From bf17b6c5ecf720f5db68889be8bda10130004121 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 14 Jul 2021 22:34:08 +0200 Subject: Adapt figures and fix typos --- buch/papers/punktgruppen/piezo.tex | 29 ++++++++++++++++------------- 1 file changed, 16 insertions(+), 13 deletions(-) (limited to 'buch/papers/punktgruppen/piezo.tex') diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index e6b595a..3c3957b 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -19,10 +19,17 @@ Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für \begin{figure} \centering - \includegraphics[]{papers/punktgruppen/figures/piezo-atoms} + \begin{tabular}{c |c} + \subfigure[][\label{fig:punktgruppen:atoms-piezo}]{\includegraphics{papers/punktgruppen/figures/atoms-piezo-still}} & + \subfigure[][\label{fig:punktgruppen:atoms-grid}]{\includegraphics{papers/punktgruppen/figures/atoms-grid-still}} \\ + \subfigure[][\label{fig:punktgruppen:atoms-piezo-fv}]{\includegraphics{papers/punktgruppen/figures/atoms-piezo-force-vertical}} + \hspace{2mm} + \subfigure[][\label{fig:punktgruppen:atoms-piezo-fh}]{\includegraphics{papers/punktgruppen/figures/atoms-piezo-force-horizontal}} + \hspace{3mm} & \hspace{3mm} + \subfigure[][\label{fig:punktgruppen:atoms-grid-f}]{\includegraphics{papers/punktgruppen/figures/atoms-grid-force}} \\ + \end{tabular} \caption{ Kristallstrukturen mit und ohne piezoelektrischer Eigenschaft. - \texttt{TODO: adapt figure for paper with subfigure markers.} } \label{fig:punktgruppen:atomPiezo} \end{figure} @@ -32,19 +39,15 @@ Die Polarisation resultiert über eine gesamte Oberfläche eines Kristalles, ent Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise Positive Ionen und blaue negative Ionen repräsentieren. %liste oder anderes format?.. -Struktur$(a)$ zeigt ein piezoelektrisches Material in Ruhe. Struktur $(b)$ ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. +Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil mitlleren Ladungsträger weiter auseinander gerdrückt werden. -Als hilfe zur Vorstellung kann man $(b)$ zwischen zwei leitende Platten setzen, -so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, -während sich die positiven Ionen weiter entfernen. -$(d)$ ist nicht piezoelektrisch. -Dies wird ersichtlich, wenn man $(d)$ unterdruck setzt und sich die Struktur zu $(e)$ verformt. -Setzt man $(e)$ gedanklich auch zwischen zwei leitende Platten scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden -und links umgekehrt. +Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. +\subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. +Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unterdruck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. +Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. Dies ist aber nicht mehr der Fall, wenn der Kristall nach oben und periodisch wiederholt. -Struktur $(c)$ zeigt $(a)$ in unter horizontaler Belastung. -Was in zwischen $(b)$ und $(c)$ zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, -im Gegensatz zu $(b)$. +Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. +Was in zwischen $(b)$ und $(c)$ zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu $(b)$. Daraus kann man schlissen, dass $(a)$ keine Rotationssymmetrie von $90^\circ$ besitzen kann, weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. Das Fehlen dieser Rotationssymmetrie kann mit betrachten von $(a)$ bestätigt werden. -- cgit v1.2.1 From a1284996aea194e255d8bd292874080bf2f3cc44 Mon Sep 17 00:00:00 2001 From: tim30b Date: Mon, 19 Jul 2021 23:27:52 +0200 Subject: Write schoenflies und minor fixes --- buch/papers/punktgruppen/piezo.tex | 31 +++++++++++++++++++------------ 1 file changed, 19 insertions(+), 12 deletions(-) (limited to 'buch/papers/punktgruppen/piezo.tex') diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 3c3957b..feac9e5 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -39,22 +39,30 @@ Die Polarisation resultiert über eine gesamte Oberfläche eines Kristalles, ent Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise Positive Ionen und blaue negative Ionen repräsentieren. %liste oder anderes format?.. -Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. +Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. +Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil mitlleren Ladungsträger weiter auseinander gerdrückt werden. -Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. +Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, +dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. \subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unterdruck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. -Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. -Dies ist aber nicht mehr der Fall, wenn der Kristall nach oben und periodisch wiederholt. +Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, +scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. +Dies ist aber nicht mehr der Fall, wenn die Struktur sich nach oben und unten periodisch wiederholt. Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. -Was in zwischen $(b)$ und $(c)$ zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu $(b)$. -Daraus kann man schlissen, dass $(a)$ keine Rotationssymmetrie von $90^\circ$ besitzen kann, weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. -Das Fehlen dieser Rotationssymmetrie kann mit betrachten von $(a)$ bestätigt werden. +Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, +ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, +im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. +Daraus kann man schlissen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von $90^\circ$ besitzen kann, +weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. +Das Fehlen dieser Rotationssymmetrie kann mit betrachten von \subref{fig:punktgruppen:atoms-piezo} bestätigt werden. -\subsection{Punktsymmetrie}\footnote{In der Literatur wird ein Punktsymmetrisches Kristallgitter oft als Kristallgitter mit Inversionszentrum bezeichnet.} -Piezoelektrische Kristalle können nicht Punktsymmetrisch sein. +\subsection{Punktsymmetrie} +Piezoelektrische Kristalle können nicht Punktsymmetrisch +\footnote{In der Literatur wird ein Punktsymmetrisches Kristallgitter oft als Kristallgitter mit Inversionszentrum bezeichnet.} sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. -Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst $(a)$ ein nicht Punktsymmetrischer Kristall mit einem Punktsymmetrischen $(d)$ verglichen worden. +Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht Punktsymmetrischer Kristall +mit einem Punktsymmetrischen \subref{fig:punktgruppen:atoms-grid}verglichen worden. Als vereinfachte Erklärung kann mann sich wieder das Bild vor augen führen, eines Kristalles, welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. Spiegelt man nun den Kristall um den Gitterpunkt in der mitte des Kristalles, so würden die negativen Ionen auf den Positiven auf der anderen seite landen, @@ -73,5 +81,4 @@ Sollten Sie also eines Tages in die Situation geraten, in welcher Sie zwei versc und ein piezoelektrisches Feuerzeug bauen müssen, wobei Sie aber wissen, dass einer eine Punktsymmetrie aufweist, versuche sie es mit dem anderen. -Ich muss aber anmerken, dass aus den $21$ möglichen Kristallsymmetrien ohne Punktsymmetrie einer nicht piezoelektrisch ist. -ein wenig glück brauchen Sie also immer noch. + -- cgit v1.2.1 From d35889ab0e806e4df7871b5a100fe4bb6c52282b Mon Sep 17 00:00:00 2001 From: tim30b Date: Tue, 20 Jul 2021 14:29:38 +0200 Subject: =?UTF-8?q?rewrite=20Sch=C3=B6nflies=20notation?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/punktgruppen/piezo.tex | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) (limited to 'buch/papers/punktgruppen/piezo.tex') diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index feac9e5..6defcdc 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -58,8 +58,7 @@ weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. Das Fehlen dieser Rotationssymmetrie kann mit betrachten von \subref{fig:punktgruppen:atoms-piezo} bestätigt werden. \subsection{Punktsymmetrie} -Piezoelektrische Kristalle können nicht Punktsymmetrisch -\footnote{In der Literatur wird ein Punktsymmetrisches Kristallgitter oft als Kristallgitter mit Inversionszentrum bezeichnet.} sein. +Piezoelektrische Kristalle können nicht Punktsymmetrisch sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht Punktsymmetrischer Kristall mit einem Punktsymmetrischen \subref{fig:punktgruppen:atoms-grid}verglichen worden. -- cgit v1.2.1