From a69eeb70b01b71089c31fb23654d38898ae26f44 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 28 Jul 2021 18:06:44 +0200 Subject: Fix symmetry paragraph and schonflies symbols --- buch/papers/punktgruppen/crystals.tex | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'buch/papers/punktgruppen/crystals.tex') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 88e683f..21c322d 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -88,7 +88,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\). Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes Vielfaches von \(\vec{Q}\) sein. - Demnach ist auch die Länge + Demnach auch die Länge \[ Q' = nQ = Q + 2x . \] @@ -140,7 +140,7 @@ Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kri \subsubsection{Schönflies-Symbolik} -Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schöönflies-Symbol bezeichnet. +Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. @@ -151,10 +151,10 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkass \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. - Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). - \item Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. - \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. + Wie zum Beispiel ein Inversionszentrum \(i\) oder eine horizontale Spiegelachse \(h\). \end{itemize} +Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. + \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. -- cgit v1.2.1