From a310c9290f64d938e87226db84d524a7a817ec68 Mon Sep 17 00:00:00 2001 From: Reto Date: Thu, 29 Jul 2021 23:07:18 +0200 Subject: reorganized files, started work on Einleitung, Aufbau --- buch/papers/mceliece/Makefile.inc | 8 +- buch/papers/mceliece/aufbau.tex | 128 ++++++++++++++++++++++++++++++++ buch/papers/mceliece/einleitung.tex | 14 ++++ buch/papers/mceliece/fazit.tex | 40 ++++++++++ buch/papers/mceliece/funktionsweise.tex | 40 ++++++++++ buch/papers/mceliece/main.tex | 27 +------ buch/papers/mceliece/references.bib | 22 ++++-- buch/papers/mceliece/teil0.tex | 22 ------ buch/papers/mceliece/teil1.tex | 55 -------------- buch/papers/mceliece/teil2.tex | 40 ---------- buch/papers/mceliece/teil3.tex | 40 ---------- 11 files changed, 245 insertions(+), 191 deletions(-) create mode 100644 buch/papers/mceliece/aufbau.tex create mode 100644 buch/papers/mceliece/einleitung.tex create mode 100644 buch/papers/mceliece/fazit.tex create mode 100644 buch/papers/mceliece/funktionsweise.tex delete mode 100644 buch/papers/mceliece/teil0.tex delete mode 100644 buch/papers/mceliece/teil1.tex delete mode 100644 buch/papers/mceliece/teil2.tex delete mode 100644 buch/papers/mceliece/teil3.tex (limited to 'buch/papers/mceliece') diff --git a/buch/papers/mceliece/Makefile.inc b/buch/papers/mceliece/Makefile.inc index ed1affa..53ecf7a 100644 --- a/buch/papers/mceliece/Makefile.inc +++ b/buch/papers/mceliece/Makefile.inc @@ -7,8 +7,8 @@ dependencies-mceliece = \ papers/mceliece/packages.tex \ papers/mceliece/main.tex \ papers/mceliece/references.bib \ - papers/mceliece/teil0.tex \ - papers/mceliece/teil1.tex \ - papers/mceliece/teil2.tex \ - papers/mceliece/teil3.tex + papers/mceliece/einleitung.tex \ + papers/mceliece/aufbau.tex \ + papers/mceliece/funktionsweise.tex \ + papers/mceliece/fazit.tex diff --git a/buch/papers/mceliece/aufbau.tex b/buch/papers/mceliece/aufbau.tex new file mode 100644 index 0000000..08ef037 --- /dev/null +++ b/buch/papers/mceliece/aufbau.tex @@ -0,0 +1,128 @@ +% +% einleitung.tex -- Beispiel-File für die Einleitung +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Aufbau\label{mceliece:section:Aufbau}} +\rhead{Aufbau} +Das McEliece-Kryptosystem besteht aus folgenden Elementen: + +\subsection{Datenvektor $d_k$ +\label{mceliece:subsection:d_k}} +In diesem Vektor der Länge $k$ sind die zu verschlüsselnden Daten enthalten. +Beispielsweise +\[d_4= +\begin{pmatrix} + 1\\ + 1\\ + 1\\ + 0 +\end{pmatrix} +\] + +\subsection{Binäre Zufallsmatrix $S_k$ +\label{mceliece:subsection:s_k}} +$S_k$ ist eine Binäre Zufallsmatrix der Grösse $k \times k$. +Auch muss diese Matrix in $\mathbb{F}_2$ invertierbar sein. +Für kleine Matrizen kann durchaus jedes Matrizenelement zufällig generiert werden, +wobei danach mithilfe des Gauss-Algorythmusses deren Inverse bestimmt werden kann. +Da eine solche Matrix möglicherweise singulär ist, muss in diesem Fall eine neue Zufallsmatrix erzeugt werden. +Für grössere Matrizen existieren bessere Methoden, auf welche hier nicht weiter eingegangen wird \cite{mceliece:GenerationRandMatrix}. +Beispielsweise +\[S_4= +\begin{pmatrix} + 0 & 1 & 1 & 1\\ + 0 & 1 & 1 & 0\\ + 0 & 0 & 1 & 1\\ + 1 & 0 & 0 & 1 +\end{pmatrix} +\] + +\[ + S_4^{-1}= + \begin{pmatrix} + 1 & 0 & 1 & 0\\ + 1 & 1 & 0 & 1\\ + 1 & 1 & 1 & 0\\ + 1 & 1 & 0 & 0 + \end{pmatrix} +\] + +\subsection{Linear-Code-Generatormatrix $G_{n,k}$ +\label{mceliece:subsection:g_m}} +Das wichtigste Element des McEliece-Systems ist ein fehlerkorrigierender Code, +der in der Lage ist, $t$ Fehler zu korrigieren. +Im Zusammenhang mit McEliece werden dabei meist Goppa-Codes verwendet, +es können prinzipiell auch andere Codes wie beispielsweise Reed-Solomin verwendet werden, +jedoch besitzen einige Codes Schwachstellen \cite{mceliece:lorenz}. +Das Codieren mit diesem linearen Code kann mithilfe dessen Generatormatrix $G_{n,k}$ erfolgen. +Da es sich um einen fehlerkorrigierenden Code handelt, +wird das Codewort länger als das Datenwort, +es wird also Redundanz hinzugefügt, +um die Fehlerkorrektur möglich zu machen. + +Beispiel +\[ + G_{7,4}= + \begin{pmatrix} + 1 & 0 & 0 & 0\\ + 1 & 1 & 0 & 0\\ + 0 & 1 & 1 & 0\\ + 1 & 0 & 1 & 1\\ + 0 & 1 & 0 & 1\\ + 0 & 0 & 1 & 0\\ + 0 & 0 & 0 & 1 + \end{pmatrix} +\] + +\subsection{Permutations-Matrix $P_n$ +\label{mceliece:subsection:p_m}} +Mit der zufällig generierten Permutationsmatrix $P_n$ wird die Reihenfolge der Bits geändert. +Mit der Inversen $P_n^{-1}$ kann die Bitvertauschung rückgängig gemacht werden. +Beispiel +\[ + P_7= + \begin{pmatrix} + 0 & 1 & 0 & 0 & 0 & 0 & 0\\ + 0 & 0 & 0 & 0 & 0 & 0 & 1\\ + 0 & 0 & 0 & 0 & 0 & 1 & 0\\ + 0 & 0 & 1 & 0 & 0 & 0 & 0\\ + 0 & 0 & 0 & 1 & 0 & 0 & 0\\ + 1 & 0 & 0 & 0 & 0 & 0 & 0\\ + 0 & 0 & 0 & 0 & 1 & 0 & 0 + \end{pmatrix} +\] +, +\[ + P_7^{-1}=P_7^t= + \begin{pmatrix} + 0 & 0 & 0 & 0 & 0 & 1 & 0\\ + 1 & 0 & 0 & 0 & 0 & 0 & 0\\ + 0 & 0 & 0 & 1 & 0 & 0 & 0\\ + 0 & 0 & 0 & 0 & 1 & 0 & 0\\ + 0 & 0 & 0 & 0 & 0 & 0 & 1\\ + 0 & 0 & 1 & 0 & 0 & 0 & 0\\ + 0 & 1 & 0 & 0 & 0 & 0 & 0 + \end{pmatrix} +\] + +\subsection{Fehler-Vektor $e_n$ +\label{mceliece:subsection:p_m}} +Dieser Vektor der Länge $n$ besteht aus $t$ Einsen, welche zufällig innerhalb des Vektors angeordnet sind, +alle anderen Einträge sind Null. +Dieser Fehlervektor besitzt also gleich viele Einer, +wie die Anzahl Fehler, die der Linearcode zu korrigieren vermag. + +Beispiel +\[ + E_7= + \begin{pmatrix} + 0\\ + 0\\ + 1\\ + 0\\ + 0\\ + 0\\ + 0 + \end{pmatrix} +\] diff --git a/buch/papers/mceliece/einleitung.tex b/buch/papers/mceliece/einleitung.tex new file mode 100644 index 0000000..48b55b0 --- /dev/null +++ b/buch/papers/mceliece/einleitung.tex @@ -0,0 +1,14 @@ +% +% teil1.tex -- Beispiel-File für das Paper +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Einleitung +\label{mceliece:section:einleitung}} +\rhead{Einleitung} +Das McEliece-Kryptosystem ist eine Variante zum Austausch +von Schlüsselpaaren über ein Netzwerk analog dem Diffie-Hellman-Schlüsseltausch \ref{buch:subsection:diffie-hellman}, +wobei das McEliece-System als Quantencomputerresistent gilt. +Das Verschlüsseln/Entschlüsseln von Nachrichten wird bei diesem System hauptsächlich mit Matrizenoperationen durchgeführt. + + diff --git a/buch/papers/mceliece/fazit.tex b/buch/papers/mceliece/fazit.tex new file mode 100644 index 0000000..37152bf --- /dev/null +++ b/buch/papers/mceliece/fazit.tex @@ -0,0 +1,40 @@ +% +% teil3.tex -- Beispiel-File für Teil 3 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Fazit +\label{mceliece:section:fazit}} +\rhead{Fazit} +Sed ut perspiciatis unde omnis iste natus error sit voluptatem +accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +quae ab illo inventore veritatis et quasi architecto beatae vitae +dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit +aspernatur aut odit aut fugit, sed quia consequuntur magni dolores +eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam +est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci +velit, sed quia non numquam eius modi tempora incidunt ut labore +et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima +veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, +nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure +reprehenderit qui in ea voluptate velit esse quam nihil molestiae +consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla +pariatur? + +\subsection{De finibus bonorum et malorum +\label{mceliece:subsection:malorum}} +At vero eos et accusamus et iusto odio dignissimos ducimus qui +blanditiis praesentium voluptatum deleniti atque corrupti quos +dolores et quas molestias excepturi sint occaecati cupiditate non +provident, similique sunt in culpa qui officia deserunt mollitia +animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis +est et expedita distinctio. Nam libero tempore, cum soluta nobis +est eligendi optio cumque nihil impedit quo minus id quod maxime +placeat facere possimus, omnis voluptas assumenda est, omnis dolor +repellendus. Temporibus autem quibusdam et aut officiis debitis aut +rerum necessitatibus saepe eveniet ut et voluptates repudiandae +sint et molestiae non recusandae. Itaque earum rerum hic tenetur a +sapiente delectus, ut aut reiciendis voluptatibus maiores alias +consequatur aut perferendis doloribus asperiores repellat. + + diff --git a/buch/papers/mceliece/funktionsweise.tex b/buch/papers/mceliece/funktionsweise.tex new file mode 100644 index 0000000..0e2ed1b --- /dev/null +++ b/buch/papers/mceliece/funktionsweise.tex @@ -0,0 +1,40 @@ +% +% teil2.tex -- Beispiel-File für teil2 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Funktionsweise +\label{mceliece:section:funktionsweise}} +\rhead{Funktionsweise} +Sed ut perspiciatis unde omnis iste natus error sit voluptatem +accusantium doloremque laudantium, totam rem aperiam, eaque ipsa +quae ab illo inventore veritatis et quasi architecto beatae vitae +dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit +aspernatur aut odit aut fugit, sed quia consequuntur magni dolores +eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam +est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci +velit, sed quia non numquam eius modi tempora incidunt ut labore +et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima +veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, +nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure +reprehenderit qui in ea voluptate velit esse quam nihil molestiae +consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla +pariatur? + +\subsection{De finibus bonorum et malorum +\label{mceliece:subsection:bonorum}} +At vero eos et accusamus et iusto odio dignissimos ducimus qui +blanditiis praesentium voluptatum deleniti atque corrupti quos +dolores et quas molestias excepturi sint occaecati cupiditate non +provident, similique sunt in culpa qui officia deserunt mollitia +animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis +est et expedita distinctio. Nam libero tempore, cum soluta nobis +est eligendi optio cumque nihil impedit quo minus id quod maxime +placeat facere possimus, omnis voluptas assumenda est, omnis dolor +repellendus. Temporibus autem quibusdam et aut officiis debitis aut +rerum necessitatibus saepe eveniet ut et voluptates repudiandae +sint et molestiae non recusandae. Itaque earum rerum hic tenetur a +sapiente delectus, ut aut reiciendis voluptatibus maiores alias +consequatur aut perferendis doloribus asperiores repellat. + + diff --git a/buch/papers/mceliece/main.tex b/buch/papers/mceliece/main.tex index dbbaaac..352a6be 100644 --- a/buch/papers/mceliece/main.tex +++ b/buch/papers/mceliece/main.tex @@ -8,29 +8,10 @@ \begin{refsection} \chapterauthor{Reto Fritsche} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} - -\input{papers/mceliece/teil0.tex} -\input{papers/mceliece/teil1.tex} -\input{papers/mceliece/teil2.tex} -\input{papers/mceliece/teil3.tex} +\input{papers/mceliece/einleitung.tex} +\input{papers/mceliece/aufbau.tex} +\input{papers/mceliece/funktionsweise.tex} +\input{papers/mceliece/fazit.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/mceliece/references.bib b/buch/papers/mceliece/references.bib index 47798d3..56f2d19 100644 --- a/buch/papers/mceliece/references.bib +++ b/buch/papers/mceliece/references.bib @@ -4,13 +4,13 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{mceliece:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} +@online{mceliece:GenerationRandMatrix, + title = {Efficient Generation of Random Nonsingular Matrices}, + url = {https://www.researchgate.net/publication/2729950_Efficient_Generation_of_Random_Nonsingular_Matrices}, + date = {Januar 1993}, + year = {2021}, + month = {7}, + day = {29} } @book{mceliece:numerical-analysis, @@ -33,3 +33,11 @@ url = {https://doi.org/10.1016/j.acha.2017.11.004} } +@online{mceliece:lorenz, + title = {Cryptography based on error correcting codes}, + url = {https://algo.epfl.ch/_media/en/projects/lorenz_thesis.pdf}, + date = {2007-07-27}, + year = {2021}, + month = {7}, + day = {29} +} \ No newline at end of file diff --git a/buch/papers/mceliece/teil0.tex b/buch/papers/mceliece/teil0.tex deleted file mode 100644 index b98f8be..0000000 --- a/buch/papers/mceliece/teil0.tex +++ /dev/null @@ -1,22 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{mceliece:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{mceliece:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. - -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. - - diff --git a/buch/papers/mceliece/teil1.tex b/buch/papers/mceliece/teil1.tex deleted file mode 100644 index 06035a6..0000000 --- a/buch/papers/mceliece/teil1.tex +++ /dev/null @@ -1,55 +0,0 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{mceliece:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{mceliece:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{mceliece:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{mceliece:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{mceliece:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - diff --git a/buch/papers/mceliece/teil2.tex b/buch/papers/mceliece/teil2.tex deleted file mode 100644 index fd247c7..0000000 --- a/buch/papers/mceliece/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{mceliece:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{mceliece:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/mceliece/teil3.tex b/buch/papers/mceliece/teil3.tex deleted file mode 100644 index 421b331..0000000 --- a/buch/papers/mceliece/teil3.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{mceliece:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{mceliece:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - -- cgit v1.2.1 From d96533cc4a5157d6bae247e88d8ec61f256a48f3 Mon Sep 17 00:00:00 2001 From: Reto Date: Tue, 3 Aug 2021 18:11:59 +0200 Subject: working... --- buch/papers/mceliece/aufbau.tex | 41 +++++++++++++++++++++++++-------- buch/papers/mceliece/funktionsweise.tex | 15 +----------- 2 files changed, 32 insertions(+), 24 deletions(-) (limited to 'buch/papers/mceliece') diff --git a/buch/papers/mceliece/aufbau.tex b/buch/papers/mceliece/aufbau.tex index 08ef037..0ee95fa 100644 --- a/buch/papers/mceliece/aufbau.tex +++ b/buch/papers/mceliece/aufbau.tex @@ -30,21 +30,21 @@ Da eine solche Matrix möglicherweise singulär ist, muss in diesem Fall eine ne Für grössere Matrizen existieren bessere Methoden, auf welche hier nicht weiter eingegangen wird \cite{mceliece:GenerationRandMatrix}. Beispielsweise \[S_4= -\begin{pmatrix} - 0 & 1 & 1 & 1\\ - 0 & 1 & 1 & 0\\ - 0 & 0 & 1 & 1\\ - 1 & 0 & 0 & 1 -\end{pmatrix} + \begin{pmatrix} + 0 & 0 & 1 & 1\\ + 0 & 0 & 0 & 1\\ + 0 & 1 & 0 & 1\\ + 1 & 0 & 0 & 1 + \end{pmatrix} \] \[ S_4^{-1}= \begin{pmatrix} - 1 & 0 & 1 & 0\\ - 1 & 1 & 0 & 1\\ - 1 & 1 & 1 & 0\\ - 1 & 1 & 0 & 0 + 0 & 1 & 0 & 1\\ + 0 & 1 & 1 & 0\\ + 1 & 1 & 0 & 0\\ + 0 & 1 & 0 & 0\\ \end{pmatrix} \] @@ -126,3 +126,24 @@ Beispiel 0 \end{pmatrix} \] + +\subsection{Public-Key $K_{n,k}$ +\label{mceliece:subsection:k_m}} +Der öffentliche Schlüssel, welcher zum Verschlüsseln verwendet wird, +berechnet sich mit +\[ + K_{n,k}=P_{n}\cdot G_{n,k}\cdot S_{k}\,. +\] +Beispiel +\[ + K_{7,4}= + \begin{pmatrix} + 0 & 0 & 1 & 0\\ + 1 & 0 & 0 & 1\\ + 0 & 0 & 1 & 1\\ + 1 & 1 & 1 & 1\\ + 0 & 1 & 0 & 1\\ + 0 & 1 & 0 & 0\\ + 1 & 0 & 0 & 0 + \end{pmatrix} +\] \ No newline at end of file diff --git a/buch/papers/mceliece/funktionsweise.tex b/buch/papers/mceliece/funktionsweise.tex index 0e2ed1b..3dfc963 100644 --- a/buch/papers/mceliece/funktionsweise.tex +++ b/buch/papers/mceliece/funktionsweise.tex @@ -6,20 +6,7 @@ \section{Funktionsweise \label{mceliece:section:funktionsweise}} \rhead{Funktionsweise} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +Um den Ablauf des Datenaustausches mittels M \subsection{De finibus bonorum et malorum \label{mceliece:subsection:bonorum}} -- cgit v1.2.1 From 098cc6c392283476e84a47f3a193b8f5f79ec413 Mon Sep 17 00:00:00 2001 From: Reto Fritsche Date: Mon, 9 Aug 2021 11:47:16 +0200 Subject: searching latex error --- buch/papers/mceliece/aufbau.tex | 56 ++++++++++++--------- buch/papers/mceliece/funktionsweise.tex | 86 +++++++++++++++++++++++++++------ 2 files changed, 102 insertions(+), 40 deletions(-) (limited to 'buch/papers/mceliece') diff --git a/buch/papers/mceliece/aufbau.tex b/buch/papers/mceliece/aufbau.tex index 0ee95fa..f8533d6 100644 --- a/buch/papers/mceliece/aufbau.tex +++ b/buch/papers/mceliece/aufbau.tex @@ -49,7 +49,7 @@ Beispielsweise \] \subsection{Linear-Code-Generatormatrix $G_{n,k}$ -\label{mceliece:subsection:g_m}} +\label{mceliece:subsection:g_nk}} Das wichtigste Element des McEliece-Systems ist ein fehlerkorrigierender Code, der in der Lage ist, $t$ Fehler zu korrigieren. Im Zusammenhang mit McEliece werden dabei meist Goppa-Codes verwendet, @@ -76,7 +76,7 @@ Beispiel \] \subsection{Permutations-Matrix $P_n$ -\label{mceliece:subsection:p_m}} +\label{mceliece:subsection:p_n}} Mit der zufällig generierten Permutationsmatrix $P_n$ wird die Reihenfolge der Bits geändert. Mit der Inversen $P_n^{-1}$ kann die Bitvertauschung rückgängig gemacht werden. Beispiel @@ -106,12 +106,33 @@ Beispiel \end{pmatrix} \] +\subsection{Public-Key $K_{n,k}$ +\label{mceliece:subsection:k_nk}} +Der öffentliche Schlüssel, welcher zum Verschlüsseln verwendet wird, +berechnet sich aus den bereits bekannten Matrizen wiefolgt: +\[ + K_{n,k}=P_{n}\cdot G_{n,k}\cdot S_{k}\,. +\] +Beispiel +\[ + K_{7,4}= + \begin{pmatrix} + 0 & 0 & 1 & 0\\ + 1 & 0 & 0 & 1\\ + 0 & 0 & 1 & 1\\ + 1 & 1 & 1 & 1\\ + 0 & 1 & 0 & 1\\ + 0 & 1 & 0 & 0\\ + 1 & 0 & 0 & 0 + \end{pmatrix} +\] + \subsection{Fehler-Vektor $e_n$ -\label{mceliece:subsection:p_m}} +\label{mceliece:subsection:e_n}} Dieser Vektor der Länge $n$ besteht aus $t$ Einsen, welche zufällig innerhalb des Vektors angeordnet sind, alle anderen Einträge sind Null. Dieser Fehlervektor besitzt also gleich viele Einer, -wie die Anzahl Fehler, die der Linearcode zu korrigieren vermag. +wie die Anzahl Fehler, die der Linearcode der Generatormatrix $G_{n,k}$ zu korrigieren vermag. Beispiel \[ @@ -127,23 +148,10 @@ Beispiel \end{pmatrix} \] -\subsection{Public-Key $K_{n,k}$ -\label{mceliece:subsection:k_m}} -Der öffentliche Schlüssel, welcher zum Verschlüsseln verwendet wird, -berechnet sich mit -\[ - K_{n,k}=P_{n}\cdot G_{n,k}\cdot S_{k}\,. -\] -Beispiel -\[ - K_{7,4}= - \begin{pmatrix} - 0 & 0 & 1 & 0\\ - 1 & 0 & 0 & 1\\ - 0 & 0 & 1 & 1\\ - 1 & 1 & 1 & 1\\ - 0 & 1 & 0 & 1\\ - 0 & 1 & 0 & 0\\ - 1 & 0 & 0 & 0 - \end{pmatrix} -\] \ No newline at end of file +\subsection{Daten-Vektor $d_k$ +\label{mceliece:subsection:d_k}} +In diesem Vektor der länge $k$ ist die Nachricht (oder einen Teil davon) enthalten. + +\subsection{Code-Vektor $c_n$ +\label{mceliece:subsection:c_n}} +In diesem Vektor der länge $n$ ist die verschlüsselte Nachricht (oder einen Teil davon) enthalten. \ No newline at end of file diff --git a/buch/papers/mceliece/funktionsweise.tex b/buch/papers/mceliece/funktionsweise.tex index 3dfc963..e412313 100644 --- a/buch/papers/mceliece/funktionsweise.tex +++ b/buch/papers/mceliece/funktionsweise.tex @@ -6,22 +6,76 @@ \section{Funktionsweise \label{mceliece:section:funktionsweise}} \rhead{Funktionsweise} -Um den Ablauf des Datenaustausches mittels M +Um den Ablauf des Datenaustausches mittels McEliece-Verschlüsselung zu erläutern, +wird ein Szenario verwendet, +bei dem Bob an Alice eine verschlüsselte Nachticht über ein öffentliches Netzwerk zukommen lässt. -\subsection{De finibus bonorum et malorum -\label{mceliece:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\subsection{Vorbereitung +\label{mceliece:section:vorbereitung}} +Damit der Nachrichtenaustausch stattfinden kann, muss Alice (Empfängerin) +zuerst ein Schlüsselpaar definieren. +Dazu erstellt sie die einzelnen Matrizen $S_k$, $G_{n,k}$ und $P_n$. +Diese drei einzelnen Matrizen bilden den privaten Schlüssel von Alice +und sollen geheim bleiben. +Der öffentliche Schlüssel $K_{n,k}$ hingegen berechnet sich +aus der Multiplikation der privaten Matrizen\ref{mceliece:subsection:k_nk} +und wird anschliessend Bob, zugestellt. +\subsection{Verschlüsselung +\label{mceliece:section:verschl}} +Bob berechnet nun die verschlüsselte Nachricht $c_n$, indem er seine Daten $d_k$ +mit dem öffentlichen Schlüssel $K_{n,k}$ von Alice multipliziert +und anschliessend durch eine Addition mit einem Fehlervektor $e_n$ einige Bitfehler hinzufügt. +\[ + c_n\,=\,K_{n,k}\cdot d_k + e_n\,. +\] +Dabei wird für jede Nachricht (oder für jedes Nachrichtenfragment) +einen neuen, zufälligen Fehlervektor generiert. +Die verschlüsselte Nachricht $c_n$ wird anschliessend Alice zugestellt. +\subsection{Entschlüsselung +\label{mceliece:section:entschl}} +Alice entschlüsselt die erhaltene Nachricht in mehreren einzelnen Schritten. +Um etwas Transparenz in diese Prozedur zu bringen, wird der öffentliche Schlüssel mit seinen Ursprungsmatrizen dargestellt. +\[ + \begin{align*}​ + c_n\,&=\,K_{n,k}\cdot d_k + e_n \\​ + &= P_{n}\cdot G_{n,k}\cdot S_{k}\cdot d_k + e_n \\​ + \end{align*}​ +\] +Zuerst wird der Effekt der Permutationsmatrix rückgängig gemacht, +indem das Codewort mit dessen Inversen $P_n^{-1}​$ multipliziert wird. + +\[ + \begin{align*}​ + c_{n}''\,=\,P_n^{-1}\cdot \hat{c}_n\,&= P_n^{-1}\cdot P_{n}\cdot G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\​ + &= G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\​ + \end{align*}​ +\] + +Eine weitere Vereinfachung ist nun möglich, +weil $P_n^{-1}​$ einerseits auch eine gewöhnliche Permutationsmatrix ist +und andererseits ein zufälliger Fehlerwektor $e_n$ multipliziert mit einer Permutationsmatrix +wiederum einen gleichwertigen, zufälligen Fehlerwektor $e_n'$ ergibt. +\[ + \begin{align*}​ + c_{n}''\,&=\,G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\​ + &=\,G_{n,k}\cdot S_{k}\cdot d_k + e'_n\quad \quad \quad \quad | \,​ + e'_n\,=\,P_n^{-1}\cdot e_n​ + \end{align*} +\] + +Dank des Linearcodes können nun die Bitfehler, verursacht durch den Fehlervektor $e'_n$, +entfernt werden. +Da es sich bei diesem Schritt nicht um eine einfache Matrixmultiplikation handelt, +wird die Operation durch eine Funktion dargestellt. +Wie dieser Decoder genau aufgebaut ist ist, +hängt vom verwendeten Linearcode ab. + +\[ + \begin{align*}​ + c_{k}'\,&=\text{Linear-Code-Decoder($c''_n$)}\\​ + &=\text{Linear-Code-Decoder($G_{n,k}\cdot S_{k}\cdot d_k + e'_n$)}\\​ + &=S_{k}\cdot d_k + \end{align*} +\] \ No newline at end of file -- cgit v1.2.1 From 180fac4090c0d412b7742b89b380fb44d3abb271 Mon Sep 17 00:00:00 2001 From: Reto Fritsche Date: Mon, 9 Aug 2021 23:10:57 +0200 Subject: scratch ready --- buch/papers/mceliece/aufbau.tex | 5 ++- buch/papers/mceliece/einleitung.tex | 10 +++-- buch/papers/mceliece/fazit.tex | 77 ++++++++++++++++++++------------- buch/papers/mceliece/funktionsweise.tex | 74 ++++++++++++++++--------------- buch/papers/mceliece/references.bib | 37 ++++++++-------- 5 files changed, 112 insertions(+), 91 deletions(-) (limited to 'buch/papers/mceliece') diff --git a/buch/papers/mceliece/aufbau.tex b/buch/papers/mceliece/aufbau.tex index f8533d6..521488d 100644 --- a/buch/papers/mceliece/aufbau.tex +++ b/buch/papers/mceliece/aufbau.tex @@ -28,7 +28,8 @@ Für kleine Matrizen kann durchaus jedes Matrizenelement zufällig generiert wer wobei danach mithilfe des Gauss-Algorythmusses deren Inverse bestimmt werden kann. Da eine solche Matrix möglicherweise singulär ist, muss in diesem Fall eine neue Zufallsmatrix erzeugt werden. Für grössere Matrizen existieren bessere Methoden, auf welche hier nicht weiter eingegangen wird \cite{mceliece:GenerationRandMatrix}. -Beispielsweise + +Beispiel: \[S_4= \begin{pmatrix} 0 & 0 & 1 & 1\\ @@ -79,6 +80,7 @@ Beispiel \label{mceliece:subsection:p_n}} Mit der zufällig generierten Permutationsmatrix $P_n$ wird die Reihenfolge der Bits geändert. Mit der Inversen $P_n^{-1}$ kann die Bitvertauschung rückgängig gemacht werden. + Beispiel \[ P_7= @@ -113,6 +115,7 @@ berechnet sich aus den bereits bekannten Matrizen wiefolgt: \[ K_{n,k}=P_{n}\cdot G_{n,k}\cdot S_{k}\,. \] + Beispiel \[ K_{7,4}= diff --git a/buch/papers/mceliece/einleitung.tex b/buch/papers/mceliece/einleitung.tex index 48b55b0..cebb8ed 100644 --- a/buch/papers/mceliece/einleitung.tex +++ b/buch/papers/mceliece/einleitung.tex @@ -6,9 +6,11 @@ \section{Einleitung \label{mceliece:section:einleitung}} \rhead{Einleitung} -Das McEliece-Kryptosystem ist eine Variante zum Austausch -von Schlüsselpaaren über ein Netzwerk analog dem Diffie-Hellman-Schlüsseltausch \ref{buch:subsection:diffie-hellman}, -wobei das McEliece-System als Quantencomputerresistent gilt. -Das Verschlüsseln/Entschlüsseln von Nachrichten wird bei diesem System hauptsächlich mit Matrizenoperationen durchgeführt. +Beim McEliece-Kryptosystem handelt es sich um ein asymetrisches Verschlüsselungsverfahren, welches erlaubt, +Daten verschlüsselt über ein Netzwerk zu übermitteln, ohne dass vorab ein gemeinsamer, +geheimer Schlüssel unter den Teilnehmern ausgetauscht werden müsste. +Eine andere, bereits erläuterte Variante einer asymetrischen Verschlüsselung ist das Diffie-Hellman-Verfahren \ref{buch:subsection:diffie-hellman}. +Im Gegensatz zu Diffie-Hellman gilt das McEliece-System als Quantencomputerresistent +und das Verschlüsseln/Entschlüsseln von Nachrichten wird hauptsächlich mit Matrizenoperationen durchgeführt. diff --git a/buch/papers/mceliece/fazit.tex b/buch/papers/mceliece/fazit.tex index 37152bf..3451250 100644 --- a/buch/papers/mceliece/fazit.tex +++ b/buch/papers/mceliece/fazit.tex @@ -6,35 +6,52 @@ \section{Fazit \label{mceliece:section:fazit}} \rhead{Fazit} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{mceliece:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +Ein kurzer Vergleich des McEliece-Systems +mit dem oft verwendeten RSA-System soll zeigen, wo dessen Vor- und Nachteile liegen. +\subsection{Resourcen} +Eine Eigenheit des McEliece-Systems ist das hinzufügen von Rauschen (mit Fehlervektor $e_n$). +Damit diese mit dem Lienarcode-Decoder wieder entfernt werden können, +wird Redundanz benötigt, +weshalb dessen Kanalefizienz (Nutzbits/Übertragungsbits) sinkt. +Die Schlüsselgrösse des McEliece-Systems ist deshalb so riesig, weil es sich um eine zweidimensionale Matrix handelt, währenddem RSA mit nur zwei Skalaren auskommt. +Das McEliece-System benötigt dafür weniger Rechenaufwand beim Verschlüsseln/Entschlüsseln, da die meisten Operationen mit Matrixmultiplikationen ausgeführt werden können (Aufwand ist in binären Operationen pro Informationsbit)\cite{mceliece:CodeBasedCrypto}. +Beim Rechenaufwand sei noch erwähnt, +dass asymetrische Verschlüsselungen meist nur dazu verwendet werden, +um einen Schlüssel für eine symetrische Verschlüsselung auszutauschen. +\begin{center} +\begin{tabular}{c|c|c} + &McEliece (n=2048, k=1718, t = 30) &RSA (2048, e = 216 + 1)\\ + \hline + Schlüssegrösse: (Public) &429.5 KByte &0.5 KByte \\ + Kanaleffizienz: &83.9 \% &100 \% \\ + Verschlüsselungsaufwand: &1025 &40555 \\ + Entschlüsselungsaufwand: &2311 &6557176, 5 +\end{tabular} +\end{center} +\subsection{Sicherheit} +Grosse unterschiede zwischen den beiden Kryptosystemen gibt es jedoch bei der Sicherheit. +Der Kern der RSA-Verschlüsselung beruht auf dem Problem, eine grosse Zahl in ihre beiden Primfaktoren zu zerlegen. +Bei genügend grossen Zahlen ist diese Zerlegung auch mit den heute besten verfügbaren Computern kaum innerhalb vernünftiger Zeit zu lösen. +Weiter ist aber bekannt, +dass mithilfe des sogenannten Shor-Algorithmuses \cite{mceliece:shor} und einem Quantencomputer auch diese Zerlegung zügig realisiert werden könnte, +was zur Folge hätte, dass die Verschlüsselung von RSA unwirksam würde. +Zurzeit sind die Quantencomputer jedoch noch bei weitem nicht in der Lage, grosse Zahlen mithilfe dieses Algorithmuses zu zerlegen. +Das McEliece-System hingegen beruht auf dem Problem des "Syndrome decoding" (Korrektur von Bitfehlern eines Codewortes, das mit dem entsprechenden Linearcode codiert wurde). +Für das "Syndrome decoding" sind bis heute keine Methoden bekannt, +welche nennenswerte Vorteile gegenüber dem durchprobieren (brute-force) bringen, +auch nicht mithilfe eines Quantencomputers. +\begin{center} +\begin{tabular}{c|c|c} + &McEliece &RSA \\ +\hline + Grundlage Verschlüsselung &Syndrome decoding &Integer factoring\\ + Aufwand (gewöhnliche CPU) &exponential &< exponential \\ + Aufwand (Quantencomputer) &> polynomial &$\mathcal{O}(\log(N)^3)$ +\end{tabular} +\end{center} +Die Verbreitung des McEliece-Kryptosystems ist zurzeit äusserst gering. +Das liegt einerseits an der immensen Grösse des öffentlichen Schlüssels, +andererseits wird aber auch in naher Zukunft nicht mit einem genügend starken Quantencomputer gerechnet, +welcher andere asymetrische Verschlüsselungen gefährden würde. diff --git a/buch/papers/mceliece/funktionsweise.tex b/buch/papers/mceliece/funktionsweise.tex index e412313..93bb1c7 100644 --- a/buch/papers/mceliece/funktionsweise.tex +++ b/buch/papers/mceliece/funktionsweise.tex @@ -19,7 +19,7 @@ Diese drei einzelnen Matrizen bilden den privaten Schlüssel von Alice und sollen geheim bleiben. Der öffentliche Schlüssel $K_{n,k}$ hingegen berechnet sich aus der Multiplikation der privaten Matrizen\ref{mceliece:subsection:k_nk} -und wird anschliessend Bob, zugestellt. +und wird anschliessend Bob zugestellt. \subsection{Verschlüsselung \label{mceliece:section:verschl}} @@ -36,46 +36,48 @@ Die verschlüsselte Nachricht $c_n$ wird anschliessend Alice zugestellt. \subsection{Entschlüsselung \label{mceliece:section:entschl}} Alice entschlüsselt die erhaltene Nachricht in mehreren einzelnen Schritten. -Um etwas Transparenz in diese Prozedur zu bringen, wird der öffentliche Schlüssel mit seinen Ursprungsmatrizen dargestellt. -\[ - \begin{align*}​ - c_n\,&=\,K_{n,k}\cdot d_k + e_n \\​ - &= P_{n}\cdot G_{n,k}\cdot S_{k}\cdot d_k + e_n \\​ - \end{align*}​ -\] +Um etwas Transparenz in diese Prozedur zu bringen, wird der öffentliche Schlüssel $K_{n,k}$ mit seinen Ursprungsmatrizen dargestellt. +\begin{align*} + c_n\,&=\,K_{n,k}\cdot d_k + e_n \\ + &= P_{n}\cdot G_{n,k}\cdot S_{k}\cdot d_k + e_n +\end{align*} Zuerst wird der Effekt der Permutationsmatrix rückgängig gemacht, -indem das Codewort mit dessen Inversen $P_n^{-1}​$ multipliziert wird. - -\[ - \begin{align*}​ - c_{n}''\,=\,P_n^{-1}\cdot \hat{c}_n\,&= P_n^{-1}\cdot P_{n}\cdot G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\​ - &= G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\​ - \end{align*}​ -\] - +indem das Codewort mit dessen Inversen $P_n^{-1}$ multipliziert wird. +\begin{align*} + c_{n}''\,=\,P_n^{-1}\cdot c_n\,&= P_n^{-1}\cdot P_{n}\cdot G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\ + &= G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\ +\end{align*} Eine weitere Vereinfachung ist nun möglich, -weil $P_n^{-1}​$ einerseits auch eine gewöhnliche Permutationsmatrix ist -und andererseits ein zufälliger Fehlerwektor $e_n$ multipliziert mit einer Permutationsmatrix -wiederum einen gleichwertigen, zufälligen Fehlerwektor $e_n'$ ergibt. -\[ - \begin{align*}​ - c_{n}''\,&=\,G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\​ - &=\,G_{n,k}\cdot S_{k}\cdot d_k + e'_n\quad \quad \quad \quad | \,​ - e'_n\,=\,P_n^{-1}\cdot e_n​ - \end{align*} -\] - -Dank des Linearcodes können nun die Bitfehler, verursacht durch den Fehlervektor $e'_n$, +weil $P_n^{-1}$ einerseits auch eine gewöhnliche Permutationsmatrix ist +und andererseits ein zufälliger Fehlervektor $e_n$ multipliziert mit einer Permutationsmatrix +wiederum einen gleichwertigen, zufälligen Fehlervektor $e_n'$ ergibt. +\begin{align*} + c_{n}''\,&=\,G_{n,k}\cdot S_{k}\cdot d_k + P_n^{-1}\cdot e_n \\ + &=\,G_{n,k}\cdot S_{k}\cdot d_k + e'_n\quad \quad \quad | \, + e'_n\,=\,P_n^{-1}\cdot e_n +\end{align*} +Dank des fehlerkorrigierenden Codes, der durch die implizite Multiplikation mittels $G_{n,k}$ auf die Daten angewendet wurde, +können nun die Bitfehler, verursacht durch den Fehlervektor $e'_n$, entfernt werden. Da es sich bei diesem Schritt nicht um eine einfache Matrixmultiplikation handelt, wird die Operation durch eine Funktion dargestellt. Wie dieser Decoder genau aufgebaut ist ist, hängt vom verwendeten Linearcode ab. +\begin{align*} + c_{k}'\,&=\text{Linear-Code-Decoder($c''_n$)}\\ + &=\text{Linear-Code-Decoder($G_{n,k}\cdot S_{k}\cdot d_k + e'_n$)}\\ + &=S_{k}\cdot d_k +\end{align*} +Zum Schluss wird das inzwischen fast entschlüsselte Codewort $c'_k$ mit der inversen der zufälligen Binärmatrix $S^{-1}$ multipliziert, +womit der Inhalt der ursprünglichen Nachricht nun wiederhergestellt wurde. +\begin{align*} + c_{k}'\,&=S_{k}\cdot d_k \quad | \cdot S_k^{-1}\\ + d'_{k}\,=\,S_{k}^{-1} \cdot c'_k&=S_{k}^{-1} \cdot S_{k}\cdot d_k\\ + &=d_k +\end{align*} -\[ - \begin{align*}​ - c_{k}'\,&=\text{Linear-Code-Decoder($c''_n$)}\\​ - &=\text{Linear-Code-Decoder($G_{n,k}\cdot S_{k}\cdot d_k + e'_n$)}\\​ - &=S_{k}\cdot d_k - \end{align*} -\] \ No newline at end of file +\subsection{Beispiel} + +TODO: +-alle Beispielmatrizen- und Vektoren hierhin zügeln, numerisches Beispiel kreieren\\ +-erläutern des 7/4-codes (ja/nein)? \ No newline at end of file diff --git a/buch/papers/mceliece/references.bib b/buch/papers/mceliece/references.bib index 56f2d19..52aa166 100644 --- a/buch/papers/mceliece/references.bib +++ b/buch/papers/mceliece/references.bib @@ -13,26 +13,6 @@ day = {29} } -@book{mceliece:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} -} - -@article{mceliece:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} -} - @online{mceliece:lorenz, title = {Cryptography based on error correcting codes}, url = {https://algo.epfl.ch/_media/en/projects/lorenz_thesis.pdf}, @@ -40,4 +20,21 @@ year = {2021}, month = {7}, day = {29} +} + +@online{mceliece:shor, + title = {Shor's algorithm}, + url = {https://en.wikipedia.org/wiki/Shor%27s_algorithm}, + year = {2021}, + month = {8}, + day = {9} +} + +@online{mceliece:CodeBasedCrypto, + title = {Code based cryptography and steganography}, + url = {https://www.researchgate.net/publication/268009418_Code_Based_Cryptography_and_Steganography}, + date = {2013-05-30}, + year = {2021}, + month = {8}, + day = {9} } \ No newline at end of file -- cgit v1.2.1 From d1de888f9a0bd9f6940827944943ae6486eeae82 Mon Sep 17 00:00:00 2001 From: Reto Fritsche Date: Mon, 9 Aug 2021 23:29:00 +0200 Subject: =?UTF-8?q?corrected=20some=20=C2=B4=C2=B4...''?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/mceliece/fazit.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/papers/mceliece') diff --git a/buch/papers/mceliece/fazit.tex b/buch/papers/mceliece/fazit.tex index 3451250..d618993 100644 --- a/buch/papers/mceliece/fazit.tex +++ b/buch/papers/mceliece/fazit.tex @@ -38,8 +38,8 @@ Weiter ist aber bekannt, dass mithilfe des sogenannten Shor-Algorithmuses \cite{mceliece:shor} und einem Quantencomputer auch diese Zerlegung zügig realisiert werden könnte, was zur Folge hätte, dass die Verschlüsselung von RSA unwirksam würde. Zurzeit sind die Quantencomputer jedoch noch bei weitem nicht in der Lage, grosse Zahlen mithilfe dieses Algorithmuses zu zerlegen. -Das McEliece-System hingegen beruht auf dem Problem des "Syndrome decoding" (Korrektur von Bitfehlern eines Codewortes, das mit dem entsprechenden Linearcode codiert wurde). -Für das "Syndrome decoding" sind bis heute keine Methoden bekannt, +Das McEliece-System hingegen beruht auf dem Problem des ``Syndrome decoding'' (Korrektur von Bitfehlern eines Codewortes, das mit dem entsprechenden Linearcode codiert wurde). +Für das ``Syndrome decoding'' sind bis heute keine Methoden bekannt, welche nennenswerte Vorteile gegenüber dem durchprobieren (brute-force) bringen, auch nicht mithilfe eines Quantencomputers. \begin{center} -- cgit v1.2.1 From 75f4f6666396ffbc403d04e6b533b69d38fc065b Mon Sep 17 00:00:00 2001 From: Reto Fritsche Date: Tue, 10 Aug 2021 23:12:40 +0200 Subject: found some typos, removed them, some other small changes --- buch/papers/mceliece/aufbau.tex | 11 ++++++----- buch/papers/mceliece/fazit.tex | 6 +++--- buch/papers/mceliece/funktionsweise.tex | 4 ++-- buch/papers/mceliece/references.bib | 8 ++++++++ 4 files changed, 19 insertions(+), 10 deletions(-) (limited to 'buch/papers/mceliece') diff --git a/buch/papers/mceliece/aufbau.tex b/buch/papers/mceliece/aufbau.tex index 521488d..200cb7b 100644 --- a/buch/papers/mceliece/aufbau.tex +++ b/buch/papers/mceliece/aufbau.tex @@ -10,7 +10,8 @@ Das McEliece-Kryptosystem besteht aus folgenden Elementen: \subsection{Datenvektor $d_k$ \label{mceliece:subsection:d_k}} In diesem Vektor der Länge $k$ sind die zu verschlüsselnden Daten enthalten. -Beispielsweise + +Beispiel: \[d_4= \begin{pmatrix} 1\\ @@ -25,7 +26,7 @@ Beispielsweise $S_k$ ist eine Binäre Zufallsmatrix der Grösse $k \times k$. Auch muss diese Matrix in $\mathbb{F}_2$ invertierbar sein. Für kleine Matrizen kann durchaus jedes Matrizenelement zufällig generiert werden, -wobei danach mithilfe des Gauss-Algorythmusses deren Inverse bestimmt werden kann. +wobei danach mithilfe des Gauss-Algorithmus deren Inverse bestimmt werden kann. Da eine solche Matrix möglicherweise singulär ist, muss in diesem Fall eine neue Zufallsmatrix erzeugt werden. Für grössere Matrizen existieren bessere Methoden, auf welche hier nicht weiter eingegangen wird \cite{mceliece:GenerationRandMatrix}. @@ -53,9 +54,9 @@ Beispiel: \label{mceliece:subsection:g_nk}} Das wichtigste Element des McEliece-Systems ist ein fehlerkorrigierender Code, der in der Lage ist, $t$ Fehler zu korrigieren. -Im Zusammenhang mit McEliece werden dabei meist Goppa-Codes verwendet, -es können prinzipiell auch andere Codes wie beispielsweise Reed-Solomin verwendet werden, -jedoch besitzen einige Codes Schwachstellen \cite{mceliece:lorenz}. +Im Zusammenhang mit McEliece werden dabei meist binäre Goppa-Codes \cite{mceliece:goppa} verwendet, +es können prinzipiell auch andere Codes wie beispielsweise Reed-Solomon verwendet werden, +jedoch besitzen einige (unter anderem auch Reed-Solomon) Codes Schwachstellen \cite{mceliece:lorenz}. Das Codieren mit diesem linearen Code kann mithilfe dessen Generatormatrix $G_{n,k}$ erfolgen. Da es sich um einen fehlerkorrigierenden Code handelt, wird das Codewort länger als das Datenwort, diff --git a/buch/papers/mceliece/fazit.tex b/buch/papers/mceliece/fazit.tex index d618993..186708b 100644 --- a/buch/papers/mceliece/fazit.tex +++ b/buch/papers/mceliece/fazit.tex @@ -35,12 +35,12 @@ Grosse unterschiede zwischen den beiden Kryptosystemen gibt es jedoch bei der Si Der Kern der RSA-Verschlüsselung beruht auf dem Problem, eine grosse Zahl in ihre beiden Primfaktoren zu zerlegen. Bei genügend grossen Zahlen ist diese Zerlegung auch mit den heute besten verfügbaren Computern kaum innerhalb vernünftiger Zeit zu lösen. Weiter ist aber bekannt, -dass mithilfe des sogenannten Shor-Algorithmuses \cite{mceliece:shor} und einem Quantencomputer auch diese Zerlegung zügig realisiert werden könnte, +dass mithilfe des sogenannten Shor-Algorithmus \cite{mceliece:shor} und einem Quantencomputer auch diese Zerlegung zügig realisiert werden könnte, was zur Folge hätte, dass die Verschlüsselung von RSA unwirksam würde. Zurzeit sind die Quantencomputer jedoch noch bei weitem nicht in der Lage, grosse Zahlen mithilfe dieses Algorithmuses zu zerlegen. -Das McEliece-System hingegen beruht auf dem Problem des ``Syndrome decoding'' (Korrektur von Bitfehlern eines Codewortes, das mit dem entsprechenden Linearcode codiert wurde). +Das McEliece-System hingegen beruht auf dem Problem des ``Syndrome decoding'' (Korrektur von Bitfehlern eines Codewortes, das mit einem entsprechenden Linearcode codiert wurde). Für das ``Syndrome decoding'' sind bis heute keine Methoden bekannt, -welche nennenswerte Vorteile gegenüber dem durchprobieren (brute-force) bringen, +welche nennenswerte Vorteile gegenüber dem Durchprobieren (brute-force) bringen, auch nicht mithilfe eines Quantencomputers. \begin{center} \begin{tabular}{c|c|c} diff --git a/buch/papers/mceliece/funktionsweise.tex b/buch/papers/mceliece/funktionsweise.tex index 93bb1c7..7c69b13 100644 --- a/buch/papers/mceliece/funktionsweise.tex +++ b/buch/papers/mceliece/funktionsweise.tex @@ -18,7 +18,7 @@ Dazu erstellt sie die einzelnen Matrizen $S_k$, $G_{n,k}$ und $P_n$. Diese drei einzelnen Matrizen bilden den privaten Schlüssel von Alice und sollen geheim bleiben. Der öffentliche Schlüssel $K_{n,k}$ hingegen berechnet sich -aus der Multiplikation der privaten Matrizen\ref{mceliece:subsection:k_nk} +aus der Multiplikation der privaten Matrizen (Abschnitt \ref{mceliece:subsection:k_nk}) und wird anschliessend Bob zugestellt. \subsection{Verschlüsselung @@ -61,7 +61,7 @@ können nun die Bitfehler, verursacht durch den Fehlervektor $e'_n$, entfernt werden. Da es sich bei diesem Schritt nicht um eine einfache Matrixmultiplikation handelt, wird die Operation durch eine Funktion dargestellt. -Wie dieser Decoder genau aufgebaut ist ist, +Wie dieser Decoder genau aufgebaut ist, hängt vom verwendeten Linearcode ab. \begin{align*} c_{k}'\,&=\text{Linear-Code-Decoder($c''_n$)}\\ diff --git a/buch/papers/mceliece/references.bib b/buch/papers/mceliece/references.bib index 52aa166..0388ff4 100644 --- a/buch/papers/mceliece/references.bib +++ b/buch/papers/mceliece/references.bib @@ -37,4 +37,12 @@ year = {2021}, month = {8}, day = {9} +} + +@online{mceliece:goppa, + title = {Binary Goppa code}, + url = {https://en.m.wikipedia.org/wiki/Binary_Goppa_code}, + year = {2021}, + month = {8}, + day = {10} } \ No newline at end of file -- cgit v1.2.1