From cecdcdb230662af594ce68715c61f1263bff9ace Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 26 Jul 2021 07:57:58 +0200 Subject: add munkres files --- buch/papers/munkres/teil1.tex | 62 ++++++++++--------------------------------- 1 file changed, 14 insertions(+), 48 deletions(-) (limited to 'buch/papers/munkres/teil1.tex') diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index f4f5e39..7cbbbfd 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -3,53 +3,19 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Teil 1 +\section{Was ist die ungarische Methode? \label{munkres:section:teil1}} \rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{munkres:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{munkres:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{munkres:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{munkres:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. - - +Es ist ein kombinatorischer Optimierungsalgorithmus, der das Zuordnungsproblem +in polynomieller Zeit löst. +\begin{itemize} +\item +Polynom = vielgliedrig +\end{itemize} +Der Begriff polynomielle Laufzeit bedeutet, dass die Laufzeit des Programms +wie $n^2$, $n^3$, $n^4$, etc.~wächst und vernünftig skaliert. +Mit der ungarischen Methode können also lineare Optimierungsprobleme gelöst +werden, die bei gewichteten Zuordnungen in bipartiten Graphen entstehen. +Mit ihr kann die eindeutige Zuordnung von Objekten aus zwei Gruppen so +optimiert werden, dass die Gesamtkosten minimiert werden bzw.~der +Gesamtgewinn maximiert werden kann. -- cgit v1.2.1 From 4f9cf26c7802a163da6b18cec9db62e75a9730cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marc=20K=C3=BChne?= Date: Tue, 27 Jul 2021 12:30:10 +0200 Subject: neue version --- buch/papers/munkres/teil1.tex | 65 +++++++++++++++++++++++++++++++++---------- 1 file changed, 51 insertions(+), 14 deletions(-) (limited to 'buch/papers/munkres/teil1.tex') diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index 7cbbbfd..c13732c 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -3,19 +3,56 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Was ist die ungarische Methode? +\section{Beschrieb des Zuordnungsproblems \label{munkres:section:teil1}} \rhead{Problemstellung} -Es ist ein kombinatorischer Optimierungsalgorithmus, der das Zuordnungsproblem -in polynomieller Zeit löst. -\begin{itemize} -\item -Polynom = vielgliedrig -\end{itemize} -Der Begriff polynomielle Laufzeit bedeutet, dass die Laufzeit des Programms -wie $n^2$, $n^3$, $n^4$, etc.~wächst und vernünftig skaliert. -Mit der ungarischen Methode können also lineare Optimierungsprobleme gelöst -werden, die bei gewichteten Zuordnungen in bipartiten Graphen entstehen. -Mit ihr kann die eindeutige Zuordnung von Objekten aus zwei Gruppen so -optimiert werden, dass die Gesamtkosten minimiert werden bzw.~der -Gesamtgewinn maximiert werden kann. + +Das spezielle an einem Zuordnungsproblem ist, dass es an jedem Ort nur eine Einheit angeboten bzw. nachgefragt wird. Es werden hier nicht Mengen möglichst kostenminimal von einem zum anderen +Ort transportiert, sondern es geht um die kostenminimale Zuordnung von z.B. Personen, oder Bau-Materialien auf bestimmte Orte, Stellen oder Aufgaben. +Um dieses Problem in einer einfachen, händischen Art und Weise zu lösen wurde der Munkres-Algorithmus, auch die Ungarische Methode genannt, entwickelt. Diese Methode ist ein weiteres Hauptthema dieses Kapitels. + +\subsection{Zuordnungsproblem an einem konkreten Beispiel +\label{munkres:subsection:bonorum}} + +\subsection{Zuordnungsproblem abstrakt +\label{munkres:subsection:bonorum}} + +Es sind alle Angebots- und Bedarfsmengen gleich 1 +\begin{equation} +a_{i}=b_{j}=1 +\end{equation} + +\subsection{alternative Darstellungen des Zuordnungsproblems +\label{munkres:subsection:bonorum}} +\begin{equation} +Netzwerk +\end{equation} +\begin{equation} +Matrix +\end{equation} +\begin{equation} +Bitpartiter Graph +\end{equation} +Ein bipartiter Graph ist ein mathematisches Modell für Beziehungen +zwischen den Elementen zweier Mengen. +Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen» +\begin{figure} +\centering +\includegraphics[width=5cm]{papers/munkres/figures/Netzwerkdarstellung} +\caption{Typische Netzwerkdarstellung eines Zuordnungsproblems.} +\label{munkres:Vr2} +\end{figure} + +\begin{figure} +\centering +\includegraphics[width=5cm]{papers/munkres/figures/Matrixdarstellung} +\caption{Typische 4x4 Matrixdarstellung eines Zuordnungsproblems.} +\label{munkres:Vr2} +\end{figure} + +\begin{figure} +\centering +\includegraphics[width=5cm]{papers/munkres/figures/bipartiter_graph} +\caption{$K_{3,3}$ vollständig bipartiter Graph mit 3 Knoten pro Teilmenge.} +\label{munkres:Vr2} +\end{figure} -- cgit v1.2.1 From 6c2ea74f867d898626e5ef25c61814cd2aa49bbd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marc=20K=C3=BChne?= Date: Sat, 31 Jul 2021 11:57:23 +0200 Subject: neue version --- buch/papers/munkres/teil1.tex | 17 +++++++++++++---- 1 file changed, 13 insertions(+), 4 deletions(-) (limited to 'buch/papers/munkres/teil1.tex') diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index c13732c..4532783 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -8,21 +8,30 @@ \rhead{Problemstellung} Das spezielle an einem Zuordnungsproblem ist, dass es an jedem Ort nur eine Einheit angeboten bzw. nachgefragt wird. Es werden hier nicht Mengen möglichst kostenminimal von einem zum anderen -Ort transportiert, sondern es geht um die kostenminimale Zuordnung von z.B. Personen, oder Bau-Materialien auf bestimmte Orte, Stellen oder Aufgaben. +Ort transportiert, sondern es geht um die kostenminimale Zuordnung von z.B. Personen, oder Bau-Maschinen auf bestimmte Orte, Stellen oder Aufgaben. Um dieses Problem in einer einfachen, händischen Art und Weise zu lösen wurde der Munkres-Algorithmus, auch die Ungarische Methode genannt, entwickelt. Diese Methode ist ein weiteres Hauptthema dieses Kapitels. \subsection{Zuordnungsproblem an einem konkreten Beispiel \label{munkres:subsection:bonorum}} +Man hat der Fall, wo ein Bauunternehmer einen Bauingenieur beauftragt eine optimale Transportroute für die Umplatzierung seiner Kräne zu eruieren. Das heisst, die Transportstrecke für die Umplatzierung seine Kräne +soll möglichst klein werden. +Die Frage lautet, wie sind die Kräne umzusetzen, damit deren Transportstrecke minimal wird? Bei der normalen Optimierung dürfen normalerweise beliebige reelle Werte angenommen werden.$\mathbb{R}$. +Beim Beispiel mit den Kräne gib es aber ein Problem. Bei der Suche nach der optimalen Lösung darf nur die Methode der ganzzahligen Optimierung gewählt werden.$\mathbb{Z}$. Materialien kann man aufteilen, jedoch Maschinen nicht. Die Bauarbeiter auf der neuen Baustelle benötigen einen ganzen Kran und nicht nur einen halben Kran. Es muss immer ein ganzer Kran von A nach B oder gar kein Kran verschoben werden. Also 1 oder 0. +Doch das Problem bleibt, mit ganzzahligen Punkten kann kein Optimum erzielt werden und ist eine träge, langsame Angelegenheit. \subsection{Zuordnungsproblem abstrakt \label{munkres:subsection:bonorum}} -Es sind alle Angebots- und Bedarfsmengen gleich 1 +In einem Zuordnungsproblem sind alle Angebots- und Bedarfsmengen gleich 1 \begin{equation} a_{i}=b_{j}=1 \end{equation} -\subsection{alternative Darstellungen des Zuordnungsproblems +Das Ziel ist es die Gesamtkosten zu minimieren. Mit Hilfe einer $n\times n$ Matrix $\mathbb{A}$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann dann auch der Faktor Kosten mit in die Rechnung eingebracht werden. + +In der Zelle dieser Matrix sind $a_{i,j}$ die Kosten dargestellt, die entstehen, wenn man z.B. einem Arbeiter $i$ die Aufgabe $j$ zuordnet. + +\subsection{Alternative Darstellungen des Zuordnungsproblems \label{munkres:subsection:bonorum}} \begin{equation} Netzwerk @@ -35,7 +44,7 @@ Bitpartiter Graph \end{equation} Ein bipartiter Graph ist ein mathematisches Modell für Beziehungen zwischen den Elementen zweier Mengen. -Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen» +Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen. \begin{figure} \centering \includegraphics[width=5cm]{papers/munkres/figures/Netzwerkdarstellung} -- cgit v1.2.1 From 65966d22f384fa01a8db10b7fd47857efde92a81 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marc=20K=C3=BChne?= Date: Mon, 2 Aug 2021 11:06:30 +0200 Subject: neue version --- buch/papers/munkres/teil1.tex | 24 +++++++++++++++--------- 1 file changed, 15 insertions(+), 9 deletions(-) (limited to 'buch/papers/munkres/teil1.tex') diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index 4532783..867830f 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -7,17 +7,25 @@ \label{munkres:section:teil1}} \rhead{Problemstellung} -Das spezielle an einem Zuordnungsproblem ist, dass es an jedem Ort nur eine Einheit angeboten bzw. nachgefragt wird. Es werden hier nicht Mengen möglichst kostenminimal von einem zum anderen +Das Spezielle an einem Zuordnungsproblem ist, dass es an jedem Ort nur eine Einheit angeboten bzw. nachgefragt wird. Es werden hier nicht Mengen möglichst kostenminimal von einem zum anderen Ort transportiert, sondern es geht um die kostenminimale Zuordnung von z.B. Personen, oder Bau-Maschinen auf bestimmte Orte, Stellen oder Aufgaben. Um dieses Problem in einer einfachen, händischen Art und Weise zu lösen wurde der Munkres-Algorithmus, auch die Ungarische Methode genannt, entwickelt. Diese Methode ist ein weiteres Hauptthema dieses Kapitels. \subsection{Zuordnungsproblem an einem konkreten Beispiel \label{munkres:subsection:bonorum}} -Man hat der Fall, wo ein Bauunternehmer einen Bauingenieur beauftragt eine optimale Transportroute für die Umplatzierung seiner Kräne zu eruieren. Das heisst, die Transportstrecke für die Umplatzierung seine Kräne +Man hat den Fall, wo ein Bauunternehmer einen Bauingenieur beauftragt, eine optimale Transportroute für die Umplatzierung seiner Kräne zu eruieren. Das heisst, die Transportstrecke für die Umplatzierung seine Kräne soll möglichst klein werden. -Die Frage lautet, wie sind die Kräne umzusetzen, damit deren Transportstrecke minimal wird? Bei der normalen Optimierung dürfen normalerweise beliebige reelle Werte angenommen werden.$\mathbb{R}$. -Beim Beispiel mit den Kräne gib es aber ein Problem. Bei der Suche nach der optimalen Lösung darf nur die Methode der ganzzahligen Optimierung gewählt werden.$\mathbb{Z}$. Materialien kann man aufteilen, jedoch Maschinen nicht. Die Bauarbeiter auf der neuen Baustelle benötigen einen ganzen Kran und nicht nur einen halben Kran. Es muss immer ein ganzer Kran von A nach B oder gar kein Kran verschoben werden. Also 1 oder 0. -Doch das Problem bleibt, mit ganzzahligen Punkten kann kein Optimum erzielt werden und ist eine träge, langsame Angelegenheit. +Die Frage lautet, wie sind die Kräne umzusetzen, damit deren Transportstrecke minimal wird? Bei der normalen Optimierung dürfen normalerweise beliebige reelle Werte angenommen werden $\mathbb{R}$. +Beim Beispiel mit den Kräne gibt es aber ein Problem. Bei der Suche nach der optimalen Lösung darf nur die Methode der ganzzahligen Optimierung gewählt werden $\mathbb{Z}$. Materialien kann man aufteilen, jedoch Maschinen nicht. Die Bauarbeiter auf der neuen Baustelle benötigen einen ganzen Kran und nicht nur einen halben Kran. Es muss immer ein ganzer Kran von A nach B oder gar kein Kran verschoben werden. Also 1 oder 0. +Für solche Optimierungsproblem für reelle Varianten sind verschiedene Verfahren entwickelt worden, die im Allgemeinen auch sehr effizient sind. Das reelle Problem ist also in einer einfachen Art uns weise lösbar. Doch das Problem bleibt, wie in der Illustration oben ersichtlich. Es kann mit ganzzahligen Punkten kein Optimum erzielt werden. Das Ziel ist es an das Optimum so nah wie möglich heranzukommen und dies ist eine vergleichsweise träge und langsame Angelegenheit. + +\begin{figure} +\centering +\includegraphics[width=5cm]{papers/munkres/figures/ganzzahlige_punkte} +\caption{$K_{3,3}$ Problem der Ganzzahligkeit.} +\label{munkres:Vr2} +\end{figure} + \subsection{Zuordnungsproblem abstrakt \label{munkres:subsection:bonorum}} @@ -26,10 +34,8 @@ In einem Zuordnungsproblem sind alle Angebots- und Bedarfsmengen gleich 1 \begin{equation} a_{i}=b_{j}=1 \end{equation} - -Das Ziel ist es die Gesamtkosten zu minimieren. Mit Hilfe einer $n\times n$ Matrix $\mathbb{A}$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann dann auch der Faktor Kosten mit in die Rechnung eingebracht werden. - -In der Zelle dieser Matrix sind $a_{i,j}$ die Kosten dargestellt, die entstehen, wenn man z.B. einem Arbeiter $i$ die Aufgabe $j$ zuordnet. +Das Ziel ist es die Gesamtkosten zu minimieren. Mit Hilfe einer $n\times n$ Matrix $\mathbb{A}$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann der Faktor Kosten mit in die Rechnung eingebracht werden. +In der Zelle dieser Matrix sind $a_{i,j}$ die Wege dargestellt, die entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet. \subsection{Alternative Darstellungen des Zuordnungsproblems \label{munkres:subsection:bonorum}} -- cgit v1.2.1 From a8df39c46bc2ac0e92fc36d14d9d320d748bdf70 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marc=20K=C3=BChne?= Date: Mon, 2 Aug 2021 11:37:31 +0200 Subject: neue version --- buch/papers/munkres/teil1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/munkres/teil1.tex') diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index 867830f..d22b57f 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -22,7 +22,7 @@ Für solche Optimierungsproblem für reelle Varianten sind verschiedene Verfahre \begin{figure} \centering \includegraphics[width=5cm]{papers/munkres/figures/ganzzahlige_punkte} -\caption{$K_{3,3}$ Problem der Ganzzahligkeit.} +\caption{Problem der Ganzzahligkeit.} \label{munkres:Vr2} \end{figure} -- cgit v1.2.1