From 22d2b924b156f953409cd9f524501c7d71f7eb9b Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 27 Jul 2021 08:50:58 +0200 Subject: Some corrections from feedback --- buch/papers/punktgruppen/symmetry.tex | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) (limited to 'buch/papers/punktgruppen/symmetry.tex') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 0bb4aec..a5b2fe2 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -22,27 +22,29 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, der die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. -Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. +Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - \(g\) und \(h\) sein umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. + %% TODO + Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. - Alle möglichen Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. + Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. \(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Inverse anzuwenden). - Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, es wird aber auch oft als Multiplikation geschrieben. +%% TODO + Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B. durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. \begin{definition}[Zyklische Untergruppe, Erzeuger] - \(g\) sei ein Element einer Symmetriegruppe \(G\). + Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. \end{definition} @@ -51,7 +53,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Das bedeutet, dass \(G\) die Elemente \(a, aa, aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales Element \(\mathds{1} = aa^{-1}\) enthält. \end{beispiel} \begin{beispiel} - Als anschaulicheres Beispiel, können wir eine Zyklische Untergruppe des \(n\)-Gon formalisieren. + Als anschaulicheres Beispiel, können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren. Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ @@ -98,7 +100,7 @@ Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es Symmetrien gibt, \subsection{Algebraische Symmetrien} Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich möglich ist, Gleichungen zu schreiben. -Die anschliesende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. +Die anschliessende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. Die Antwort lautet natürlich ja. Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \begin{definition}[Gruppenhomomorphismus] -- cgit v1.2.1 From a69eeb70b01b71089c31fb23654d38898ae26f44 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 28 Jul 2021 18:06:44 +0200 Subject: Fix symmetry paragraph and schonflies symbols --- buch/papers/punktgruppen/symmetry.tex | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) (limited to 'buch/papers/punktgruppen/symmetry.tex') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index a5b2fe2..0805d8b 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -28,16 +28,15 @@ Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-examp Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - %% TODO - Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. + Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen, sogenannte Symmetrieoperationen. Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. -\(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Inverse anzuwenden). -%% TODO +Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. +Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inverse anzuwenden. Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B. -- cgit v1.2.1 From f2fde7d2b5abf7c11cd7dc1535b0db64a2e84ffd Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 29 Jul 2021 09:42:42 +0200 Subject: rewrite small things in intro & symmetry --- buch/papers/punktgruppen/symmetry.tex | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) (limited to 'buch/papers/punktgruppen/symmetry.tex') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 0805d8b..6aeeb85 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -22,20 +22,20 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, der die Form unverändert lassen. +Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen, sogenannte Symmetrieoperationen. + Seien \(g\) und \(h\) umkehrbare Operationen, sogenannte Symmetrieoperationen, die ein mathematisches Objekt unverändert lassen. Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. -Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. +Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. % intuitiv weglassen oder anstelle sinnbildlich Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inverse anzuwenden. Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. @@ -64,15 +64,16 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine In ähnlicher Weise, aber weniger interessant enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). \end{beispiel} -Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystemen +Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystem komplexere Strukturen aufbauen. +%TODO kontroliere alle erzeugendensystem ich glaube es hatt noch en fall fehler ich weiss nicht wie das wort genau definiert ist \begin{definition}[Erzeugendensysteme] Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. - Da es mehrere Erzeuger gibt, müssen auch die sogenannte Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. + Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. - Die erzeugende Elementen zusammen mit der Definitionsgleichungen bauen ein Erzeugendensysteme. + Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensysteme. \end{definition} \begin{beispiel} Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, dass wir die Operationen \(r\) und \(\sigma\) kombinieren. -- cgit v1.2.1 From caea2650f150ddafa73b86885bcc9d759dded9a8 Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 29 Jul 2021 10:51:51 +0200 Subject: fix? Erzeugendensystem --- buch/papers/punktgruppen/symmetry.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch/papers/punktgruppen/symmetry.tex') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 6aeeb85..2067663 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -67,13 +67,13 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystem komplexere Strukturen aufbauen. -%TODO kontroliere alle erzeugendensystem ich glaube es hatt noch en fall fehler ich weiss nicht wie das wort genau definiert ist -\begin{definition}[Erzeugendensysteme] +%@Naoki Are you ok with my grammar fixes I'm not 101% shore how to use the word Erzeugendensystem? +\begin{definition}[Erzeugendensystem] Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. - Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensysteme. + Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensystem. \end{definition} \begin{beispiel} Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, dass wir die Operationen \(r\) und \(\sigma\) kombinieren. -- cgit v1.2.1