From a4817013b542cd6aa1a0cd955806c82ac337dca6 Mon Sep 17 00:00:00 2001 From: Nunigan Date: Wed, 28 Jul 2021 22:27:27 +0200 Subject: added corrections from prof mueller --- buch/papers/multiplikation/loesungsmethoden.tex | 80 ++++++++++++------------- 1 file changed, 39 insertions(+), 41 deletions(-) (limited to 'buch/papers/multiplikation/loesungsmethoden.tex') diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 83be814..8bdbf2c 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -4,16 +4,16 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{L\"osungsmethoden} -\rhead{L\"osungsmethoden} +\section{Algorithmen} +\rhead{Algorithmen} In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Libraries zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt. \subsection{Standard Algorithmus} -Der Standard Methode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden. +Die Standardmethode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden. Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert. -Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{For j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{For k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten. +Die \texttt{for i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{for j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{for k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten. \begin{algorithm}\caption{Matrix Multiplication} \label{multiplikation:alg:smm} @@ -39,16 +39,18 @@ Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, \end{algorithmic} \end{algorithm} -Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}(n^3)$ +Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}\left(n^3\right)$ \subsubsection{Divide and Conquer Methode} -F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze zu markant besseren Laufzeiten. -Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}(n^2)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann. +F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze \cite{multiplikation:DAC} zu markant besseren Laufzeiten. +Die Grundidee ist, dass ein Problem in mehrere, meist simplere und kleinere Teilprobleme aufgeteilt wird. +Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}\left(n^2\right)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann. Die Matrizenmultiplikation kann ebenfalls mit solch einem Ansatz berechnet werden. -Zur vereinfachten Veranschaulichung kann die Situation, mit $\mathbf{A}$ und $\mathbf{B}$ der gr\"osse $2^n \times 2^n$ verwendet werden. -Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der gr\"osse $2^{n-1} \times 2^{n-1}$ +Zur vereinfachten Veranschaulichung kann die Situation mit $\mathbf{A}$ und $\mathbf{B}$ der Gr\"osse $2^n \times 2^n$ verwendet werden. +Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der Gr\"osse $2^{n-1} \times 2^{n-1}$ aufgeteilt. +Das Matrizen produklt \begin{equation} \mathbf{A}\mathbf{B}= \begin{bmatrix} @@ -64,11 +66,9 @@ Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen \mathbf{C}_{11} & \mathbf{C}_{12}\\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} -\end{equation} -aufgeteilt. -Die Berechnung +\end{equation}, \begin{equation} -\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj} +\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj}. \label{multiplikation:eq:MM_block} \end{equation} ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, wobei hier f\"ur die Multiplikation die Matrizenmultiplikation verwendet wird. @@ -105,15 +105,11 @@ Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ \end{algorithmic} \end{algorithm} -Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} berechnet werden. -Ohne auf diesen vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit. +Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} \cite{multiplikation:master_theorem} berechnet werden. Das \textit{Master Theorem} bestimmt die Zeitkomplexit\"at von rekursiven Algortihmen. +Ohne auf dieses vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit. In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt \begin{equation} \label{multiplikation:eq:laufzeitdac} - \mathcal{T}(n) = - \begin{cases} - 1 & \text{if } n \leq 2\\ - 8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2 - \end{cases} = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}(n^{3}) + \mathcal{T}(n) = 8 \cdot \mathcal{T}\left (\frac{n}{2}\right ) + n^2 = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}\left (n^{3} \right ) \end{equation} zu einer kubischen Laufzeit. Die Addition zweier Matrizen $\mathbf{A} + \mathbf{B} = \mathbf{C}$ hat eine Laufzeit von $\mathcal{O}(n^{2})$ und kann neben dem dominierendem Anteil von $\mathcal{O}(n^{3})$ ignoriert werden. @@ -122,20 +118,20 @@ In diesem Fall hat der \textit{Divide and Conquer} Ansatz zu keiner Verbesserung \subsection{Strassen's Algorithmus} -Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen. -Die Grundlegenden Terme +Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen von Blockmatrizen. +Die grundlegenden Terme \begin{equation} \label{multiplikation:eq:strassen} \begin{split} -\text{\textbf{P}} &= (\mathbf{A}_{11} + \mathbf{A}_{22}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{22}) \\ -\text{\textbf{Q}} &= (\mathbf{A}_{21} + \mathbf{A}_{22}) \cdot \mathbf{B}_{11} \\ -\text{\textbf{R}} &= \mathbf{A}_{11} \cdot (\mathbf{B}_{12}-\mathbf{B}_{22}) \\ -\text{\textbf{S}} &= \mathbf{A}_{22} \cdot (-\mathbf{B}_{11}+\mathbf{B}_{21}) \\ -\text{\textbf{T}} &= (\mathbf{A}_{11} + \mathbf{A}_{12}) \cdot \mathbf{B}_{22} \\ -\text{\textbf{U}} &= (-\mathbf{A}_{11} + \mathbf{A}_{21}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{12}) \\ -\text{\textbf{V}} &= (\mathbf{A}_{12} - \mathbf{A}_{22}) \cdot (\mathbf{B}_{21} + \mathbf{B}_{22}) +\text{\textbf{P}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{22}\right ) \\ +\text{\textbf{Q}} &= \left(\mathbf{A}_{21} + \mathbf{A}_{22}\right ) \cdot \mathbf{B}_{11} \\ +\text{\textbf{R}} &= \mathbf{A}_{11} \cdot \left(\mathbf{B}_{12}-\mathbf{B}_{22}\right ) \\ +\text{\textbf{S}} &= \mathbf{A}_{22} \cdot \left(-\mathbf{B}_{11}+\mathbf{B}_{21}\right ) \\ +\text{\textbf{T}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{12}\right ) \cdot \mathbf{B}_{22} \\ +\text{\textbf{U}} &= \left(-\mathbf{A}_{11} + \mathbf{A}_{21}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{12}\right ) \\ +\text{\textbf{V}} &= \left(\mathbf{A}_{12} - \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{21} + \mathbf{B}_{22}\right ) \end{split} \end{equation} -aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\mathbf{C}$ +aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Bl\"ocke \begin{equation} \label{multiplikation:eq:strassen2} \begin{split} \mathbf{C}_{11} &= \text{\textbf{P}} + \text{\textbf{S}} - \text{\textbf{T}} + \text{\textbf{V}} \\ @@ -144,7 +140,7 @@ aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\math \mathbf{C}_{22} &= \text{\textbf{P}} + \text{\textbf{R}} - \text{\textbf{Q}} + \text{\textbf{U}} \end{split} \end{equation} -gebraucht. +der Matrix $\mathbf{C}$ gebraucht. \begin{algorithm}\caption{Strassen Matrix Multiplication} \label{multiplikation:alg:strassen} \setlength{\lineskip}{7pt} @@ -190,7 +186,11 @@ gebraucht. \EndFunction \end{algorithmic} \end{algorithm} -Strassens's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. +Strassen's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. +Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ . +Die gr\"unen Felder auf der linken Seite, zeigen die addition welche f\"ur den dazugeh\"origen Term ben\"otigt wird. +Die sieben Spalten beschreiben die Matrizen $\mathbf{P,Q,R, \dotsb, V}$. +Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition. \begin{figure} \center \includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf} @@ -202,17 +202,14 @@ Die Funktion wird sieben mal rekursiv aufgerufen. Dies f\"uhrt zu einer Laufzeit von \begin{equation} \label{multiplikation:eq:laufzeitstrassen} \mathcal{T}(n) = -\begin{cases} -1 & \text{if } n \leq 2\\ -7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2 -\end{cases} = \mathcal{O}(n^{\log_2 7}) = \mathcal{O}(n^{2.8074}) +7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 = \mathcal{O}\left(n^{\log_2 7}\right ) = \mathcal{O}\left(n^{2.8074} \right ) \end{equation} -und ist somit schneller als die Standard Methode. +und ist somit schneller als die Standardmethode. \subsection{Winograd's Algorithmus} -Ein weiterer Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}. -Er zeigte einen neuen Algorithmus f\"ur das +Einen weiteren Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}. +Er beschrieb einen neuen Algorithmus f\"ur das \begin{equation} \langle x,y \rangle = \sum_{i=1}^{n}x_i y_i \end{equation} @@ -236,6 +233,7 @@ Das Skalarprodukt ist nun geben mit Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte. Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt. + Eine Matrizenmultiplikation mit $\mathbf{A}$ einer $m \times n$ und $\mathbf{B}$ einer $n \times p$ Matrix, entspricht $N=m+p$ Vektoren mit welchen man $T=mp$ Skalarprodukte berechnet. Dies f\"uhrt zu \begin{equation} @@ -243,8 +241,8 @@ Dies f\"uhrt zu \end{equation} Multiplikationen. Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt. -Was im Vergleich zu den $mpn$ Multiplikation der Standard Methode nur die H\"alfte ist. -Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnommen werden. +Was im Vergleich zu den $mpn$ Multiplikation der Standardmethode nur die H\"alfte ist. +Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen werden. \begin{algorithm}\caption{Winograd Matrix Multiplication} \setlength{\lineskip}{7pt} -- cgit v1.2.1