ref{ifs:farn}, der Farn kaum nicht so gut abgebildet ist. + + + + \begin{figure} \centering \makebox[\textwidth][c]{ @@ -207,8 +230,8 @@ Im Fall des Barnsley-Fern wird $S_1$ in $1\%$, $S_2$ in $85\%$ und $S_3 \& S_4$ \end{figure} \begin{figure} \centering - \includegraphics[width=0.7\textwidth]{papers/ifs/images/farncolor} - \caption{Vier Transformationen des Barnsley-Farn} + \includegraphics[width=\textwidth]{papers/ifs/images/farncolor2} + \caption{Vier Transformationen des Barnsley-Farn in unterschiedlichen Farben} \label{ifs:farncolor} \end{figure} \begin{figure} -- cgit v1.2.1