From a985b2cf0c5fe62c9f8eba3ae71b2aa6ac12c776 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Mon, 12 Jul 2021 11:05:07 +0200 Subject: Fix typos and add TODOs --- buch/papers/punktgruppen/crystals.tex | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) (limited to 'buch/papers/punktgruppen/crystals.tex') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index d984c21..1aec16f 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -11,7 +11,8 @@ Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. \centering \includegraphics[]{papers/punktgruppen/figures/lattice} \caption{ - Zweidimensionales Kristallgitter + Zweidimensionales Kristallgitter. + \texttt{TODO: make wider and shorter} \label{fig:punktgruppen:lattice} } \end{figure} @@ -52,7 +53,10 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \begin{figure} \centering \includegraphics[]{papers/punktgruppen/figures/combine-symmetries} - \caption{Translations und Rotationssymmetrisches Kristallgitter} + \caption{ + Translations und Rotationssymmetrisches Kristallgitter + \texttt{TODO: make wider and change color (yellow)} + } \label{fig:punktgruppen:rot-geometry} \end{figure} @@ -61,9 +65,9 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \begin{itemize} \item $A$ ist unser erster Gitterpunkt. - + \item $A'$ ist gegeben, weil wir $A$ mit der Translation $Q$ um einen Grundvektor verschieben und wir wissen, - dass nach einer Translation wieder ein Gitterpunkt an der Verschobenen Stelle sein muss. + dass nach einer Translation wieder ein Gitterpunkt an der Verschobenen Stelle sein muss. \item $B$ entsteht, weil wir die Rotationssymmetrie $C_\alpha$ auf den Punkt $A$ anwenden. Dadurch dreht sich das ganze Gitter um den Winkel $\alpha$. Für uns bedeutet dies lediglich, dass unser zweiter Punkt $A'$ abgedreht wird. @@ -87,18 +91,18 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \] Die Strecke $x$ lässt sich auch mit hilfe der Trigonometrie und dem angenommenen Rotationswinkel $\alpha$ ausdrücken: \[ - n|Q| = |Q| + 2|Q|sin(\alpha - \pi/2) + n|Q| = |Q| + 2|Q|\sin(\alpha - \pi/2) \] Wir können mit $|Q|$ dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangieren soll. Zusätzlich können wir den Sinusterm vereinfachen. \[ - n = 1 - 2cos\alpha - \alpha = cos^{-1}(\frac{1-n}{2}) + n = 1 - 2\cos\alpha + \alpha = \cos^{-1}\left(\frac{1-n}{2}\right) \] Dies schränkt die möglichen Rotationssymmetrien auf \[ - \alpha \in \{ 0^\circ, 60^\circ, 90^\circ, 120^\circ, 180^\circ\} + \alpha \in \left\{ 0^\circ, 60^\circ, 90^\circ, 120^\circ, 180^\circ\right\} \] ein. -- cgit v1.2.1