From 5aba69d709332033fe6d90b0c8fdc502d6eb208f Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Mon, 12 Jul 2021 22:23:53 +0200 Subject: Change arrow style in tikz figures --- .../punktgruppen/figures/combine-symmetries.pdf | Bin 14414 -> 14372 bytes buch/papers/punktgruppen/figures/lattice.pdf | Bin 27886 -> 27858 bytes buch/papers/punktgruppen/figures/piezo-atoms.pdf | Bin 35693 -> 35662 bytes buch/papers/punktgruppen/figures/piezo.pdf | Bin 16865 -> 16845 bytes buch/papers/punktgruppen/figures/projections.pdf | Bin 27953 -> 27953 bytes .../punktgruppen/figures/symmetric-shapes.pdf | Bin 12790 -> 15846 bytes .../papers/punktgruppen/tikz/combine-symmetries.tex | 1 + buch/papers/punktgruppen/tikz/lattice.tex | 13 +++++++------ buch/papers/punktgruppen/tikz/piezo-atoms.tex | 1 + buch/papers/punktgruppen/tikz/piezo.tex | 4 +++- buch/papers/punktgruppen/tikz/projections.tex | 1 + buch/papers/punktgruppen/tikz/symmetric-shapes.tex | 1 + 12 files changed, 14 insertions(+), 7 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/figures/combine-symmetries.pdf b/buch/papers/punktgruppen/figures/combine-symmetries.pdf index 13f7330..31d2a2e 100644 Binary files a/buch/papers/punktgruppen/figures/combine-symmetries.pdf and b/buch/papers/punktgruppen/figures/combine-symmetries.pdf differ diff --git a/buch/papers/punktgruppen/figures/lattice.pdf b/buch/papers/punktgruppen/figures/lattice.pdf index 6565be5..4436cdc 100644 Binary files a/buch/papers/punktgruppen/figures/lattice.pdf and b/buch/papers/punktgruppen/figures/lattice.pdf differ diff --git a/buch/papers/punktgruppen/figures/piezo-atoms.pdf b/buch/papers/punktgruppen/figures/piezo-atoms.pdf index 63da7a9..17fb179 100644 Binary files a/buch/papers/punktgruppen/figures/piezo-atoms.pdf and b/buch/papers/punktgruppen/figures/piezo-atoms.pdf differ diff --git a/buch/papers/punktgruppen/figures/piezo.pdf b/buch/papers/punktgruppen/figures/piezo.pdf index ca6192b..e0d7db4 100644 Binary files a/buch/papers/punktgruppen/figures/piezo.pdf and b/buch/papers/punktgruppen/figures/piezo.pdf differ diff --git a/buch/papers/punktgruppen/figures/projections.pdf b/buch/papers/punktgruppen/figures/projections.pdf index c9369b2..e7f8f86 100644 Binary files a/buch/papers/punktgruppen/figures/projections.pdf and b/buch/papers/punktgruppen/figures/projections.pdf differ diff --git a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf index 0b3ba54..e4539a5 100644 Binary files a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf and b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf differ diff --git a/buch/papers/punktgruppen/tikz/combine-symmetries.tex b/buch/papers/punktgruppen/tikz/combine-symmetries.tex index 84e0a76..f4ac52c 100644 --- a/buch/papers/punktgruppen/tikz/combine-symmetries.tex +++ b/buch/papers/punktgruppen/tikz/combine-symmetries.tex @@ -13,6 +13,7 @@ \begin{document} \begin{tikzpicture}[ + >=latex, dot/.style = { draw, circle, thick, black, fill = gray!40!white, minimum size = 2mm, diff --git a/buch/papers/punktgruppen/tikz/lattice.tex b/buch/papers/punktgruppen/tikz/lattice.tex index 9c05af3..391ef20 100644 --- a/buch/papers/punktgruppen/tikz/lattice.tex +++ b/buch/papers/punktgruppen/tikz/lattice.tex @@ -13,12 +13,13 @@ \begin{document} \begin{tikzpicture}[ - dot/.style = { - draw, circle, thick, black, fill = gray!40!white, - minimum size = 2mm, - inner sep = 0pt, - outer sep = 1mm, - }, + >=latex, + dot/.style = { + draw, circle, thick, black, fill = gray!40!white, + minimum size = 2mm, + inner sep = 0pt, + outer sep = 1mm, + }, ] \begin{scope} diff --git a/buch/papers/punktgruppen/tikz/piezo-atoms.tex b/buch/papers/punktgruppen/tikz/piezo-atoms.tex index 82a2710..1811392 100644 --- a/buch/papers/punktgruppen/tikz/piezo-atoms.tex +++ b/buch/papers/punktgruppen/tikz/piezo-atoms.tex @@ -13,6 +13,7 @@ \begin{document} \begin{tikzpicture}[ + >=latex, node distance = 2mm, charge/.style = { circle, draw = black, thick, diff --git a/buch/papers/punktgruppen/tikz/piezo.tex b/buch/papers/punktgruppen/tikz/piezo.tex index 1d16ab7..736dbad 100644 --- a/buch/papers/punktgruppen/tikz/piezo.tex +++ b/buch/papers/punktgruppen/tikz/piezo.tex @@ -12,7 +12,9 @@ \usetikzlibrary{calc} \begin{document} -\begin{tikzpicture} +\begin{tikzpicture}[ + >=latex, + ] \begin{scope}[ node distance = 0cm ] diff --git a/buch/papers/punktgruppen/tikz/projections.tex b/buch/papers/punktgruppen/tikz/projections.tex index a763e77..64ab468 100644 --- a/buch/papers/punktgruppen/tikz/projections.tex +++ b/buch/papers/punktgruppen/tikz/projections.tex @@ -13,6 +13,7 @@ \begin{document} \begin{tikzpicture}[ + >=latex, classcirc/.style = { draw = gray, thick, circle, minimum size = 12mm, diff --git a/buch/papers/punktgruppen/tikz/symmetric-shapes.tex b/buch/papers/punktgruppen/tikz/symmetric-shapes.tex index b2c051f..688fb61 100644 --- a/buch/papers/punktgruppen/tikz/symmetric-shapes.tex +++ b/buch/papers/punktgruppen/tikz/symmetric-shapes.tex @@ -14,6 +14,7 @@ \begin{document} \begin{tikzpicture}[ + >=latex, node distance = 2cm, shapetheme/.style = { very thick, draw = black, fill = magenta!20!white, -- cgit v1.2.1 From bf17b6c5ecf720f5db68889be8bda10130004121 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 14 Jul 2021 22:34:08 +0200 Subject: Adapt figures and fix typos --- buch/papers/punktgruppen/Makefile | 6 ++- buch/papers/punktgruppen/crystals.tex | 4 +- .../punktgruppen/figures/atoms-grid-force.pdf | Bin 0 -> 1496 bytes .../punktgruppen/figures/atoms-grid-still.pdf | Bin 0 -> 1307 bytes .../figures/atoms-piezo-force-horizontal.pdf | Bin 0 -> 15334 bytes .../figures/atoms-piezo-force-vertical.pdf | Bin 0 -> 15377 bytes .../punktgruppen/figures/atoms-piezo-force.pdf | Bin 0 -> 15377 bytes .../punktgruppen/figures/atoms-piezo-still.pdf | Bin 0 -> 1643 bytes .../punktgruppen/figures/combine-symmetries.pdf | Bin 14372 -> 14372 bytes buch/papers/punktgruppen/figures/lattice.pdf | Bin 27858 -> 27849 bytes buch/papers/punktgruppen/figures/piezo-atoms.pdf | Bin 35662 -> 0 bytes buch/papers/punktgruppen/figures/piezo.pdf | Bin 16845 -> 16842 bytes buch/papers/punktgruppen/figures/projections.pdf | Bin 27953 -> 27953 bytes .../punktgruppen/figures/symmetric-shapes.pdf | Bin 15846 -> 15846 bytes buch/papers/punktgruppen/piezo.tex | 29 ++++++------ buch/papers/punktgruppen/tikz/atoms-grid-force.tex | 42 +++++++++++++++++ buch/papers/punktgruppen/tikz/atoms-grid-still.tex | 33 +++++++++++++ .../tikz/atoms-piezo-force-horizontal.tex | 47 +++++++++++++++++++ .../tikz/atoms-piezo-force-vertical.tex | 52 +++++++++++++++++++++ .../papers/punktgruppen/tikz/atoms-piezo-still.tex | 34 ++++++++++++++ .../punktgruppen/tikz/combine-symmetries.tex | 2 +- buch/papers/punktgruppen/tikz/lattice.tex | 4 +- buch/papers/punktgruppen/tikz/piezo.tex | 4 +- 23 files changed, 235 insertions(+), 22 deletions(-) create mode 100644 buch/papers/punktgruppen/figures/atoms-grid-force.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-grid-still.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-force.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-still.pdf delete mode 100644 buch/papers/punktgruppen/figures/piezo-atoms.pdf create mode 100644 buch/papers/punktgruppen/tikz/atoms-grid-force.tex create mode 100644 buch/papers/punktgruppen/tikz/atoms-grid-still.tex create mode 100644 buch/papers/punktgruppen/tikz/atoms-piezo-force-horizontal.tex create mode 100644 buch/papers/punktgruppen/tikz/atoms-piezo-force-vertical.tex create mode 100644 buch/papers/punktgruppen/tikz/atoms-piezo-still.tex (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/Makefile b/buch/papers/punktgruppen/Makefile index f92dc95..47affeb 100644 --- a/buch/papers/punktgruppen/Makefile +++ b/buch/papers/punktgruppen/Makefile @@ -11,9 +11,13 @@ SOURCES := \ symmetry.tex TIKZFIGURES := \ + tikz/atoms-grid-still.tex \ + tikz/atoms-grid-force.tex \ + tikz/atoms-piezo-still.tex \ + tikz/atoms-piezo-force-vertical.tex \ + tikz/atoms-piezo-force-horizontal.tex \ tikz/combine-symmetries.tex \ tikz/lattice.tex \ - tikz/piezo-atoms.tex \ tikz/piezo.tex \ tikz/projections.tex \ tikz/symmetric-shapes.tex diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 1aec16f..abd0c27 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -12,7 +12,6 @@ Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. \includegraphics[]{papers/punktgruppen/figures/lattice} \caption{ Zweidimensionales Kristallgitter. - \texttt{TODO: make wider and shorter} \label{fig:punktgruppen:lattice} } \end{figure} @@ -55,7 +54,6 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \includegraphics[]{papers/punktgruppen/figures/combine-symmetries} \caption{ Translations und Rotationssymmetrisches Kristallgitter - \texttt{TODO: make wider and change color (yellow)} } \label{fig:punktgruppen:rot-geometry} \end{figure} @@ -97,7 +95,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangieren soll. Zusätzlich können wir den Sinusterm vereinfachen. \[ - n = 1 - 2\cos\alpha + n = 1 - 2\cos\alpha \qquad \alpha = \cos^{-1}\left(\frac{1-n}{2}\right) \] Dies schränkt die möglichen Rotationssymmetrien auf diff --git a/buch/papers/punktgruppen/figures/atoms-grid-force.pdf b/buch/papers/punktgruppen/figures/atoms-grid-force.pdf new file mode 100644 index 0000000..0b3e084 Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-grid-force.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-grid-still.pdf b/buch/papers/punktgruppen/figures/atoms-grid-still.pdf new file mode 100644 index 0000000..d707258 Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-grid-still.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf new file mode 100644 index 0000000..09ed727 Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf new file mode 100644 index 0000000..ab2996f Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force.pdf new file mode 100644 index 0000000..456eec9 Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-piezo-force.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf new file mode 100644 index 0000000..9a888d7 Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf differ diff --git a/buch/papers/punktgruppen/figures/combine-symmetries.pdf b/buch/papers/punktgruppen/figures/combine-symmetries.pdf index 31d2a2e..12a57ba 100644 Binary files a/buch/papers/punktgruppen/figures/combine-symmetries.pdf and b/buch/papers/punktgruppen/figures/combine-symmetries.pdf differ diff --git a/buch/papers/punktgruppen/figures/lattice.pdf b/buch/papers/punktgruppen/figures/lattice.pdf index 4436cdc..803da2b 100644 Binary files a/buch/papers/punktgruppen/figures/lattice.pdf and b/buch/papers/punktgruppen/figures/lattice.pdf differ diff --git a/buch/papers/punktgruppen/figures/piezo-atoms.pdf b/buch/papers/punktgruppen/figures/piezo-atoms.pdf deleted file mode 100644 index 17fb179..0000000 Binary files a/buch/papers/punktgruppen/figures/piezo-atoms.pdf and /dev/null differ diff --git a/buch/papers/punktgruppen/figures/piezo.pdf b/buch/papers/punktgruppen/figures/piezo.pdf index e0d7db4..e0f5450 100644 Binary files a/buch/papers/punktgruppen/figures/piezo.pdf and b/buch/papers/punktgruppen/figures/piezo.pdf differ diff --git a/buch/papers/punktgruppen/figures/projections.pdf b/buch/papers/punktgruppen/figures/projections.pdf index e7f8f86..828f03c 100644 Binary files a/buch/papers/punktgruppen/figures/projections.pdf and b/buch/papers/punktgruppen/figures/projections.pdf differ diff --git a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf index e4539a5..c5e42e7 100644 Binary files a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf and b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf differ diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index e6b595a..3c3957b 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -19,10 +19,17 @@ Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für \begin{figure} \centering - \includegraphics[]{papers/punktgruppen/figures/piezo-atoms} + \begin{tabular}{c |c} + \subfigure[][\label{fig:punktgruppen:atoms-piezo}]{\includegraphics{papers/punktgruppen/figures/atoms-piezo-still}} & + \subfigure[][\label{fig:punktgruppen:atoms-grid}]{\includegraphics{papers/punktgruppen/figures/atoms-grid-still}} \\ + \subfigure[][\label{fig:punktgruppen:atoms-piezo-fv}]{\includegraphics{papers/punktgruppen/figures/atoms-piezo-force-vertical}} + \hspace{2mm} + \subfigure[][\label{fig:punktgruppen:atoms-piezo-fh}]{\includegraphics{papers/punktgruppen/figures/atoms-piezo-force-horizontal}} + \hspace{3mm} & \hspace{3mm} + \subfigure[][\label{fig:punktgruppen:atoms-grid-f}]{\includegraphics{papers/punktgruppen/figures/atoms-grid-force}} \\ + \end{tabular} \caption{ Kristallstrukturen mit und ohne piezoelektrischer Eigenschaft. - \texttt{TODO: adapt figure for paper with subfigure markers.} } \label{fig:punktgruppen:atomPiezo} \end{figure} @@ -32,19 +39,15 @@ Die Polarisation resultiert über eine gesamte Oberfläche eines Kristalles, ent Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise Positive Ionen und blaue negative Ionen repräsentieren. %liste oder anderes format?.. -Struktur$(a)$ zeigt ein piezoelektrisches Material in Ruhe. Struktur $(b)$ ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. +Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil mitlleren Ladungsträger weiter auseinander gerdrückt werden. -Als hilfe zur Vorstellung kann man $(b)$ zwischen zwei leitende Platten setzen, -so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, -während sich die positiven Ionen weiter entfernen. -$(d)$ ist nicht piezoelektrisch. -Dies wird ersichtlich, wenn man $(d)$ unterdruck setzt und sich die Struktur zu $(e)$ verformt. -Setzt man $(e)$ gedanklich auch zwischen zwei leitende Platten scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden -und links umgekehrt. +Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. +\subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. +Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unterdruck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. +Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. Dies ist aber nicht mehr der Fall, wenn der Kristall nach oben und periodisch wiederholt. -Struktur $(c)$ zeigt $(a)$ in unter horizontaler Belastung. -Was in zwischen $(b)$ und $(c)$ zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, -im Gegensatz zu $(b)$. +Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. +Was in zwischen $(b)$ und $(c)$ zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu $(b)$. Daraus kann man schlissen, dass $(a)$ keine Rotationssymmetrie von $90^\circ$ besitzen kann, weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. Das Fehlen dieser Rotationssymmetrie kann mit betrachten von $(a)$ bestätigt werden. diff --git a/buch/papers/punktgruppen/tikz/atoms-grid-force.tex b/buch/papers/punktgruppen/tikz/atoms-grid-force.tex new file mode 100644 index 0000000..05742cf --- /dev/null +++ b/buch/papers/punktgruppen/tikz/atoms-grid-force.tex @@ -0,0 +1,42 @@ +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} + +\usetikzlibrary{arrows} +\usetikzlibrary{intersections} +\usetikzlibrary{math} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.misc} +\usetikzlibrary{calc} + +\begin{document} + \begin{tikzpicture}[ + >=latex, + node distance = 2mm, + charge/.style = { + circle, draw = black, thick, + minimum size = 5mm + }, + positive/.style = { fill = red!50 }, + negative/.style = { fill = blue!50 }, + ] + + \matrix[nodes = { charge }, row sep = 5mm, column sep = 1cm] { + \node[positive] (NW) {}; & \node[negative] (N) {}; & \node [positive] (NE) {}; \\ + \node[negative] (W) {}; & \node[positive] {}; & \node [negative] (E) {}; \\ + \node[positive] (SW) {}; & \node[negative] (S) {}; & \node [positive] (SE) {}; \\ + }; + + \foreach \d in {NW, N, NE} { + \draw[orange, very thick, <-] (\d) to ++(0,.7); + } + + \foreach \d in {SW, S, SE} { + \draw[orange, very thick, <-] (\d) to ++(0,-.7); + } + + \draw[gray, dashed] (W) to (N) to (E) to (S) to (W); + \end{tikzpicture} +\end{document} diff --git a/buch/papers/punktgruppen/tikz/atoms-grid-still.tex b/buch/papers/punktgruppen/tikz/atoms-grid-still.tex new file mode 100644 index 0000000..4e43856 --- /dev/null +++ b/buch/papers/punktgruppen/tikz/atoms-grid-still.tex @@ -0,0 +1,33 @@ +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} + +\usetikzlibrary{arrows} +\usetikzlibrary{intersections} +\usetikzlibrary{math} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.misc} +\usetikzlibrary{calc} + +\begin{document} + \begin{tikzpicture}[ + >=latex, + node distance = 2mm, + charge/.style = { + circle, draw = black, thick, + minimum size = 5mm + }, + positive/.style = { fill = red!50 }, + negative/.style = { fill = blue!50 }, + ] + + \matrix[nodes = { charge }, row sep = 8mm, column sep = 8mm] { + \node[positive] {}; & \node[negative] (N) {}; & \node [positive] {}; \\ + \node[negative] (W) {}; & \node[positive] {}; & \node [negative] (E) {}; \\ + \node[positive] {}; & \node[negative] (S) {}; & \node [positive] {}; \\ + }; + \draw[gray, dashed] (W) to (N) to (E) to (S) to (W); + \end{tikzpicture} +\end{document} diff --git a/buch/papers/punktgruppen/tikz/atoms-piezo-force-horizontal.tex b/buch/papers/punktgruppen/tikz/atoms-piezo-force-horizontal.tex new file mode 100644 index 0000000..e4c3f93 --- /dev/null +++ b/buch/papers/punktgruppen/tikz/atoms-piezo-force-horizontal.tex @@ -0,0 +1,47 @@ +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} + +\usetikzlibrary{arrows} +\usetikzlibrary{intersections} +\usetikzlibrary{math} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.misc} +\usetikzlibrary{calc} + +\begin{document} + \begin{tikzpicture}[ + >=latex, + node distance = 2mm, + charge/.style = { + circle, draw = black, thick, + minimum size = 5mm + }, + positive/.style = { fill = red!50 }, + negative/.style = { fill = blue!50 }, + ] + + \node[charge, positive, yshift= 2.5mm] (C1) at ( 60:1.5cm) {}; + \node[charge, negative, yshift= 2.5mm] (C2) at (120:1.5cm) {}; + \node[charge, positive, xshift= 2.5mm] (C3) at (180:1.5cm) {}; + \node[charge, negative, yshift=-2.5mm] (C4) at (240:1.5cm) {}; + \node[charge, positive, yshift=-2.5mm] (C5) at (300:1.5cm) {}; + \node[charge, negative, xshift=-2.5mm] (C6) at (360:1.5cm) {}; + + \draw[black] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); + % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); + + \draw[orange, very thick, <-] (C6) to ++(.7,0); + \draw[orange, very thick, <-] (C3) to ++(-.7,0); + + \node[black] (E) {\(\vec{E}_p\)}; + \begin{scope}[node distance = .5mm] + \node[blue!50, right = of E] {\(-\)}; + \node[red!50, left = of E] {\(+\)}; + \end{scope} + % \draw[gray, thick, dotted] (E) to ++(0,2); + % \draw[gray, thick, dotted] (E) to ++(0,-2); + \end{tikzpicture} +\end{document} diff --git a/buch/papers/punktgruppen/tikz/atoms-piezo-force-vertical.tex b/buch/papers/punktgruppen/tikz/atoms-piezo-force-vertical.tex new file mode 100644 index 0000000..892ab42 --- /dev/null +++ b/buch/papers/punktgruppen/tikz/atoms-piezo-force-vertical.tex @@ -0,0 +1,52 @@ +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} + +\usetikzlibrary{arrows} +\usetikzlibrary{intersections} +\usetikzlibrary{math} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.misc} +\usetikzlibrary{calc} + +\begin{document} + \begin{tikzpicture}[ + >=latex, + node distance = 2mm, + charge/.style = { + circle, draw = black, thick, + minimum size = 5mm + }, + positive/.style = { fill = red!50 }, + negative/.style = { fill = blue!50 }, + ] + + \node[charge, positive, yshift=-2.5mm] (C1) at ( 60:1.5cm) {}; + \node[charge, negative, yshift=-2.5mm] (C2) at (120:1.5cm) {}; + \node[charge, positive, xshift=-2.5mm] (C3) at (180:1.5cm) {}; + \node[charge, negative, yshift= 2.5mm] (C4) at (240:1.5cm) {}; + \node[charge, positive, yshift= 2.5mm] (C5) at (300:1.5cm) {}; + \node[charge, negative, xshift= 2.5mm] (C6) at (360:1.5cm) {}; + + \draw[black] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); + % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); + + \foreach \d in {C1, C2} { + \draw[orange, very thick, <-] (\d) to ++(0,.7); + } + + \foreach \d in {C4, C5} { + \draw[orange, very thick, <-] (\d) to ++(0,-.7); + } + + \node[black] (E) {\(\vec{E}_p\)}; + \begin{scope}[node distance = .5mm] + \node[red!50, right = of E] {\(+\)}; + \node[blue!50, left = of E] {\(-\)}; + \end{scope} + % \draw[gray, thick, dotted] (E) to ++(0,2); + % \draw[gray, thick, dotted] (E) to ++(0,-2); + \end{tikzpicture} +\end{document} diff --git a/buch/papers/punktgruppen/tikz/atoms-piezo-still.tex b/buch/papers/punktgruppen/tikz/atoms-piezo-still.tex new file mode 100644 index 0000000..2eb78ba --- /dev/null +++ b/buch/papers/punktgruppen/tikz/atoms-piezo-still.tex @@ -0,0 +1,34 @@ +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} + +\usetikzlibrary{arrows} +\usetikzlibrary{intersections} +\usetikzlibrary{math} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.misc} +\usetikzlibrary{calc} + +\begin{document} + \begin{tikzpicture}[ + >=latex, + node distance = 2mm, + charge/.style = { + circle, draw = black, thick, + minimum size = 5mm + }, + positive/.style = { fill = red!50 }, + negative/.style = { fill = blue!50 }, + ] + + \foreach \x/\t [count=\i] in {60/positive, 120/negative, 180/positive, 240/negative, 300/positive, 360/negative} { + \node[charge, \t] (C\i) at (\x:1.5cm) {}; + } + + \draw[black] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); + \node[circle, draw=gray, fill=gray, outer sep = 0, inner sep = 0, minimum size = 3mm] {}; + % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); + \end{tikzpicture} +\end{document} diff --git a/buch/papers/punktgruppen/tikz/combine-symmetries.tex b/buch/papers/punktgruppen/tikz/combine-symmetries.tex index f4ac52c..fa669ae 100644 --- a/buch/papers/punktgruppen/tikz/combine-symmetries.tex +++ b/buch/papers/punktgruppen/tikz/combine-symmetries.tex @@ -46,7 +46,7 @@ (A2) ++(-.5,0) arc (180:60:.5); \draw[red!80!black, dashed, thick, ->] (A2) to (B2); - \draw[yellow!50!orange, thick, ->] + \draw[cyan!40!blue, thick, ->] (B1) to node[above, midway] {\(\vec{Q}'\)} (B2); \draw[gray, dashed, thick] (A1) to (A1 |- B1) node (Xl) {}; diff --git a/buch/papers/punktgruppen/tikz/lattice.tex b/buch/papers/punktgruppen/tikz/lattice.tex index 391ef20..a6b1876 100644 --- a/buch/papers/punktgruppen/tikz/lattice.tex +++ b/buch/papers/punktgruppen/tikz/lattice.tex @@ -23,14 +23,14 @@ ] \begin{scope} - \clip (-2,-2) rectangle (3,4); + \clip (-2,-2) rectangle (7,2); \foreach \y in {-7,-6,...,7} { \foreach \x in {-7,-6,...,7} { \node[dot, xshift=3mm*\y] (N\x\y) at (\x, \y) {}; } } \end{scope} - \draw[black, thick] (-2, -2) rectangle (3,4); + \draw[black, thick] (-2, -2) rectangle (7,2); \draw[red!80!black, thick, ->] (N00) to node[midway, below] {\(\vec{a}_1\)} (N10); diff --git a/buch/papers/punktgruppen/tikz/piezo.tex b/buch/papers/punktgruppen/tikz/piezo.tex index 736dbad..56e9463 100644 --- a/buch/papers/punktgruppen/tikz/piezo.tex +++ b/buch/papers/punktgruppen/tikz/piezo.tex @@ -19,7 +19,7 @@ node distance = 0cm ] \node[ - rectangle, fill = gray!60!white, + rectangle, fill = gray!20!white, minimum width = 3cm, minimum height = 2cm, ] (body) {\(\vec{E}_p = \vec{0}\)}; @@ -45,7 +45,7 @@ xshift = 7cm ] \node[ - rectangle, fill = gray!40!white, + rectangle, fill = gray!20!white, minimum width = 3cm, minimum height = 1.5cm, ] (body) {\(\vec{E}_p = \vec{0}\)}; -- cgit v1.2.1 From 4f7ee11ffe36d2414a71698fbaee603342977186 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sat, 17 Jul 2021 18:03:18 +0200 Subject: Fix typos in intro --- buch/papers/punktgruppen/intro.tex | 21 ++++++++++----------- 1 file changed, 10 insertions(+), 11 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 24212e7..2e15442 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,14 +1,13 @@ \section{Einleitung} Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wen man nur die mathematischen Betrachtunngsweisen berüksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. -In diesem Kapitel ist daher der Fokus ``nur'' auf die Symmetrie gelegt. -Zu beginn werden wir zeigen was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. -Die vorgestellten Symmetrien sind äusserst gut geeignet um die Grundeigenschaften eines Kristalles zu Beschreiben. -Mit etwas kiffligen geometrischen Überlegungen kann man zeigen wass in der Welt der Kristallographie alles möglich ist oder nicht. -Die Einschränkungen sind durchaus wilkommen, dank ihnen halten sich die möglichen Kristallgitter in Grenzen und Lassen sich Kategorisieren. -Kategorien sind nicht nur für einen besseren Überblich nützlich, sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen, als spannendes Beispiel: Die Piezoelektrizität. -Die Piezoelektrizität ist vielleicht noch nicht jedem bekannt, sie versteckt sich aber in diversen Altagsgegenständen zum Beispiel sorgen sie in den meisten Feuerzeugen für die Zündung. -Ein Funken Interesse ist hoffentlich geweckt um sich mit dem scheinbar trivialen thema der Symmetrie auseinander zu setzten. - - +Auch wen man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen, sich mit Kristallen zu beschäftigen. +In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. +Zu Beginn werden wir zeigen was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. +Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalls zu beschreiben. +Mit etwas kniffligen geometrischen Überlegungen kann man zeigen was in der Welt der Kristallographie alles möglich ist oder nicht. +Die Einschränkungen sind durchaus willkommen, dank ihnen halten sich die möglichen Kristallgitter in Grenzen und lassen sich kategorisieren. +Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern man kann aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. +Die Piezoelektrizität ist vielleicht noch nicht jedem bekannt, sie versteckt sich aber in diversen Alltagsgegenständen zum Beispiel sorgen sie in den meisten Feuerzeugen für die Zündung. +Ein Funken Interesse ist hoffentlich geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. +%% vim:linebreak breakindent showbreak=.. spell spelllang=de: -- cgit v1.2.1 From a9b9236ce6ed9905b21e02ce6cf5c1b5bf19927f Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sun, 18 Jul 2021 10:59:30 +0200 Subject: Fix typos and suggested changes in crystals section --- buch/papers/punktgruppen/crystals.tex | 107 ++++++++++++++++------------------ 1 file changed, 51 insertions(+), 56 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index abd0c27..8c655e2 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -1,6 +1,6 @@ \section{Kristalle} %einleitung sollte noch an das ende von der Symmetrie angepasst werden -Unter dem Begriff Kristall sollte sich jeder ein Bild machen können. +Unter dem Begriff Kristall sollte sich jeder ein Bild machen können. Wir werden uns aber nicht auf sein Äusseres fokussieren, sondern was ihn im Inneren ausmacht. Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. \begin{definition}[Kristall] @@ -17,37 +17,33 @@ Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. \end{figure} \subsection{Kristallgitter} Ein zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattice}. -Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes gewählt und betrachten dies nur in Zwei Dimensionen. -Die eingezeichneten Vektoren $\vec{a}$ und $\vec{b}$ sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. -Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt -und um eine ganzzahlige Linearkombination von $\vec{a}$ und $\vec{b}$ verschoben, -endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. -Im Dreidimensionalen-Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor $\vec{c}$ also +Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes dargestellt und betrachten dies nur in zwei Dimensionen. +Die eingezeichneten Vektoren \(\vec{a}\) und \(\vec{b}\) sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. +Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}\) und \(\vec{b}\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. +Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{c}\) also \[ - \vec{r} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c} + \vec{r} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c} \] -erreicht werden sofern $\{n_1,n_2,n_3\} \in \mathbb{Z}$ sind. -Sind die Vektoren $\vec{a}$ , $\vec{b}$ , $\vec{c}$ gegeben , -ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. +erreicht werden sofern \(\{n_1,n_2,n_3\} \in \mathbb{Z}\) sind. +Sind die Vektoren \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) gegeben, ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. \subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. -Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, -da die Umgebungen aller Punkte Identisch sind. -Mit anderen worten: Jedes Kristallgitter $ G $ ist \emph{Translationssymmetrisch} in der Translation +Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, da die Umgebungen aller Punkte Identisch sind. +Mit anderen Worten: Jedes Kristallgitter \( G \) ist \emph{Translationssymmetrisch} in der Translation \[ - Q_i(G) = G + \vec{a_i} -\] wobei der Vektor $a_i$ ein Grundvektor sein muss. -Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, -können wir auch sagen, dass alle Verschiebungen um eine Linearkombination -der Vektoren $\vec{a}$ , $\vec{b}$ und $\vec{c}$ erlaubt sind oder kurz, um $\vec{r}$. -Verschiebungen um $\vec{r}$ bewirken demnach keine Veränderungen, -solange wir ein unendlich grosses Kristallgitter verschieben. + \vec{Q}_i(G) = G + \vec{a}_i, +\] +wobei der Vektor \(\vec{a}_i\) ein Grundvektor sein muss. +Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination der Vektoren \(\vec{a}\), \(\vec{b}\) und \(\vec{c}\) erlaubt sind oder kurz, um \(\vec{r}\). +Verschiebungen um \(\vec{r}\) bewirken demnach keine Veränderungen, solange wir ein unendlich grosses Kristallgitter verschieben. \subsection{Limitierte Kristallsymmetrien} Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet. - Was nicht direkt ersichtlich ist, ist das auch wenn die Grundvektoren frei gewählt werden können, - können nur Rotationssymmetrische Kristalle bestimmter Rotationswinkel erzeugt werden. + Was nicht direkt ersichtlich ist, ist das auch wenn die Grundvektoren frei gewählt werden können, können nur Rotationssymmetrische Kristalle bestimmter Rotationswinkel erzeugt werden. + + % Suggestion from Muller: + % dass nur ganz bestimmt Drehwinkel \"uberhaupt m\"oglich sind. \begin{figure} \centering @@ -58,50 +54,49 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \label{fig:punktgruppen:rot-geometry} \end{figure} - \subsubsection{Translationssymmetrie $Q$ in Kombination mit Rotationssymmetrie $C_\alpha$} % Müssen uns auf eine schreibweise für Symmetrie Operationen einigen oder sicher am Ende überprüfen + \subsubsection{Translationssymmetrie \(\vec{Q}\) in Kombination mit Rotationssymmetrie \(C_\alpha\)} % Müssen uns auf eine schreibweise für Symmetrie Operationen einigen oder sicher am Ende überprüfen In Abbildung \ref{fig:punktgruppen:rot-geometry} Sehen wir Gitterpunkte und deren Zusammenhänge. \begin{itemize} - \item $A$ ist unser erster Gitterpunkt. + \item \(A\) ist unser erster Gitterpunkt. - \item $A'$ ist gegeben, weil wir $A$ mit der Translation $Q$ um einen Grundvektor verschieben und wir wissen, - dass nach einer Translation wieder ein Gitterpunkt an der Verschobenen Stelle sein muss. - \item $B$ entsteht, weil wir die Rotationssymmetrie $C_\alpha$ auf den Punkt $A$ anwenden. - Dadurch dreht sich das ganze Gitter um den Winkel $\alpha$. - Für uns bedeutet dies lediglich, dass unser zweiter Punkt $A'$ abgedreht wird. - An der neuen Position von $A'$ muss also auch ein Punkt sein, um die Rotationssymmetrie zu erfüllen. - \item $B$ ist unser Name für diesen neuen Punkt. - Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir $C_\alpha$ auch auf $A'$ anwenden. - Also wenden wir $C_\alpha$ invertiert - \footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren. - Genauere Überlegungen hierzu werden dem Leser überlassen, da sich die Autoren nicht explizit mit dieser Frage Auseinander gesetzt haben.} - auch auf $A'$ an. - Dies dreht $A$ auf einen neuen Punkt. - \item $B'$ ist kein zufälliger Name für diesen neuen Punkt, denn wir wissen, dass zwischen allen Punkten eine Translationssymmetrie bestehen muss. - Die Translationssymmetrie zwischen $B$ und $B'$ ist hier als $Q'$ bezeichnet. + \item \(A'\) ist gegeben, weil wir \(A\) mit der Translation \(\vec{Q}\) um einen Grundvektor verschieben und wir wissen, dass nach einer Translation wieder ein Gitterpunkt an der verschobenen Stelle sein muss. + \item \(B\) entsteht, weil wir die Rotationssymmetrie \(C_\alpha\) auf den Punkt \(A\) anwenden. + Dadurch dreht sich das ganze Gitter um den Winkel \(\alpha\). + Für uns bedeutet dies lediglich, dass unser zweiter Punkt \(A'\) abgedreht wird. + An der neuen Position \(B\) von \(A'\) muss also auch ein Punkt des Gitters sein, um die Rotationssymmetrie zu erfüllen. + \item \(B\) ist unser Name für diesen neuen Punkt. + Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir \(C_\alpha\) auch auf \(A'\) anwenden. + Also wenden wir \(C_\alpha\) invertiert + \footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren. + Genauere Überlegungen hierzu werden dem Leser überlassen, da sich die Autoren nicht explizit mit dieser Frage Auseinander gesetzt haben.} + auch auf \(A'\) an. + Dies dreht \(A\) auf einen neuen Punkt. + \item \(B'\) ist kein zufälliger Name für diesen neuen Punkt, denn wir wissen, dass zwischen allen Punkten eine Translationssymmetrie bestehen muss. + Die Translationssymmetrie zwischen \(B\) und \(B'\) ist hier als \(\vec{Q}'\) bezeichnet. \end{itemize} Mit den gegebenen Punkten lassen sich geometrische Folgerungen ziehen. - Wir beginnen, indem wir die Länge der Translation $Q$ mit jener von $Q'$ vergleichen. - Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass $|Q| = |Q'|+ 2x$. - Ist $Q$ ein Grundvektor so muss $|Q'|$ ein ganzes vielfaches von $|Q|$ sein. Also + Wir beginnen, indem wir die Länge \(Q\) der Translation \(\vec{Q}\) mit jener von \(\vec{Q}'\) vergleichen. + Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q = Q' + 2x\). + Ist \(\vec{Q}\) ein Grundvektor so muss \(Q'\) ein ganzes vielfaches von \(Q\) sein. + Also \[ - |Q'| = n|Q| = |Q| + 2x + Q' = nQ = Q + 2x \] - Die Strecke $x$ lässt sich auch mit hilfe der Trigonometrie und dem angenommenen Rotationswinkel $\alpha$ ausdrücken: + Die Strecke \(x\) lässt sich auch mit hilfe der Trigonometrie und dem angenommenen Rotationswinkel \(\alpha\) ausdrücken: \[ - n|Q| = |Q| + 2|Q|\sin(\alpha - \pi/2) + nQ = Q + 2Q\sin(\alpha - \pi/2) \] - Wir können mit $|Q|$ dividieren um unabhängig von der Läge des Grundvektors zu werden, - was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangieren soll. + Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. Zusätzlich können wir den Sinusterm vereinfachen. \[ - n = 1 - 2\cos\alpha \qquad + n = 1 - 2\cos\alpha \quad\iff\quad \alpha = \cos^{-1}\left(\frac{1-n}{2}\right) \] Dies schränkt die möglichen Rotationssymmetrien auf - \[ + \( \alpha \in \left\{ 0^\circ, 60^\circ, 90^\circ, 120^\circ, 180^\circ\right\} - \] + \) ein. \begin{figure} @@ -114,13 +109,13 @@ ein. \subsection{Kristallklassen} Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. Mit weiteren ähnlichen überlegungen gezeigt werden kann, dass Kristalle im dreidimensionalen Raum -\footnote{Alle $17$ möglichen zweidimensionalen Symmetrien sind als Wandmustergruppen bekannt} -nur auf genau $32$ Arten punktsymmetrisch sein können. -Diese $32$ möglichen Punktsymmetrien scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. +\footnote{Alle \(17\) möglichen zweidimensionalen Symmetrien sind als Wandmustergruppen bekannt} +nur auf genau \(32\) Arten punktsymmetrisch sein können. +Diese \(32\) möglichen Punktsymmetrien scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. Eine mögliche Art, die Klassen zu benennen ist nacht dem Mathematiker Arthur Moritz Schönflies, welcher sich mit der Klasifizierung dieser Symmetrien auseinandergesetzt hat. Auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} sind die möglichen Punktsymmetrien mit deren Schönfliesnotation aufgelistet. -Als Darstellungsmethode wurde die stereographische Projektion gewählt, wobei $5$ Klassen aus Gründen der Überschaubarkeit nicht gezeichnet wurden. - +Als Darstellungsmethode wurde die stereographische Projektion gewählt, wobei \(5\) Klassen aus Gründen der Überschaubarkeit nicht gezeichnet wurden. +%% vim:spell spelllang=de showbreak=.. breakindent linebreak: -- cgit v1.2.1 From 4dd42de2dd28bbbdf7e08693719e9c43f9294348 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sun, 18 Jul 2021 11:00:07 +0200 Subject: Fix standalone makefile target --- buch/papers/punktgruppen/Makefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/Makefile b/buch/papers/punktgruppen/Makefile index 47affeb..98e7149 100644 --- a/buch/papers/punktgruppen/Makefile +++ b/buch/papers/punktgruppen/Makefile @@ -32,7 +32,7 @@ figures/%.pdf: tikz/%.tex pdflatex --output-directory=figures $< .PHONY: standalone -standalone: standalone.tex $(SOURCES) +standalone: standalone.tex $(SOURCES) $(FIGURES) mkdir -p standalone cd ../..; \ pdflatex \ -- cgit v1.2.1 From 32d6788d0f7b0b9120f4dc71d55b8bcaccf33fe5 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sun, 18 Jul 2021 11:09:14 +0200 Subject: Review crystal classes subsection and fix typos --- buch/papers/punktgruppen/crystals.tex | 19 ++++++++----------- 1 file changed, 8 insertions(+), 11 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 8c655e2..922afd9 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -32,9 +32,9 @@ Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigens Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, da die Umgebungen aller Punkte Identisch sind. Mit anderen Worten: Jedes Kristallgitter \( G \) ist \emph{Translationssymmetrisch} in der Translation \[ - \vec{Q}_i(G) = G + \vec{a}_i, + \vec{Q}(G) = G + \vec{a}, \] -wobei der Vektor \(\vec{a}_i\) ein Grundvektor sein muss. +wobei der Vektor \(\vec{a}\) ein Grundvektor sein muss. Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination der Vektoren \(\vec{a}\), \(\vec{b}\) und \(\vec{c}\) erlaubt sind oder kurz, um \(\vec{r}\). Verschiebungen um \(\vec{r}\) bewirken demnach keine Veränderungen, solange wir ein unendlich grosses Kristallgitter verschieben. @@ -77,7 +77,7 @@ Verschiebungen um \(\vec{r}\) bewirken demnach keine Veränderungen, solange wir \end{itemize} Mit den gegebenen Punkten lassen sich geometrische Folgerungen ziehen. Wir beginnen, indem wir die Länge \(Q\) der Translation \(\vec{Q}\) mit jener von \(\vec{Q}'\) vergleichen. - Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q = Q' + 2x\). + Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). Ist \(\vec{Q}\) ein Grundvektor so muss \(Q'\) ein ganzes vielfaches von \(Q\) sein. Also \[ @@ -107,15 +107,12 @@ ein. \end{figure} \subsection{Kristallklassen} -Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. -Mit weiteren ähnlichen überlegungen gezeigt werden kann, dass Kristalle im dreidimensionalen Raum -\footnote{Alle \(17\) möglichen zweidimensionalen Symmetrien sind als Wandmustergruppen bekannt} -nur auf genau \(32\) Arten punktsymmetrisch sein können. -Diese \(32\) möglichen Punktsymmetrien scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. -Eine mögliche Art, die Klassen zu benennen ist nacht dem Mathematiker Arthur Moritz Schönflies, -welcher sich mit der Klasifizierung dieser Symmetrien auseinandergesetzt hat. +Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind\footnote{Alle 17 möglichen zweidimensionalen Symmetrien sind als Wandmustergruppen bekannt}. +Mit weiteren ähnlichen \"Uberlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum nur auf genau 32 Arten punktsymmetrisch sein können. +Diese 32 möglichen Punktsymmetrien scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. +Eine mögliche Art, die Klassen zu benennen ist nach dem Mathematiker Arthur Moritz Schönflies, welcher sich mit der Klassifizierung dieser Symmetrien auseinandergesetzt hat. Auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} sind die möglichen Punktsymmetrien mit deren Schönfliesnotation aufgelistet. -Als Darstellungsmethode wurde die stereographische Projektion gewählt, wobei \(5\) Klassen aus Gründen der Überschaubarkeit nicht gezeichnet wurden. +Als Darstellungsmethode wurde die stereographische Projektion gewählt, wobei die gestrichelte Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. %% vim:spell spelllang=de showbreak=.. breakindent linebreak: -- cgit v1.2.1 From c6f44d256b3bf705b2bb13352cb01eda6a1bd961 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sun, 18 Jul 2021 11:20:54 +0200 Subject: Recompile figures --- .../punktgruppen/figures/atoms-grid-force.pdf | Bin 1496 -> 1496 bytes .../punktgruppen/figures/atoms-grid-still.pdf | Bin 1307 -> 1307 bytes .../figures/atoms-piezo-force-horizontal.pdf | Bin 15334 -> 12453 bytes .../figures/atoms-piezo-force-vertical.pdf | Bin 15377 -> 12490 bytes .../punktgruppen/figures/atoms-piezo-force.pdf | Bin 15377 -> 0 bytes .../punktgruppen/figures/atoms-piezo-still.pdf | Bin 1643 -> 1643 bytes .../punktgruppen/figures/combine-symmetries.pdf | Bin 14372 -> 12054 bytes buch/papers/punktgruppen/figures/lattice.pdf | Bin 27849 -> 25646 bytes buch/papers/punktgruppen/figures/piezo.pdf | Bin 16842 -> 14077 bytes buch/papers/punktgruppen/figures/projections.pdf | Bin 27953 -> 26440 bytes .../punktgruppen/figures/symmetric-shapes.pdf | Bin 15846 -> 12772 bytes 11 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-force.pdf (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/figures/atoms-grid-force.pdf b/buch/papers/punktgruppen/figures/atoms-grid-force.pdf index 0b3e084..f56be04 100644 Binary files a/buch/papers/punktgruppen/figures/atoms-grid-force.pdf and b/buch/papers/punktgruppen/figures/atoms-grid-force.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-grid-still.pdf b/buch/papers/punktgruppen/figures/atoms-grid-still.pdf index d707258..02aa67c 100644 Binary files a/buch/papers/punktgruppen/figures/atoms-grid-still.pdf and b/buch/papers/punktgruppen/figures/atoms-grid-still.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf index 09ed727..0514fb6 100644 Binary files a/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf and b/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf index ab2996f..486eab4 100644 Binary files a/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf and b/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force.pdf deleted file mode 100644 index 456eec9..0000000 Binary files a/buch/papers/punktgruppen/figures/atoms-piezo-force.pdf and /dev/null differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf index 9a888d7..c306143 100644 Binary files a/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf and b/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf differ diff --git a/buch/papers/punktgruppen/figures/combine-symmetries.pdf b/buch/papers/punktgruppen/figures/combine-symmetries.pdf index 12a57ba..002c0f8 100644 Binary files a/buch/papers/punktgruppen/figures/combine-symmetries.pdf and b/buch/papers/punktgruppen/figures/combine-symmetries.pdf differ diff --git a/buch/papers/punktgruppen/figures/lattice.pdf b/buch/papers/punktgruppen/figures/lattice.pdf index 803da2b..37a8ccf 100644 Binary files a/buch/papers/punktgruppen/figures/lattice.pdf and b/buch/papers/punktgruppen/figures/lattice.pdf differ diff --git a/buch/papers/punktgruppen/figures/piezo.pdf b/buch/papers/punktgruppen/figures/piezo.pdf index e0f5450..19142ad 100644 Binary files a/buch/papers/punktgruppen/figures/piezo.pdf and b/buch/papers/punktgruppen/figures/piezo.pdf differ diff --git a/buch/papers/punktgruppen/figures/projections.pdf b/buch/papers/punktgruppen/figures/projections.pdf index 828f03c..03fb004 100644 Binary files a/buch/papers/punktgruppen/figures/projections.pdf and b/buch/papers/punktgruppen/figures/projections.pdf differ diff --git a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf index c5e42e7..4684af7 100644 Binary files a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf and b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf differ -- cgit v1.2.1 From 353a32e07fdf128409c8894f723ff4c49bb9322a Mon Sep 17 00:00:00 2001 From: tim30b Date: Sun, 18 Jul 2021 21:38:59 +0200 Subject: =?UTF-8?q?apply=20m=C3=BCller=20correction=20in=20punktgruppen=20?= =?UTF-8?q?und=20Intro?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/punktgruppen/crystals.tex | 48 ++++++++++++++++++++--------------- buch/papers/punktgruppen/intro.tex | 29 ++++++++++++++------- 2 files changed, 48 insertions(+), 29 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 1aec16f..76b3f72 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -17,28 +17,28 @@ Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. } \end{figure} \subsection{Kristallgitter} -Ein zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattice}. -Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes gewählt und betrachten dies nur in Zwei Dimensionen. +Ein zweidimensionales Beispiel eines solchen Muster ist in Abbildung \ref{fig:punktgruppen:lattice} dargestellt. +Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes gewählt und betrachten dies nur in zwei Dimensionen. Die eingezeichneten Vektoren $\vec{a}$ und $\vec{b}$ sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von $\vec{a}$ und $\vec{b}$ verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. -Im Dreidimensionalen-Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor $\vec{c}$ also +Im dreidimensionalen-Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor $\vec{c}$ also \[ \vec{r} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c} \] erreicht werden sofern $\{n_1,n_2,n_3\} \in \mathbb{Z}$ sind. -Sind die Vektoren $\vec{a}$ , $\vec{b}$ , $\vec{c}$ gegeben , +Sind die Vektoren $\vec{a}$ , $\vec{b}$ , $\vec{c}$ gegeben, ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. \subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, -da die Umgebungen aller Punkte Identisch sind. -Mit anderen worten: Jedes Kristallgitter $ G $ ist \emph{Translationssymmetrisch} in der Translation +da die Umgebungen aller Punkte identisch sind. +Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{Translationssymmetrisch} in der Translation \[ - Q_i(G) = G + \vec{a_i} -\] wobei der Vektor $a_i$ ein Grundvektor sein muss. + Q_i(G) = G + \vec{a}_i +\] wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination der Vektoren $\vec{a}$ , $\vec{b}$ und $\vec{c}$ erlaubt sind oder kurz, um $\vec{r}$. @@ -47,8 +47,8 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \subsection{Limitierte Kristallsymmetrien} Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet. - Was nicht direkt ersichtlich ist, ist das auch wenn die Grundvektoren frei gewählt werden können, - können nur Rotationssymmetrische Kristalle bestimmter Rotationswinkel erzeugt werden. + Was nicht direkt ersichtlich ist, ist dass auch wenn die Grundvektoren frei gewählt werden können, + sind nur rotationssymmetrische Kristalle ganz bestimmter Rotationswinkel möglich. \begin{figure} \centering @@ -61,17 +61,17 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \end{figure} \subsubsection{Translationssymmetrie $Q$ in Kombination mit Rotationssymmetrie $C_\alpha$} % Müssen uns auf eine schreibweise für Symmetrie Operationen einigen oder sicher am Ende überprüfen - In Abbildung \ref{fig:punktgruppen:rot-geometry} Sehen wir Gitterpunkte und deren Zusammenhänge. + In Abbildung \ref{fig:punktgruppen:rot-geometry} sehen wir Gitterpunkte und deren Zusammenhänge. \begin{itemize} \item $A$ ist unser erster Gitterpunkt. \item $A'$ ist gegeben, weil wir $A$ mit der Translation $Q$ um einen Grundvektor verschieben und wir wissen, - dass nach einer Translation wieder ein Gitterpunkt an der Verschobenen Stelle sein muss. + dass nach einer Translation wieder ein Gitterpunkt an der verschobenen Stelle sein muss. \item $B$ entsteht, weil wir die Rotationssymmetrie $C_\alpha$ auf den Punkt $A$ anwenden. Dadurch dreht sich das ganze Gitter um den Winkel $\alpha$. Für uns bedeutet dies lediglich, dass unser zweiter Punkt $A'$ abgedreht wird. - An der neuen Position von $A'$ muss also auch ein Punkt sein, um die Rotationssymmetrie zu erfüllen. + An der neuen Position $B$ von $A'$ muss also auch ein Punkt des Gitters sein, um die Rotationssymmetrie zu erfüllen. \item $B$ ist unser Name für diesen neuen Punkt. Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir $C_\alpha$ auch auf $A'$ anwenden. Also wenden wir $C_\alpha$ invertiert @@ -93,11 +93,14 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \[ n|Q| = |Q| + 2|Q|\sin(\alpha - \pi/2) \] - Wir können mit $|Q|$ dividieren um unabhängig von der Läge des Grundvektors zu werden, - was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangieren soll. + Wir können durch $|Q|$ dividieren um unabhängig von der Läge des Grundvektors zu werden, + was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. Zusätzlich können wir den Sinusterm vereinfachen. \[ n = 1 - 2\cos\alpha + + \] + \[ \alpha = \cos^{-1}\left(\frac{1-n}{2}\right) \] Dies schränkt die möglichen Rotationssymmetrien auf @@ -115,14 +118,19 @@ ein. \subsection{Kristallklassen} Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. -Mit weiteren ähnlichen überlegungen gezeigt werden kann, dass Kristalle im dreidimensionalen Raum -\footnote{Alle $17$ möglichen zweidimensionalen Symmetrien sind als Wandmustergruppen bekannt} -nur auf genau $32$ Arten punktsymmetrisch sein können. -Diese $32$ möglichen Punktsymmetrien scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. +Mit weiteren ähnlichen Überlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum +nur auf genau $32$ Arten rein punktsymmetrische +\footnote{Werden translationssymmetrien auch mit gezählt beschreibt man die 230 Raumgruppen} +Symmetriegruppen bilden können. +Diese $32$ möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. Eine mögliche Art, die Klassen zu benennen ist nacht dem Mathematiker Arthur Moritz Schönflies, welcher sich mit der Klasifizierung dieser Symmetrien auseinandergesetzt hat. Auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} sind die möglichen Punktsymmetrien mit deren Schönfliesnotation aufgelistet. -Als Darstellungsmethode wurde die stereographische Projektion gewählt, wobei $5$ Klassen aus Gründen der Überschaubarkeit nicht gezeichnet wurden. +Als Darstellungsmethode wurde die stereographische Projektion gewählt, wobei die gestrichelten $5$ Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. + + +\subsubsection{Schönflies Notation} +TODO diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 24212e7..7b4e732 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,14 +1,25 @@ \section{Einleitung} Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wen man nur die mathematischen Betrachtunngsweisen berüksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. -In diesem Kapitel ist daher der Fokus ``nur'' auf die Symmetrie gelegt. -Zu beginn werden wir zeigen was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. -Die vorgestellten Symmetrien sind äusserst gut geeignet um die Grundeigenschaften eines Kristalles zu Beschreiben. -Mit etwas kiffligen geometrischen Überlegungen kann man zeigen wass in der Welt der Kristallographie alles möglich ist oder nicht. -Die Einschränkungen sind durchaus wilkommen, dank ihnen halten sich die möglichen Kristallgitter in Grenzen und Lassen sich Kategorisieren. -Kategorien sind nicht nur für einen besseren Überblich nützlich, sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen, als spannendes Beispiel: Die Piezoelektrizität. -Die Piezoelektrizität ist vielleicht noch nicht jedem bekannt, sie versteckt sich aber in diversen Altagsgegenständen zum Beispiel sorgen sie in den meisten Feuerzeugen für die Zündung. -Ein Funken Interesse ist hoffentlich geweckt um sich mit dem scheinbar trivialen thema der Symmetrie auseinander zu setzten. +Auch wen man nur die mathematischen Betrachtunngsweisen berücksichtigt, +hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. +In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. +Zu Beginn werden wir zeigen was eine Symmetrie ausmacht und +dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. +Die vorgestellten Symmetrien sind äusserst gut geeignet, +um die Grundeigenschaften eines Kristalles zu beschreiben. +Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, +was in der Welt der Kristallographie alles möglich ist oder nicht. +Die Einschränkungen sind durchaus willkommen, +dank ihnen halten sich die möglichen Kristallgitter in Grenzen +und lassen sich kategorisieren.%umformulieren +Kategorien sind nicht nur für einen besseren Überblick nützlich, +sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen. +Als spannendes Beispiel: Die Piezoelektrizität. +Die Piezoelektrizität ist vielleicht noch nicht jedem bekannt, +sie versteckt sich aber in diversen Altagsgegenständen +zum Beispiel sorgen sie in den meisten Feuerzeugen für die Zündung. +Ein Funken Interesse ist hoffentlich geweckt +um sich mit dem scheinbar trivialen thema der Symmetrie auseinander zu setzten. -- cgit v1.2.1 From a1284996aea194e255d8bd292874080bf2f3cc44 Mon Sep 17 00:00:00 2001 From: tim30b Date: Mon, 19 Jul 2021 23:27:52 +0200 Subject: Write schoenflies und minor fixes --- buch/papers/punktgruppen/crystals.tex | 28 ++++++++++++++++++++-------- buch/papers/punktgruppen/piezo.tex | 31 +++++++++++++++++++------------ 2 files changed, 39 insertions(+), 20 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index a124442..e8dfa76 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -28,6 +28,8 @@ erreicht werden sofern $\{n_1,n_2,n_3\} \in \mathbb{Z}$ sind. Sind die Vektoren $\vec{a}$ , $\vec{b}$ , $\vec{c}$ gegeben, ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. +%TODOO fix Q define without vector symb. -> ask naoki + \subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, @@ -104,7 +106,7 @@ ein. \begin{figure} \centering \includegraphics[]{papers/punktgruppen/figures/projections} - \caption{Kristallklassen mit zugehöriger Schönfliesnotation} + \caption{Kristallklassen mit zugehörigem Schönflies-Symbol} \label{fig:punktgruppen:Kristallkassen} \end{figure} @@ -112,17 +114,27 @@ ein. Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. Mit weiteren ähnlichen Überlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum nur auf genau 32 Arten rein punktsymmetrische -\footnote{Werden translationssymmetrien auch mit gezählt beschreibt man die 230 Raumgruppen} Symmetriegruppen bilden können. Diese 32 möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. -Eine mögliche Art, die Klassen zu benennen ist nach dem Mathematiker Arthur Moritz Schönflies, -welcher sich mit der Klasifizierung dieser Symmetrien auseinandergesetzt hat. -Auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} sind die möglichen Punktsymmetrien mit deren Schönfliesnotation aufgelistet. -Als Darstellungsmethode wurde die stereographische Projektion gewählt, wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. +Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen. +Die Darstellung von dreidimensionalen Punktsymmetrien wurde mit der stereographischen Projektion +\footnote{Die Markierten Kreise/Kreuze repräsentieren Punkte auf einer Kugel. +Die Orte der Symbole stehen für einen Schattenwurf eines Punktes auf dem Boden, auf welcher sich die Kugel befindet. +Wobei die Lichtquelle am Nord/Südpol liegt.} +ermöglicht, +wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. + + +\subsubsection{Schönflies-Symbilok} +Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem Schöönflies-Symbol bezeichnet. +Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, +welcher sich unter anderem mit der Klasifizierung der Kristallklassen auseinandergesetzt hat. +Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. +Anschaulich ist als Beispiel die Drehgruppe \[C\]. +Die Elemente einer Untergruppe werden erst mit ihren Zusätzen eindeutig wie \[C_{3i}\], +was für eine dreifache Rotationssymmetrie mit einem Inversionszentrum steht. -\subsubsection{Schönflies Notation} -TODO diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 3c3957b..feac9e5 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -39,22 +39,30 @@ Die Polarisation resultiert über eine gesamte Oberfläche eines Kristalles, ent Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise Positive Ionen und blaue negative Ionen repräsentieren. %liste oder anderes format?.. -Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. +Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. +Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil mitlleren Ladungsträger weiter auseinander gerdrückt werden. -Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. +Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, +dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. \subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unterdruck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. -Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. -Dies ist aber nicht mehr der Fall, wenn der Kristall nach oben und periodisch wiederholt. +Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, +scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. +Dies ist aber nicht mehr der Fall, wenn die Struktur sich nach oben und unten periodisch wiederholt. Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. -Was in zwischen $(b)$ und $(c)$ zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu $(b)$. -Daraus kann man schlissen, dass $(a)$ keine Rotationssymmetrie von $90^\circ$ besitzen kann, weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. -Das Fehlen dieser Rotationssymmetrie kann mit betrachten von $(a)$ bestätigt werden. +Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, +ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, +im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. +Daraus kann man schlissen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von $90^\circ$ besitzen kann, +weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. +Das Fehlen dieser Rotationssymmetrie kann mit betrachten von \subref{fig:punktgruppen:atoms-piezo} bestätigt werden. -\subsection{Punktsymmetrie}\footnote{In der Literatur wird ein Punktsymmetrisches Kristallgitter oft als Kristallgitter mit Inversionszentrum bezeichnet.} -Piezoelektrische Kristalle können nicht Punktsymmetrisch sein. +\subsection{Punktsymmetrie} +Piezoelektrische Kristalle können nicht Punktsymmetrisch +\footnote{In der Literatur wird ein Punktsymmetrisches Kristallgitter oft als Kristallgitter mit Inversionszentrum bezeichnet.} sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. -Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst $(a)$ ein nicht Punktsymmetrischer Kristall mit einem Punktsymmetrischen $(d)$ verglichen worden. +Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht Punktsymmetrischer Kristall +mit einem Punktsymmetrischen \subref{fig:punktgruppen:atoms-grid}verglichen worden. Als vereinfachte Erklärung kann mann sich wieder das Bild vor augen führen, eines Kristalles, welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. Spiegelt man nun den Kristall um den Gitterpunkt in der mitte des Kristalles, so würden die negativen Ionen auf den Positiven auf der anderen seite landen, @@ -73,5 +81,4 @@ Sollten Sie also eines Tages in die Situation geraten, in welcher Sie zwei versc und ein piezoelektrisches Feuerzeug bauen müssen, wobei Sie aber wissen, dass einer eine Punktsymmetrie aufweist, versuche sie es mit dem anderen. -Ich muss aber anmerken, dass aus den $21$ möglichen Kristallsymmetrien ohne Punktsymmetrie einer nicht piezoelektrisch ist. -ein wenig glück brauchen Sie also immer noch. + -- cgit v1.2.1 From d35889ab0e806e4df7871b5a100fe4bb6c52282b Mon Sep 17 00:00:00 2001 From: tim30b Date: Tue, 20 Jul 2021 14:29:38 +0200 Subject: =?UTF-8?q?rewrite=20Sch=C3=B6nflies=20notation?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/punktgruppen/crystals.tex | 38 +++++++++++++++++++++++++---------- buch/papers/punktgruppen/piezo.tex | 3 +-- 2 files changed, 28 insertions(+), 13 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index e8dfa76..c110787 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -30,7 +30,7 @@ ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektore %TODOO fix Q define without vector symb. -> ask naoki -\subsection{Translationssymmetrie} +\subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, da die Umgebungen aller Punkte identisch sind. @@ -44,11 +44,11 @@ der Vektoren $\vec{a}$ , $\vec{b}$ und $\vec{c}$ erlaubt sind oder kurz, um $\ve Verschiebungen um $\vec{r}$ bewirken demnach keine Veränderungen, solange wir ein unendlich grosses Kristallgitter verschieben. -\subsection{Limitierte Kristallsymmetrien} +\subsection{Limitierte Kristallsymmetrien} \label{txt:punktgruppen: Translationssymmetrie} Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet. - Was nicht direkt ersichtlich ist, ist dass auch wenn die Grundvektoren frei gewählt werden können, - sind nur rotationssymmetrische Kristalle ganz bestimmter Rotationswinkel möglich. - + Was nicht direkt ersichtlich ist, dass bei beliebigen Grundvektoren nicht beliebige Symmetrien erstellt werden können. + Die geforderte Translationssymmetrie eines Kristalles schränkt weitere Symmetrien deutlich ein. + \begin{figure} \centering \includegraphics[]{papers/punktgruppen/figures/combine-symmetries} @@ -126,14 +126,30 @@ wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Deta \subsubsection{Schönflies-Symbilok} -Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem Schöönflies-Symbol bezeichnet. +Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schöönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, -welcher sich unter anderem mit der Klasifizierung der Kristallklassen auseinandergesetzt hat. +welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. -Anschaulich ist als Beispiel die Drehgruppe \[C\]. -Die Elemente einer Untergruppe werden erst mit ihren Zusätzen eindeutig wie \[C_{3i}\], -was für eine dreifache Rotationssymmetrie mit einem Inversionszentrum steht. - +Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. +Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\) Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). +Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. +Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. +Dank Abschintt \ref{txt:punktgruppen: Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen. +Da das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. +Inzwischen wissen wir auch, dass \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da +\[ + 360^\circ/5 = 72^\circ +\] +was nach Abschnitt \ref{txt:punktgruppen: Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. +Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. +Wie zum Beispiel ein Inversionszentrum +\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} +\(i\) oder eine horizontale +\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} +Spiegelachse \(h\). +Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. +\(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer +sechsfachen Drehspiegelsymmetrie entspricht. diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index feac9e5..6defcdc 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -58,8 +58,7 @@ weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. Das Fehlen dieser Rotationssymmetrie kann mit betrachten von \subref{fig:punktgruppen:atoms-piezo} bestätigt werden. \subsection{Punktsymmetrie} -Piezoelektrische Kristalle können nicht Punktsymmetrisch -\footnote{In der Literatur wird ein Punktsymmetrisches Kristallgitter oft als Kristallgitter mit Inversionszentrum bezeichnet.} sein. +Piezoelektrische Kristalle können nicht Punktsymmetrisch sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht Punktsymmetrischer Kristall mit einem Punktsymmetrischen \subref{fig:punktgruppen:atoms-grid}verglichen worden. -- cgit v1.2.1 From ac695f41dd1961103af26522203ffb9b550cc105 Mon Sep 17 00:00:00 2001 From: tim30b Date: Tue, 20 Jul 2021 16:24:39 +0200 Subject: fix Q notation --- buch/papers/punktgruppen/crystals.tex | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index c110787..f8be01b 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -36,7 +36,7 @@ Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmög da die Umgebungen aller Punkte identisch sind. Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{Translationssymmetrisch} in der Translation \[ - Q_i(G) = G + \vec{a}_i + \vec{Q}_i(G) = G + \vec{a}_i \] wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination @@ -64,7 +64,8 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \begin{itemize} \item \(A\) ist unser erster Gitterpunkt. - \item \(A'\) ist gegeben, weil wir \(A\) mit der Translation \(\vec{Q}\) um einen Grundvektor verschieben und wir wissen, dass nach einer Translation wieder ein Gitterpunkt an der verschobenen Stelle sein muss. + \item \(A'\) ist gegeben, weil wir \(A\) mit der Translation \(\vec{Q}\) um einen Grundvektor verschieben und wir wissen, + dass nach einer Translation wieder ein Gitterpunkt an der verschobenen Stelle sein muss. \item \(B\) entsteht, weil wir die Rotationssymmetrie \(C_\alpha\) auf den Punkt \(A\) anwenden. Dadurch dreht sich das ganze Gitter um den Winkel \(\alpha\). Für uns bedeutet dies lediglich, dass unser zweiter Punkt \(A'\) abgedreht wird. @@ -77,13 +78,13 @@ solange wir ein unendlich grosses Kristallgitter verschieben. auch auf \(A'\) an. Dies dreht \(A\) auf einen neuen Punkt. \item \(B'\) ist kein zufälliger Name für diesen neuen Punkt, denn wir wissen, dass zwischen allen Punkten eine Translationssymmetrie bestehen muss. - Die Translationssymmetrie zwischen \(B\) und \(B'\) ist hier als \(\vec{Q}'\) bezeichnet. + Die Translationssymmetrie zwischen \(B\) und \(B'\) ist hier als \(\vec{Q}'\) bezeichnet. \end{itemize} Mit den gegebenen Punkten lassen sich geometrische Folgerungen ziehen. - Wir beginnen, indem wir die Länge \(Q\) der Translation \(\vec{Q}\) mit jener von \(\vec{Q}'\) vergleichen. + Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\). Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). - Ist \(\vec{Q}\) ein Grundvektor so muss \(Q'\) ein ganzes vielfaches von \(Q\) sein. - Also + Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes vielfaches von \(\vec{Q}\) sein. + Demnach auch die Längen \[ Q' = nQ = Q + 2x \] @@ -91,7 +92,8 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \[ nQ = Q + 2Q\sin(\alpha - \pi/2) \] - Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. + Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, + da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. Zusätzlich können wir den Sinusterm vereinfachen. \[ n = 1 - 2\cos\alpha \quad\iff\quad -- cgit v1.2.1 From f5dc85609d5db143cbdefcbb1430b4dfec7a8d3f Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 22 Jul 2021 09:38:24 +0200 Subject: Create figure for stereographic projection --- buch/papers/punktgruppen/Makefile | 1 + .../figures/stereographic-projections.pdf | Bin 0 -> 2045 bytes .../tikz/stereographic-projections.tex | 90 +++++++++++++++++++++ 3 files changed, 91 insertions(+) create mode 100644 buch/papers/punktgruppen/figures/stereographic-projections.pdf create mode 100644 buch/papers/punktgruppen/tikz/stereographic-projections.tex (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/Makefile b/buch/papers/punktgruppen/Makefile index 98e7149..03ad15a 100644 --- a/buch/papers/punktgruppen/Makefile +++ b/buch/papers/punktgruppen/Makefile @@ -20,6 +20,7 @@ TIKZFIGURES := \ tikz/lattice.tex \ tikz/piezo.tex \ tikz/projections.tex \ + tikz/stereographic-projections.tex \ tikz/symmetric-shapes.tex FIGURES := $(patsubst tikz/%.tex, figures/%.pdf, $(TIKZFIGURES)) diff --git a/buch/papers/punktgruppen/figures/stereographic-projections.pdf b/buch/papers/punktgruppen/figures/stereographic-projections.pdf new file mode 100644 index 0000000..59db126 Binary files /dev/null and b/buch/papers/punktgruppen/figures/stereographic-projections.pdf differ diff --git a/buch/papers/punktgruppen/tikz/stereographic-projections.tex b/buch/papers/punktgruppen/tikz/stereographic-projections.tex new file mode 100644 index 0000000..4091ad9 --- /dev/null +++ b/buch/papers/punktgruppen/tikz/stereographic-projections.tex @@ -0,0 +1,90 @@ +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{tikz-3dplot} + +\usetikzlibrary{arrows} +\usetikzlibrary{intersections} +\usetikzlibrary{math} +\usetikzlibrary{positioning} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.misc} +\usetikzlibrary{calc} + +\begin{document} + +\tdplotsetmaincoords{60}{130} +\pgfmathsetmacro{\l}{2} + +\begin{tikzpicture}[ + >=latex, + tdplot_main_coords, + dot/.style = { + black, fill = black, circle, + outer sep = 0, inner sep = 0, + minimum size = 1mm + }, + round/.style = { + draw = orange, thick, circle, + minimum size = 1mm, + inner sep = 0pt, outer sep = 0pt, + }, + cross/.style = { + cross out, draw = magenta, thick, + minimum size = 1mm, + inner sep = 0pt, outer sep = 0pt + }, + ] + + % origin + \coordinate (O) at (0,0,0); + + % poles + \coordinate (NP) at (0,0,\l); + \coordinate (SP) at (0,0,-\l); + + % axis + % \draw[->] (O) -- ++(1.5*\l,0,0); + % \draw[->] (O) -- ++(0,1.5*\l,0); + % \draw[->] (O) -- ++(0,0,1.5*\l); + + % gray unit circle + \tdplotdrawarc[gray, dashed]{(O)}{\l}{0}{360}{}{}; + \draw[gray, dashed] (-\l, 0, 0) to (\l, 0, 0); + \draw[gray, dashed] (0, -\l, 0) to (0, \l, 0); + + % meridians + \foreach \phi in {0, 30, 60, ..., 150}{ + \tdplotsetrotatedcoords{\phi}{90}{0}; + \tdplotdrawarc[lightgray, dashed, tdplot_rotated_coords]{(O)}{\l}{0}{360}{}{}; + } + + % dot above and its projection + \pgfmathsetmacro{\phi}{120} + \pgfmathsetmacro{\theta}{60} + + \pgfmathsetmacro{\px}{cos(\phi)*sin(\theta)*\l} + \pgfmathsetmacro{\py}{sin(\phi)*sin(\theta)*\l} + \pgfmathsetmacro{\pz}{cos(\theta)*\l}) + + \coordinate (A) at (\px,\py,\pz); + \coordinate (Aproj) at ({\px * \l / (\l + \pz)}, {\py * \l / (\l + \pz)}, 0); + + % projection line + \draw[] (A) to (SP); + \draw[gray] (SP) to (O) to (Aproj); + + % dot + \draw (O) node[dot] {}; + \draw (SP) node[dot] {}; + \draw (A) node[dot, fill=magenta] {}; + \draw[very thick, magenta] + (Aproj) ++(.15,0) to ($(Aproj)+(-.15, 0)$) + (Aproj) ++(0,.15) to ($(Aproj) +(0, -.15)$); + + % \draw (O) to ({cos(\phi)*\l}, {sin(\phi)*\l}, 0); + +\end{tikzpicture} +\end{document} +% vim:ts=2 sw=2 et: -- cgit v1.2.1 From 38950a79c5e5d4a4a064f17539d7f0fc5a9a2ef0 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 22 Jul 2021 09:38:44 +0200 Subject: Rebuild figures --- .../punktgruppen/figures/atoms-grid-force.pdf | Bin 1496 -> 1496 bytes .../punktgruppen/figures/atoms-grid-still.pdf | Bin 0 -> 1307 bytes .../figures/atoms-piezo-force-horizontal.pdf | Bin 0 -> 12453 bytes .../figures/atoms-piezo-force-vertical.pdf | Bin 0 -> 12490 bytes .../punktgruppen/figures/atoms-piezo-still.pdf | Bin 0 -> 1643 bytes .../punktgruppen/figures/combine-symmetries.pdf | Bin 14414 -> 12054 bytes buch/papers/punktgruppen/figures/lattice.pdf | Bin 27886 -> 25646 bytes buch/papers/punktgruppen/figures/piezo-atoms.pdf | Bin 35693 -> 0 bytes buch/papers/punktgruppen/figures/piezo.pdf | Bin 16865 -> 14077 bytes buch/papers/punktgruppen/figures/projections.pdf | Bin 27953 -> 26440 bytes .../punktgruppen/figures/symmetric-shapes.pdf | Bin 12790 -> 12772 bytes 11 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 buch/papers/punktgruppen/figures/atoms-grid-still.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf create mode 100644 buch/papers/punktgruppen/figures/atoms-piezo-still.pdf delete mode 100644 buch/papers/punktgruppen/figures/piezo-atoms.pdf (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/figures/atoms-grid-force.pdf b/buch/papers/punktgruppen/figures/atoms-grid-force.pdf index f56be04..b3e6215 100644 Binary files a/buch/papers/punktgruppen/figures/atoms-grid-force.pdf and b/buch/papers/punktgruppen/figures/atoms-grid-force.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-grid-still.pdf b/buch/papers/punktgruppen/figures/atoms-grid-still.pdf new file mode 100644 index 0000000..752014d Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-grid-still.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf new file mode 100644 index 0000000..313dc69 Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-piezo-force-horizontal.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf new file mode 100644 index 0000000..9a86b7c Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-piezo-force-vertical.pdf differ diff --git a/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf b/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf new file mode 100644 index 0000000..83b6590 Binary files /dev/null and b/buch/papers/punktgruppen/figures/atoms-piezo-still.pdf differ diff --git a/buch/papers/punktgruppen/figures/combine-symmetries.pdf b/buch/papers/punktgruppen/figures/combine-symmetries.pdf index 13f7330..6cd4e64 100644 Binary files a/buch/papers/punktgruppen/figures/combine-symmetries.pdf and b/buch/papers/punktgruppen/figures/combine-symmetries.pdf differ diff --git a/buch/papers/punktgruppen/figures/lattice.pdf b/buch/papers/punktgruppen/figures/lattice.pdf index 6565be5..712d6f4 100644 Binary files a/buch/papers/punktgruppen/figures/lattice.pdf and b/buch/papers/punktgruppen/figures/lattice.pdf differ diff --git a/buch/papers/punktgruppen/figures/piezo-atoms.pdf b/buch/papers/punktgruppen/figures/piezo-atoms.pdf deleted file mode 100644 index 63da7a9..0000000 Binary files a/buch/papers/punktgruppen/figures/piezo-atoms.pdf and /dev/null differ diff --git a/buch/papers/punktgruppen/figures/piezo.pdf b/buch/papers/punktgruppen/figures/piezo.pdf index ca6192b..d82ee96 100644 Binary files a/buch/papers/punktgruppen/figures/piezo.pdf and b/buch/papers/punktgruppen/figures/piezo.pdf differ diff --git a/buch/papers/punktgruppen/figures/projections.pdf b/buch/papers/punktgruppen/figures/projections.pdf index c9369b2..bc04313 100644 Binary files a/buch/papers/punktgruppen/figures/projections.pdf and b/buch/papers/punktgruppen/figures/projections.pdf differ diff --git a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf index 0b3ba54..3a8d9dd 100644 Binary files a/buch/papers/punktgruppen/figures/symmetric-shapes.pdf and b/buch/papers/punktgruppen/figures/symmetric-shapes.pdf differ -- cgit v1.2.1 From 49b0ab2844c380a5380e1d9d893738e9fd22c2b5 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 22 Jul 2021 10:20:15 +0200 Subject: Add figure of stereographic projection and little explanation --- buch/papers/punktgruppen/crystals.tex | 25 ++++++++++++++++--------- 1 file changed, 16 insertions(+), 9 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index f8be01b..0e4d6c7 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -107,9 +107,14 @@ ein. \begin{figure} \centering - \includegraphics[]{papers/punktgruppen/figures/projections} - \caption{Kristallklassen mit zugehörigem Schönflies-Symbol} - \label{fig:punktgruppen:Kristallkassen} + \includegraphics[height=6cm]{papers/punktgruppen/figures/stereographic-projections} + \caption{ + Stereografische Projektion: Es wird eine Linie vom magentafarbenen Punkt auf der oberen Hälfte der Kugel zum Südpol gezogen. + Wo die Linie die Ebene schneidet (\(z = 0\)), ist die Projektion des Punktes. + Die Koordinaten der Projektionen sind einfach zu berechnen: + ein Punkt auf eine Kugel mit Radius \(r\) mit den Koordinaten \(x, y, z,\) wird auf \(xr/(r - z), yr/(r - z)\) projiziert. + } + \label{fig:punktgruppen:stereographic-projections} \end{figure} \subsection{Kristallklassen} @@ -119,15 +124,17 @@ nur auf genau 32 Arten rein punktsymmetrische Symmetriegruppen bilden können. Diese 32 möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen. -Die Darstellung von dreidimensionalen Punktsymmetrien wurde mit der stereographischen Projektion -\footnote{Die Markierten Kreise/Kreuze repräsentieren Punkte auf einer Kugel. -Die Orte der Symbole stehen für einen Schattenwurf eines Punktes auf dem Boden, auf welcher sich die Kugel befindet. -Wobei die Lichtquelle am Nord/Südpol liegt.} -ermöglicht, -wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. +Die Darstellung von dreidimensionalen Punktsymmetrien wurde mit der stereographischen Projektion ermöglicht (siehe Abb. \ref{fig:punktgruppen:stereographic-projections}), wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. +\begin{figure} + \centering + \includegraphics[]{papers/punktgruppen/figures/projections} + \caption{Kristallklassen mit zugehörigem Schönflies-Symbol} + \label{fig:punktgruppen:Kristallkassen} +\end{figure} \subsubsection{Schönflies-Symbilok} + Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schöönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. -- cgit v1.2.1 From 09da726608ea811d6d9aa51261e48c787a4300ab Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 22 Jul 2021 10:28:08 +0200 Subject: Fix piezo figure E-Field --- buch/papers/punktgruppen/figures/piezo.pdf | Bin 14077 -> 15599 bytes buch/papers/punktgruppen/tikz/piezo.tex | 2 +- 2 files changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/figures/piezo.pdf b/buch/papers/punktgruppen/figures/piezo.pdf index d82ee96..904250a 100644 Binary files a/buch/papers/punktgruppen/figures/piezo.pdf and b/buch/papers/punktgruppen/figures/piezo.pdf differ diff --git a/buch/papers/punktgruppen/tikz/piezo.tex b/buch/papers/punktgruppen/tikz/piezo.tex index 56e9463..6542f26 100644 --- a/buch/papers/punktgruppen/tikz/piezo.tex +++ b/buch/papers/punktgruppen/tikz/piezo.tex @@ -47,7 +47,7 @@ \node[ rectangle, fill = gray!20!white, minimum width = 3cm, minimum height = 1.5cm, - ] (body) {\(\vec{E}_p = \vec{0}\)}; + ] (body) {\(\vec{E}_p \neq \vec{0}\)}; \node[ draw, rectangle, thick, black, fill = red!50, -- cgit v1.2.1 From bb830b17b647c27c48cc611af44045ed9eab7ae8 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 22 Jul 2021 10:48:02 +0200 Subject: Add missing reference --- buch/papers/punktgruppen/main.tex | 1 + buch/papers/punktgruppen/references.bib | 9 +++++++++ 2 files changed, 10 insertions(+) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/main.tex b/buch/papers/punktgruppen/main.tex index a6e246c..ea19421 100644 --- a/buch/papers/punktgruppen/main.tex +++ b/buch/papers/punktgruppen/main.tex @@ -18,6 +18,7 @@ \nocite{punktgruppen:pinter-algebra} \nocite{punktgruppen:sands-crystal} \nocite{punktgruppen:lang-elt2} +\nocite{punktgruppen:ouchem} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib index 9edb8bd..a29640c 100644 --- a/buch/papers/punktgruppen/references.bib +++ b/buch/papers/punktgruppen/references.bib @@ -33,3 +33,12 @@ inseries = {Vorlesungsskript zum Modul ELT}, } +@online{punktgruppen:ouchem, + title = {Symmetry in Crystallography}, + author = {Dept. of Chemistry \& Biochemistry, Chemical Crystallography Laboratory, University of Oklahoma}, + year = {2019}, + month = {11}, + day = {17}, + url = {http://archive.today/2021.07.22-083802/http://xrayweb.chem.ou.edu/notes/symmetry.html}, + urldate = {2021-07-22}, +} -- cgit v1.2.1 From 2d4039ca87a6b2fb7897cc47ed1d81256a25d79d Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 22 Jul 2021 14:17:29 +0200 Subject: Fix Makefile.inc --- buch/papers/punktgruppen/Makefile.inc | 17 ++++++++++++----- 1 file changed, 12 insertions(+), 5 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/Makefile.inc b/buch/papers/punktgruppen/Makefile.inc index 8cde9d7..3b49602 100644 --- a/buch/papers/punktgruppen/Makefile.inc +++ b/buch/papers/punktgruppen/Makefile.inc @@ -11,8 +11,15 @@ dependencies-punktgruppen = \ papers/punktgruppen/crystals.tex \ papers/punktgruppen/piezo.tex \ papers/punktgruppen/references.bib \ - papers/punktgruppen/tikz/combine-symmetries.tex \ - papers/punktgruppen/tikz/lattice.tex \ - papers/punktgruppen/tikz/piezo-atoms.tex \ - papers/punktgruppen/tikz/piezo.tex \ - papers/punktgruppen/tikz/projections.tex + paers/punktgruppen/tikz/atoms-grid-force.tex \ + paers/punktgruppen/tikz/atoms-grid-still.tex \ + paers/punktgruppen/tikz/atoms-piezo-force-horizontal.tex \ + paers/punktgruppen/tikz/atoms-piezo-force-vertical.tex \ + paers/punktgruppen/tikz/atoms-piezo-still.tex \ + paers/punktgruppen/tikz/combine-symmetries.tex \ + paers/punktgruppen/tikz/lattice.tex \ + paers/punktgruppen/tikz/piezo-atoms.tex \ + paers/punktgruppen/tikz/piezo.tex \ + paers/punktgruppen/tikz/projections.tex \ + paers/punktgruppen/tikz/stereographic-projections.tex \ + paers/punktgruppen/tikz/symmetric-shapes.tex -- cgit v1.2.1 From 88fef8a83dcae2c49edab204809b438a27c24482 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 08:46:39 +0200 Subject: Some corrections on the symmetry section --- buch/papers/punktgruppen/symmetry.tex | 39 +++++++++++++++++------------------ 1 file changed, 19 insertions(+), 20 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 1dc6f98..6655864 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -1,7 +1,7 @@ \section{Symmetrie} Das Wort Symmetrie ist sehr alt und hat sich seltsamerweise von seinem ursprünglichen griechischen Wort -\(\mathrm{\Sigma\nu\mu\mu\varepsilon\tau\rho\iota\alpha}\) +\(\mathrm{\Sigma\upsilon\mu\mu\varepsilon\tau\rho\iota\alpha}\) \footnote{\emph{Symmetr\'ia}: ein gemeinsames Mass habend, gleichmässig, verhältnismässig} fast nicht verändert. In der Alltagssprache mag es ein locker definierter Begriff sein, aber in der Mathematik hat Symmetrie eine sehr @@ -33,9 +33,7 @@ Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für -\(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Dies ist -hoffentlich ausreichend, um die Bedeutung hinter der Notation zu verstehen, die -nun eingeführt wird. +\(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. % Vieleicht eine kurze Einführung in für die Definition, ich habe das gefühl, dass in der Definition die Symmetrie-Operation und die Gruppe auf einmal erklährt wird \subsubsection{Symetriegruppe} @@ -46,39 +44,40 @@ nicht nur um $\sigma$ sondern auch Diagonal gespiegelt werden oder um $90^\circ$ Fässt man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - Sei \(g\) eine Operation, die ein mathematisches Objekt unverändert lässt. - Bei einer anderen Operation \(h\) definieren wir die Komposition \(h\circ g\) - als die Anwendung der Operationen nacheinander. Alle Operationen bilden unter - Komposition eine Gruppe, die Symmetriegruppe genannt wird. + Sei \(g\) eine umkehrbare Operation, die ein mathematisches Objekt + unverändert lässt. Bei einer anderen Operation \(h\) definieren wir die + Komposition \(h\circ g\) als die Anwendung der Operationen nacheinander. Alle + Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt + wird. \end{definition} % ich lese diese Definition ein wenig holprig, vieleicht können wir sie zusammen anschauen % Nach meinem Geschmack könne es hier auch eine einleitung wie mein Beispiel geben dammit man den Text flüssiger lesen kann \begin{definition}[Zyklische Untergruppe, Erzeuger] Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische - Untergruppe von \(G\), und \(g\) wird ihr Erzeuger genannt. Die erzeugte - Untergruppe \(\langle g \rangle\) wird mit spitzen Klammern um den Erzeuger - bezeichnet. + Untergruppe von \(G\), und \(g\) wird ihr Erzeuger genannt. Die von \(g\) + erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} + \right\}\) wird mit spitzen Klammern bezeichnet. \end{definition} -Mit dem oben Gesagten können wir das \(n\)-Gon Beispiel formalisieren. +Damit können wir das \(n\)-Gon Beispiel formalisieren. Bezeichnen wir mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ C_n = \langle r \rangle = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} \] -der Drehungen eines \(n\)-Gons zu definieren. Das liegt daran, -dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen, der -die Rotationssymmetrie bewahrt. Hier die Potenzen von \(r\) sind als -wiederholte Komposition gemeint, dass heisst \(r^n = r\circ r \circ \cdots -r\circ r\). Wenn wir diese Idee nun erweitern, können wir mit einem -Erzeugendensystemen komplexere Strukturen aufbauen. +der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch die +mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die +Rotationssymmetrie bewahrt. Hier die Potenzen von \(r\) sind als wiederholte +Komposition gemeint, dass heisst \(r^n = r\circ r \circ \cdots r\circ r\). +Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystemen +komplexere Strukturen aufbauen. \begin{definition}[Erzeugendensysteme] % please fix this unreadable mess - Jede Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. - Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer + Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert + werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannte Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls -- cgit v1.2.1 From 472b3d0a253879552d139cc4f41a2e00e5f6e4f5 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 09:08:08 +0200 Subject: Change stereographic projection to Ci --- buch/papers/punktgruppen/crystals.tex | 5 +-- .../figures/stereographic-projections.pdf | Bin 2045 -> 2377 bytes .../tikz/stereographic-projections.tex | 34 ++++++++++++++++----- 3 files changed, 29 insertions(+), 10 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 0e4d6c7..b59ae0e 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -109,10 +109,11 @@ ein. \centering \includegraphics[height=6cm]{papers/punktgruppen/figures/stereographic-projections} \caption{ - Stereografische Projektion: Es wird eine Linie vom magentafarbenen Punkt auf der oberen Hälfte der Kugel zum Südpol gezogen. + Stereografische Projektion einer \(C_{i}\) Symmetrie. Es wird eine Linie vom magentafarbenen Punkt auf der oberen Hälfte der Kugel zum Südpol gezogen. Wo die Linie die Ebene schneidet (\(z = 0\)), ist die Projektion des Punktes. Die Koordinaten der Projektionen sind einfach zu berechnen: - ein Punkt auf eine Kugel mit Radius \(r\) mit den Koordinaten \(x, y, z,\) wird auf \(xr/(r - z), yr/(r - z)\) projiziert. + ein Punkt auf eine Kugel mit Radius \(r\) mit den Koordinaten \(x, y, z,\) wird auf \(xr/(r + z), yr/(r + z)\) projiziert. + Für den orangefarbenen Punkt unterhalb des Äquators wird die Linie zum Nordpol gezogen und die Projektionsformel hat stattdessen einen Nenner von \(r - z\). } \label{fig:punktgruppen:stereographic-projections} \end{figure} diff --git a/buch/papers/punktgruppen/figures/stereographic-projections.pdf b/buch/papers/punktgruppen/figures/stereographic-projections.pdf index 59db126..7598265 100644 Binary files a/buch/papers/punktgruppen/figures/stereographic-projections.pdf and b/buch/papers/punktgruppen/figures/stereographic-projections.pdf differ diff --git a/buch/papers/punktgruppen/tikz/stereographic-projections.tex b/buch/papers/punktgruppen/tikz/stereographic-projections.tex index 4091ad9..7d612fb 100644 --- a/buch/papers/punktgruppen/tikz/stereographic-projections.tex +++ b/buch/papers/punktgruppen/tikz/stereographic-projections.tex @@ -50,9 +50,9 @@ % \draw[->] (O) -- ++(0,0,1.5*\l); % gray unit circle - \tdplotdrawarc[gray, dashed]{(O)}{\l}{0}{360}{}{}; - \draw[gray, dashed] (-\l, 0, 0) to (\l, 0, 0); - \draw[gray, dashed] (0, -\l, 0) to (0, \l, 0); + \tdplotdrawarc[gray, thick]{(O)}{\l}{0}{360}{}{}; + \draw[gray, dotted] (-\l, 0, 0) to (\l, 0, 0); + \draw[gray, dotted] (0, -\l, 0) to (0, \l, 0); % meridians \foreach \phi in {0, 30, 60, ..., 150}{ @@ -71,19 +71,37 @@ \coordinate (A) at (\px,\py,\pz); \coordinate (Aproj) at ({\px * \l / (\l + \pz)}, {\py * \l / (\l + \pz)}, 0); - % projection line - \draw[] (A) to (SP); + % dot below and its projection + \pgfmathsetmacro{\phi}{-60} + \pgfmathsetmacro{\theta}{120} + + \pgfmathsetmacro{\px}{cos(\phi)*sin(\theta)*\l} + \pgfmathsetmacro{\py}{sin(\phi)*sin(\theta)*\l} + \pgfmathsetmacro{\pz}{cos(\theta)*\l}) + + \coordinate (B) at (\px,\py,\pz); + \coordinate (Bproj) at ({\px * \l / (\l - \pz)}, {\py * \l / (\l - \pz)}, 0); + + % projection lines + \draw[gray] (A) to (SP); \draw[gray] (SP) to (O) to (Aproj); - % dot + \draw[gray] (B) to (NP); + \draw[gray] (NP) to (O) to (Bproj); + + % dots \draw (O) node[dot] {}; \draw (SP) node[dot] {}; - \draw (A) node[dot, fill=magenta] {}; + \draw (NP) node[dot] {}; + \draw (A) node[dot, fill = magenta, minimum size = 1.5mm] {}; + \draw (B) node[dot, fill = orange, minimum size = 1.5mm] {}; + + % projection markers \draw[very thick, magenta] (Aproj) ++(.15,0) to ($(Aproj)+(-.15, 0)$) (Aproj) ++(0,.15) to ($(Aproj) +(0, -.15)$); - % \draw (O) to ({cos(\phi)*\l}, {sin(\phi)*\l}, 0); + \tdplotdrawarc[orange, very thick]{(Bproj)}{.1}{0}{360}{}{}; \end{tikzpicture} \end{document} -- cgit v1.2.1 From 7e173afd620b52d542cec0f939299a995eb34689 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 09:19:32 +0200 Subject: Change crystal restriction to theorem style with proof --- buch/papers/punktgruppen/crystals.tex | 26 ++++++++++++++++++-------- 1 file changed, 18 insertions(+), 8 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index b59ae0e..5211b68 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -28,8 +28,6 @@ erreicht werden sofern $\{n_1,n_2,n_3\} \in \mathbb{Z}$ sind. Sind die Vektoren $\vec{a}$ , $\vec{b}$ , $\vec{c}$ gegeben, ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. -%TODOO fix Q define without vector symb. -> ask naoki - \subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, @@ -44,7 +42,7 @@ der Vektoren $\vec{a}$ , $\vec{b}$ und $\vec{c}$ erlaubt sind oder kurz, um $\ve Verschiebungen um $\vec{r}$ bewirken demnach keine Veränderungen, solange wir ein unendlich grosses Kristallgitter verschieben. -\subsection{Limitierte Kristallsymmetrien} \label{txt:punktgruppen: Translationssymmetrie} +\subsection{Limitierte Kristallsymmetrien} \label{txt:punktgruppen:Translationssymmetrie} Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet. Was nicht direkt ersichtlich ist, dass bei beliebigen Grundvektoren nicht beliebige Symmetrien erstellt werden können. Die geforderte Translationssymmetrie eines Kristalles schränkt weitere Symmetrien deutlich ein. @@ -58,7 +56,18 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \label{fig:punktgruppen:rot-geometry} \end{figure} - \subsubsection{Translationssymmetrie $Q$ in Kombination mit Rotationssymmetrie $C_\alpha$} % Müssen uns auf eine schreibweise für Symmetrie Operationen einigen oder sicher am Ende überprüfen +\begin{satz} + Die Rotationssymmetrien eines Kristalls sind auf 2-fach, 3-fach, 4-fach und 6-fach beschränkt. + Mit anderen Worten: Es sind nur Drehwinkel von + 0\(^{\circ}\), + 60\(^{\circ}\), + 90\(^{\circ}\), + 120\(^{\circ}\) und + 180\(^{\circ}\) + erlaubt. +\end{satz} + +\begin{proof} In Abbildung \ref{fig:punktgruppen:rot-geometry} sehen wir Gitterpunkte und deren Zusammenhänge. \begin{itemize} @@ -66,13 +75,13 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \item \(A'\) ist gegeben, weil wir \(A\) mit der Translation \(\vec{Q}\) um einen Grundvektor verschieben und wir wissen, dass nach einer Translation wieder ein Gitterpunkt an der verschobenen Stelle sein muss. - \item \(B\) entsteht, weil wir die Rotationssymmetrie \(C_\alpha\) auf den Punkt \(A\) anwenden. - Dadurch dreht sich das ganze Gitter um den Winkel \(\alpha\). + \item \(B\) entsteht, weil wir die Rotationssymmetrie \(C_n\) auf den Punkt \(A\) anwenden. + Dadurch dreht sich das ganze Gitter um den Winkel \(360^\circ/n\). Für uns bedeutet dies lediglich, dass unser zweiter Punkt \(A'\) abgedreht wird. An der neuen Position \(B\) von \(A'\) muss also auch ein Punkt des Gitters sein, um die Rotationssymmetrie zu erfüllen. \item \(B\) ist unser Name für diesen neuen Punkt. - Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir \(C_\alpha\) auch auf \(A'\) anwenden. - Also wenden wir \(C_\alpha\) invertiert + Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir \(C_n\) auch auf \(A'\) anwenden. + Also wenden wir \(C_n\) invertiert \footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren. Genauere Überlegungen hierzu werden dem Leser überlassen, da sich die Autoren nicht explizit mit dieser Frage Auseinander gesetzt haben.} auch auf \(A'\) an. @@ -104,6 +113,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. \alpha \in \left\{ 0^\circ, 60^\circ, 90^\circ, 120^\circ, 180^\circ\right\} \) ein. +\end{proof} \begin{figure} \centering -- cgit v1.2.1 From f33a109c77b9430ce39d2513ee48b4d820527922 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 09:26:23 +0200 Subject: Fix typo in Makefile.inc --- buch/papers/punktgruppen/Makefile.inc | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/Makefile.inc b/buch/papers/punktgruppen/Makefile.inc index 3b49602..fbb073e 100644 --- a/buch/papers/punktgruppen/Makefile.inc +++ b/buch/papers/punktgruppen/Makefile.inc @@ -11,15 +11,15 @@ dependencies-punktgruppen = \ papers/punktgruppen/crystals.tex \ papers/punktgruppen/piezo.tex \ papers/punktgruppen/references.bib \ - paers/punktgruppen/tikz/atoms-grid-force.tex \ - paers/punktgruppen/tikz/atoms-grid-still.tex \ - paers/punktgruppen/tikz/atoms-piezo-force-horizontal.tex \ - paers/punktgruppen/tikz/atoms-piezo-force-vertical.tex \ - paers/punktgruppen/tikz/atoms-piezo-still.tex \ - paers/punktgruppen/tikz/combine-symmetries.tex \ - paers/punktgruppen/tikz/lattice.tex \ - paers/punktgruppen/tikz/piezo-atoms.tex \ - paers/punktgruppen/tikz/piezo.tex \ - paers/punktgruppen/tikz/projections.tex \ - paers/punktgruppen/tikz/stereographic-projections.tex \ - paers/punktgruppen/tikz/symmetric-shapes.tex + papers/punktgruppen/tikz/atoms-grid-force.tex \ + papers/punktgruppen/tikz/atoms-grid-still.tex \ + papers/punktgruppen/tikz/atoms-piezo-force-horizontal.tex \ + papers/punktgruppen/tikz/atoms-piezo-force-vertical.tex \ + papers/punktgruppen/tikz/atoms-piezo-still.tex \ + papers/punktgruppen/tikz/combine-symmetries.tex \ + papers/punktgruppen/tikz/lattice.tex \ + papers/punktgruppen/tikz/piezo-atoms.tex \ + papers/punktgruppen/tikz/piezo.tex \ + papers/punktgruppen/tikz/projections.tex \ + papers/punktgruppen/tikz/stereographic-projections.tex \ + papers/punktgruppen/tikz/symmetric-shapes.tex -- cgit v1.2.1 From cb91b7005c8a886e05595d73710ee3dfa29fe193 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 10:37:52 +0200 Subject: Fix broken references --- buch/papers/punktgruppen/crystals.tex | 8 ++------ 1 file changed, 2 insertions(+), 6 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 5211b68..33e7b54 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -154,13 +154,9 @@ Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Un Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\) Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. -Dank Abschintt \ref{txt:punktgruppen: Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen. +Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen. Da das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. -Inzwischen wissen wir auch, dass \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da -\[ - 360^\circ/5 = 72^\circ -\] -was nach Abschnitt \ref{txt:punktgruppen: Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. +Inzwischen wissen wir auch, dass \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. Wie zum Beispiel ein Inversionszentrum \footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} -- cgit v1.2.1 From 0d46748d5accdf9f2f176dc72c287cfcef7433f8 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 11:10:46 +0200 Subject: Update symmetry section --- buch/papers/punktgruppen/symmetry.tex | 117 ++++++++++++++++++++-------------- 1 file changed, 70 insertions(+), 47 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 6655864..dd8883e 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -26,22 +26,19 @@ ist das Konzept der Symmetrie eigentlich viel allgemeiner. \subsection{Geometrische Symmetrien} In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, -die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, an -deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige -Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete -Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um -einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert -lässt. Das letzte Beispiel auf der rechten Seite ist eine unendliche -Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für -\(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. - -% Vieleicht eine kurze Einführung in für die Definition, ich habe das gefühl, dass in der Definition die Symmetrie-Operation und die Gruppe auf einmal erklährt wird -\subsubsection{Symetriegruppe} -\texttt{TODO: review this paragraph, explain what is \(\mathds{1}\).} -Ein Objekt kann mehr als nur eine Symmetrie aufweisen. -Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} -nicht nur um $\sigma$ sondern auch Diagonal gespiegelt werden oder um $90^\circ$ gedreht werden. -Fässt man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. +die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, +an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. +Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine +diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine +Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur +unverändert lässt. Das letzte Beispiel auf der rechten Seite ist eine +unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele +Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Ein +Objekt kann mehr als nur eine Symmetrie aufweisen. Als Beispiel, kann das +Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um +\(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht +werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine +Symmetriegruppe. \begin{definition}[Symmetriegruppe] Sei \(g\) eine umkehrbare Operation, die ein mathematisches Objekt @@ -51,7 +48,18 @@ Fässt man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. wird. \end{definition} % ich lese diese Definition ein wenig holprig, vieleicht können wir sie zusammen anschauen -% Nach meinem Geschmack könne es hier auch eine einleitung wie mein Beispiel geben dammit man den Text flüssiger lesen kann +Ausserdem benötigen wir zur Bildung einer Gruppe ein neutrales Element, das wir +mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist +gleichbedeutend damit, alles unverändert zu lassen. \(\mathds{1}\) ist auch +äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen +(ihre Umkehrung anzuwenden). +Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, +es wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass +manchmal die Zusammensetzung algebraisch durch eine Multiplikation berechnet +wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige +Ausdrücke kompakter zu schreiben, z.B. durch Verwendung von Potenzen \(r^n = +r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. + \begin{definition}[Zyklische Untergruppe, Erzeuger] Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische @@ -59,18 +67,28 @@ Fässt man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. \end{definition} +\begin{beispiel} + Um die Syntax zu verstehen, betrachten Sie eine durch \(a\) erzeugte Gruppe + \(G = \langle a \rangle\). Das bedeutet, dass \(G\) die Elemente \(a, aa, + aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales + Element \(\mathds{1} = aa^{-1}\) enthält. +\end{beispiel} +\begin{beispiel} + Nun zu einem sinnvolleren Beispiel, wir können das \(n\)-Gon Beispiel + formalisieren. Bezeichnen wir mit \(r\) eine Drehung im Gegenuhrzeigersinn + von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die + gesamte Symmetriegruppe + \[ + C_n = \langle r \rangle + = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} + \] + der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch + die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die + Rotationssymmetrie bewahrt. In ähnlicher Weise, aber weniger interessant die + Reflexionssymmetriegruppe \(\langle\sigma\rangle\) enthält nur + \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). +\end{beispiel} -Damit können wir das \(n\)-Gon Beispiel formalisieren. -Bezeichnen wir mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) -um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe -\[ - C_n = \langle r \rangle - = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} -\] -der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch die -mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die -Rotationssymmetrie bewahrt. Hier die Potenzen von \(r\) sind als wiederholte -Komposition gemeint, dass heisst \(r^n = r\circ r \circ \cdots r\circ r\). Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystemen komplexere Strukturen aufbauen. @@ -84,18 +102,24 @@ komplexere Strukturen aufbauen. in den Klammern angegeben. Die erzeugende Elementen zusammen mit der Definitionsgleichungen bauen ein Erzeugendensysteme. \end{definition} - -\texttt{TODO: should put examples for generators?} \\ - -Die Reflexionssymmetriegruppe ist nicht so interessant, da sie nur -\(\left\{\mathds{1}, \sigma\right\}\) enthält. Kombiniert man sie jedoch mit -der Rotation, erhält man die so genannte Diedergruppe -\[ - D_n = \langle r, \sigma : r^{n-1} = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle - = \left\{ - \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} - \right\}. -\] +\begin{beispiel} + Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, + dass wir die Operationen \(r\) und \(\sigma\) kombinieren. Die + Definitionsgleichungen sind \(r^n = \mathds{1}\), \(\sigma^2 = + \mathds{1}\) und \((\sigma r)^2 = \mathds{1}\). + Die ersten beiden sind ziemlich offensichtlich. Die letzte wird oft auch als + Inversion bezeichnet, weil die Anwendung von \(\sigma r\) dasselbe ist wie + das Ziehen einer Linie von einem Punkt, die durch den Ursprung geht, und das + Verschieben des Punktes auf die andere Seite des Nullpunkts. Wenn man das + zweimal macht, geht man zurück zum Anfangspunkt. + Daraus ergibt sich die so genannte Diedergruppe + \begin{align*} + D_n &= \langle r, \sigma : r^n = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle \\ + &= \left\{ + \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} + \right\}. + \end{align*} +\end{beispiel} Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. Im @@ -105,16 +129,16 @@ Symmetrien gibt, die jeden Punkt zu einem anderen Punkt verschieben können. Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, nennt man Punktsymmetrie. \begin{definition}[Punktgruppe] - Wenn jede Operation in einer Symmetriegruppe die Eigenschaft hat, mindestens - einen Punkt unverändert zu lassen, sagt man, dass die Symmetriegruppe eine - Punktgruppe ist. + Wenn es einen Punkt gibt, der von jeder Gruppenoperation unverändert gelassen + wird, sagt man, dass die Symmetriegruppe eine Punktgruppe ist. \end{definition} \subsection{Algebraische Symmetrien} Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich -möglich ist, Gleichungen zu schreiben. Die naheliegende Frage ist dann, könnte -es sein, dass wir bereits etwas haben, das dasselbe tut? Natürlich, ja. -Um es formaler zu beschreiben, werden wir einige Begriffe einführen. +möglich ist, Gleichungen zu schreiben. Die folgende Frage ist dann, ob wir +bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die +sich auf die gleiche Weise verhalten. Die Antwort lautet natürlich ja. Um es +formaler zu beschreiben, werden wir einige Begriffe einführen. \begin{definition}[Gruppenhomomorphismus] Seien \(G\) und \(H\) Gruppe mit unterschiedlicher Operation \(\diamond\) bzw. \(\star\). Ein Homomorphismus\footnote{ Für eine ausführlichere @@ -154,7 +178,6 @@ Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \circ r) = \Phi(r^2)\Phi(r)\). \end{beispiel} -\texttt{TODO: rewrite section on translational symmetry.} %% TODO: title / fix continuity % Um das Konzept zu illustrieren, werden wir den umgekehrten Fall diskutieren: % eine Symmetrie, die keine Punktsymmetrie ist, die aber in der Physik sehr -- cgit v1.2.1 From 9cf1c0416deac9e1f5043775a1b25f9a1f4de07c Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 11:15:33 +0200 Subject: Make crystal basis vector notation consistent with pictures --- buch/papers/punktgruppen/crystals.tex | 16 +++++++--------- 1 file changed, 7 insertions(+), 9 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 33e7b54..0cea6ef 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -18,27 +18,25 @@ Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. \subsection{Kristallgitter} Ein zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattice}. Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes dargestellt und betrachten dies nur in zwei Dimensionen. -Die eingezeichneten Vektoren \(\vec{a}\) und \(\vec{b}\) sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. -Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}\) und \(\vec{b}\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. +Die eingezeichneten Vektoren \(\vec{a}_1\) und \(\vec{a}_2\) sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. +Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{c}\) also \[ - \vec{r} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c} + \vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \sum_i n_i \vec{a}_i \] -erreicht werden sofern $\{n_1,n_2,n_3\} \in \mathbb{Z}$ sind. -Sind die Vektoren $\vec{a}$ , $\vec{b}$ , $\vec{c}$ gegeben, -ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. +erreicht werden sofern \(n_1,n_2,n_3 \in \mathbb{Z}\) sind. +Sind die Vektoren \(\vec{a}_1\), \(\vec{a}_2\), \(\vec{a}_3\) gegeben, ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. \subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. -Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, -da die Umgebungen aller Punkte identisch sind. +Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, da die Umgebungen aller Punkte identisch sind. Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{Translationssymmetrisch} in der Translation \[ \vec{Q}_i(G) = G + \vec{a}_i \] wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination -der Vektoren $\vec{a}$ , $\vec{b}$ und $\vec{c}$ erlaubt sind oder kurz, um $\vec{r}$. +der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind oder kurz, um $\vec{r}$. Verschiebungen um $\vec{r}$ bewirken demnach keine Veränderungen, solange wir ein unendlich grosses Kristallgitter verschieben. -- cgit v1.2.1 From 7613cec184c17ed05460e991603529ebacf029c5 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 23 Jul 2021 13:19:38 +0200 Subject: Small rewrites in symmetry.txt and minor topos fixed --- buch/papers/punktgruppen/crystals.tex | 9 ++++--- buch/papers/punktgruppen/intro.tex | 8 +++--- buch/papers/punktgruppen/symmetry.tex | 47 +++++++++++++++++------------------ 3 files changed, 32 insertions(+), 32 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 0cea6ef..465c862 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -149,12 +149,13 @@ Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. -Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\) Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). +Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. -Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen. -Da das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. -Inzwischen wissen wir auch, dass \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. +Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, +Weol das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. +Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt +\ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. Wie zum Beispiel ein Inversionszentrum \footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index d2e4644..b6a72b5 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -9,16 +9,16 @@ Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, was in der Welt der Kristallographie alles möglich ist oder nicht. -Die Einschränkungen sind durchaus willkommen, -dank ihnen halten sich die möglichen Kristallgitter in Grenzen -und lassen sich kategorisieren.%umformulieren +Einschränkungen in Kristallsymmetrien sind durchaus willkommen, +da dank ihnen sich die möglichen Kristallgitter in Grenzen halten +und sich kategorisieren lassen. Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. Die Piezoelektrizität ist vielleicht noch nicht jedem bekannt, sie versteckt sich aber in diversen Altagsgegenständen zum Beispiel sorgen sie in den meisten Feuerzeugen für die Zündung. -Ein Funken Interesse ist hoffentlich geweckt +Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index dd8883e..07f2bc5 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -4,7 +4,7 @@ ursprünglichen griechischen Wort \(\mathrm{\Sigma\upsilon\mu\mu\varepsilon\tau\rho\iota\alpha}\) \footnote{\emph{Symmetr\'ia}: ein gemeinsames Mass habend, gleichmässig, verhältnismässig} fast nicht verändert. In der Alltagssprache mag es ein -locker definierter Begriff sein, aber in der Mathematik hat Symmetrie eine sehr +locker definierter Begriff sein, in der Mathematik hat Symmetrie jedoch eine sehr präzise Bedeutung. \begin{definition}[Symmetrie] Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer @@ -27,43 +27,42 @@ ist das Konzept der Symmetrie eigentlich viel allgemeiner. In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, -an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. +an deren es gespiegelt(Operation) werden kann, ohne sein Aussehen zu verändern(invariant). %What do you think about the () Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine -Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur +Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele -Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Ein -Objekt kann mehr als nur eine Symmetrie aufweisen. Als Beispiel, kann das +Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Ein Objekt kann mehr als nur eine Symmetrie aufweisen. Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - Sei \(g\) eine umkehrbare Operation, die ein mathematisches Objekt - unverändert lässt. Bei einer anderen Operation \(h\) definieren wir die - Komposition \(h\circ g\) als die Anwendung der Operationen nacheinander. Alle - Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt - wird. -\end{definition} % ich lese diese Definition ein wenig holprig, vieleicht können wir sie zusammen anschauen + \(g\) und \(h\) sein umkehrbare Operationen, die ein mathematisches Objekt + unverändert lassen. Die Komposition \(h\circ g\) definieren wir als die Anwendung + der Operationen nacheinander. Alle möglichen Operationen bilden unter Komposition eine Gruppe, + die Symmetriegruppe genannt wird. +\end{definition} % rewritten, make shore it works for you -Ausserdem benötigen wir zur Bildung einer Gruppe ein neutrales Element, das wir +Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. \(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Umkehrung anzuwenden). Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, es wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass -manchmal die Zusammensetzung algebraisch durch eine Multiplikation berechnet +in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B. durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. \begin{definition}[Zyklische Untergruppe, Erzeuger] - Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen + \(g\) sei ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische - Untergruppe von \(G\), und \(g\) wird ihr Erzeuger genannt. Die von \(g\) + Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. \end{definition} @@ -74,8 +73,8 @@ r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. Element \(\mathds{1} = aa^{-1}\) enthält. \end{beispiel} \begin{beispiel} - Nun zu einem sinnvolleren Beispiel, wir können das \(n\)-Gon Beispiel - formalisieren. Bezeichnen wir mit \(r\) eine Drehung im Gegenuhrzeigersinn + Als anschaulicheres Beispiel, können wir eine Zyklische Untergruppe des \(n\)-Gon + formalisieren. Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ @@ -84,8 +83,8 @@ r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. \] der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die - Rotationssymmetrie bewahrt. In ähnlicher Weise, aber weniger interessant die - Reflexionssymmetriegruppe \(\langle\sigma\rangle\) enthält nur + Rotationssymmetrie bewahrt. In ähnlicher Weise, aber weniger interessant + enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). \end{beispiel} @@ -110,7 +109,7 @@ komplexere Strukturen aufbauen. Die ersten beiden sind ziemlich offensichtlich. Die letzte wird oft auch als Inversion bezeichnet, weil die Anwendung von \(\sigma r\) dasselbe ist wie das Ziehen einer Linie von einem Punkt, die durch den Ursprung geht, und das - Verschieben des Punktes auf die andere Seite des Nullpunkts. Wenn man das + Verschieben des Punktes auf die andere Seite des Nullpunkts. Wenn man dies zweimal macht, geht man zurück zum Anfangspunkt. Daraus ergibt sich die so genannte Diedergruppe \begin{align*} @@ -126,21 +125,21 @@ mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. Im Fall der Rotation war es der Drehpunkt, bei der Spiegelung die Punkte der Spiegelachse. Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es Symmetrien gibt, die jeden Punkt zu einem anderen Punkt verschieben können. -Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, nennt man +Diesen Spezialfall, bei dem immer mindestens ein Punkt unverändert bleibt, nennt man Punktsymmetrie. \begin{definition}[Punktgruppe] Wenn es einen Punkt gibt, der von jeder Gruppenoperation unverändert gelassen - wird, sagt man, dass die Symmetriegruppe eine Punktgruppe ist. + wird, ist die Symmetriegruppe eine Punktgruppe. \end{definition} \subsection{Algebraische Symmetrien} Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich -möglich ist, Gleichungen zu schreiben. Die folgende Frage ist dann, ob wir +möglich ist, Gleichungen zu schreiben. Die anschliesende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. Die Antwort lautet natürlich ja. Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \begin{definition}[Gruppenhomomorphismus] - Seien \(G\) und \(H\) Gruppe mit unterschiedlicher Operation \(\diamond\) + \(G\) und \(H\) seien Gruppen mit unterschiedlichen Operationen \(\diamond\) bzw. \(\star\). Ein Homomorphismus\footnote{ Für eine ausführlichere Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt -- cgit v1.2.1 From 846a04a614a53cb8a5978057364b8b88d7a38e25 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 13:40:10 +0200 Subject: One sentence per line, small typos and fix footnotes Sorry for the fixed 72 chars. Tip! With Vim one can use vipJ and then :'<,'>s:\. :\.\r:g to do this *very* quickly. --- buch/papers/punktgruppen/crystals.tex | 50 +++---- buch/papers/punktgruppen/symmetry.tex | 246 +++++++++++++--------------------- 2 files changed, 112 insertions(+), 184 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 465c862..de3deda 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -79,8 +79,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. An der neuen Position \(B\) von \(A'\) muss also auch ein Punkt des Gitters sein, um die Rotationssymmetrie zu erfüllen. \item \(B\) ist unser Name für diesen neuen Punkt. Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir \(C_n\) auch auf \(A'\) anwenden. - Also wenden wir \(C_n\) invertiert - \footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren. + Also wenden wir \(C_n\) invertiert\footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren. Genauere Überlegungen hierzu werden dem Leser überlassen, da sich die Autoren nicht explizit mit dieser Frage Auseinander gesetzt haben.} auch auf \(A'\) an. Dies dreht \(A\) auf einen neuen Punkt. @@ -119,21 +118,20 @@ ein. \caption{ Stereografische Projektion einer \(C_{i}\) Symmetrie. Es wird eine Linie vom magentafarbenen Punkt auf der oberen Hälfte der Kugel zum Südpol gezogen. Wo die Linie die Ebene schneidet (\(z = 0\)), ist die Projektion des Punktes. - Die Koordinaten der Projektionen sind einfach zu berechnen: - ein Punkt auf eine Kugel mit Radius \(r\) mit den Koordinaten \(x, y, z,\) wird auf \(xr/(r + z), yr/(r + z)\) projiziert. + Die Koordinaten der Projektionen sind einfach zu berechnen: ein Punkt auf eine Kugel mit Radius \(r\) mit den Koordinaten \(x, y, z,\) wird auf \(xr/(r + z), yr/(r + z)\) projiziert. Für den orangefarbenen Punkt unterhalb des Äquators wird die Linie zum Nordpol gezogen und die Projektionsformel hat stattdessen einen Nenner von \(r - z\). } \label{fig:punktgruppen:stereographic-projections} \end{figure} \subsection{Kristallklassen} + Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. -Mit weiteren ähnlichen Überlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum -nur auf genau 32 Arten rein punktsymmetrische -Symmetriegruppen bilden können. -Diese 32 möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. -Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen. -Die Darstellung von dreidimensionalen Punktsymmetrien wurde mit der stereographischen Projektion ermöglicht (siehe Abb. \ref{fig:punktgruppen:stereographic-projections}), wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. + Mit weiteren ähnlichen Überlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum nur auf genau 32 Arten rein punktsymmetrische Symmetriegruppen bilden können. + Diese 32 möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. + Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen. + Die Darstellung von dreidimensionalen Punktsymmetrien wurde mit der stereographischen Projektion ermöglicht (siehe Abbildung \ref{fig:punktgruppen:stereographic-projections}), wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. + \begin{figure} \centering @@ -145,26 +143,18 @@ Die Darstellung von dreidimensionalen Punktsymmetrien wurde mit der stereographi \subsubsection{Schönflies-Symbilok} Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schöönflies-Symbol bezeichnet. -Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, -welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. -Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. -Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. -Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). -Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. -Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. -Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, -Weol das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. -Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt -\ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. -Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. -Wie zum Beispiel ein Inversionszentrum -\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} -\(i\) oder eine horizontale -\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} -Spiegelachse \(h\). -Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. -\(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer -sechsfachen Drehspiegelsymmetrie entspricht. + Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. + Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. + Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. + Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). + Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. + Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. + Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, Weol das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. + Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. + Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). + Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. + \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 07f2bc5..0bb4aec 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -1,196 +1,134 @@ \section{Symmetrie} Das Wort Symmetrie ist sehr alt und hat sich seltsamerweise von seinem -ursprünglichen griechischen Wort -\(\mathrm{\Sigma\upsilon\mu\mu\varepsilon\tau\rho\iota\alpha}\) -\footnote{\emph{Symmetr\'ia}: ein gemeinsames Mass habend, gleichmässig, -verhältnismässig} fast nicht verändert. In der Alltagssprache mag es ein -locker definierter Begriff sein, in der Mathematik hat Symmetrie jedoch eine sehr -präzise Bedeutung. +ursprünglichen griechischen Wort \(\mathrm{\Sigma\upsilon\mu\mu\varepsilon\tau\rho\iota\alpha}\)\footnote{\emph{Symmetr\'ia}: ein gemeinsames Mass habend, gleichmässig,verhältnismässig} fast nicht verändert. +In der Alltagssprache mag es ein locker definierter Begriff sein, in der Mathematik hat Symmetrie jedoch eine sehr präzise Bedeutung. \begin{definition}[Symmetrie] - Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer - bestimmten Operation invariant ist. + Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer bestimmten Operation invariant ist. \end{definition} -Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit -einigen geometrischen Beispielen beginnen. Wie wir jedoch später sehen werden, -ist das Konzept der Symmetrie eigentlich viel allgemeiner. +Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit einigen geometrischen Beispielen beginnen. +Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich viel allgemeiner. \begin{figure} - \centering - \includegraphics{papers/punktgruppen/figures/symmetric-shapes} - \caption{ - Beispiele für geometrisch symmetrische Formen. - \label{fig:punktgruppen:geometry-example} - } + \centering + \includegraphics{papers/punktgruppen/figures/symmetric-shapes} + \caption{ + Beispiele für geometrisch symmetrische Formen. + \label{fig:punktgruppen:geometry-example} + } \end{figure} \subsection{Geometrische Symmetrien} -In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, -die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, -an deren es gespiegelt(Operation) werden kann, ohne sein Aussehen zu verändern(invariant). %What do you think about the () -Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine -diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine -Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur -unverändert lässt. Das letzte Beispiel auf der rechten Seite ist eine -unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele -Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. -Ein Objekt kann mehr als nur eine Symmetrie aufweisen. Als Beispiel, kann das -Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um -\(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht -werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine -Symmetriegruppe. +In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. +Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. +Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. +Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Ein Objekt kann mehr als nur eine Symmetrie aufweisen. +Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. +Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - \(g\) und \(h\) sein umkehrbare Operationen, die ein mathematisches Objekt - unverändert lassen. Die Komposition \(h\circ g\) definieren wir als die Anwendung - der Operationen nacheinander. Alle möglichen Operationen bilden unter Komposition eine Gruppe, - die Symmetriegruppe genannt wird. -\end{definition} % rewritten, make shore it works for you + \(g\) und \(h\) sein umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. + Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. + Alle möglichen Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. +\end{definition} -Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir -mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist -gleichbedeutend damit, alles unverändert zu lassen. \(\mathds{1}\) ist auch -äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen -(ihre Umkehrung anzuwenden). -Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, -es wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass -in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet -wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige -Ausdrücke kompakter zu schreiben, z.B. durch Verwendung von Potenzen \(r^n = -r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. +Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. +Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. +\(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Inverse anzuwenden). + Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, es wird aber auch oft als Multiplikation geschrieben. +Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. +Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B. +durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. \begin{definition}[Zyklische Untergruppe, Erzeuger] - \(g\) sei ein Element einer Symmetriegruppe \(G\). Alle möglichen - Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische - Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. Die von \(g\) - erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} - \right\}\) wird mit spitzen Klammern bezeichnet. + \(g\) sei ein Element einer Symmetriegruppe \(G\). + Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. + Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. \end{definition} \begin{beispiel} - Um die Syntax zu verstehen, betrachten Sie eine durch \(a\) erzeugte Gruppe - \(G = \langle a \rangle\). Das bedeutet, dass \(G\) die Elemente \(a, aa, - aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales - Element \(\mathds{1} = aa^{-1}\) enthält. + Um die Syntax zu verstehen, betrachten wir eine durch \(a\) erzeugte Gruppe \(G = \langle a \rangle\). + Das bedeutet, dass \(G\) die Elemente \(a, aa, aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales Element \(\mathds{1} = aa^{-1}\) enthält. \end{beispiel} \begin{beispiel} - Als anschaulicheres Beispiel, können wir eine Zyklische Untergruppe des \(n\)-Gon - formalisieren. Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn - von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die - gesamte Symmetriegruppe - \[ - C_n = \langle r \rangle - = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} - \] - der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch - die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die - Rotationssymmetrie bewahrt. In ähnlicher Weise, aber weniger interessant - enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur - \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). + Als anschaulicheres Beispiel, können wir eine Zyklische Untergruppe des \(n\)-Gon formalisieren. + Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. + Diese Definition reicht aus, um die gesamte Symmetriegruppe + \[ + C_n = \langle r \rangle + = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} + \] + der Drehungen eines \(n\)-Gons zu erzeugen. + Das liegt daran, dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die Rotationssymmetrie bewahrt. + In ähnlicher Weise, aber weniger interessant enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). \end{beispiel} Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystemen komplexere Strukturen aufbauen. \begin{definition}[Erzeugendensysteme] - % please fix this unreadable mess - Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert - werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer - Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die - sogenannte Definitionsgleichungen gegeben werden, die die - Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls - in den Klammern angegeben. Die erzeugende Elementen zusammen mit der - Definitionsgleichungen bauen ein Erzeugendensysteme. + Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. + Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. + Da es mehrere Erzeuger gibt, müssen auch die sogenannte Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. + Die Gleichungen sind ebenfalls in den Klammern angegeben. + Die erzeugende Elementen zusammen mit der Definitionsgleichungen bauen ein Erzeugendensysteme. \end{definition} \begin{beispiel} - Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, - dass wir die Operationen \(r\) und \(\sigma\) kombinieren. Die - Definitionsgleichungen sind \(r^n = \mathds{1}\), \(\sigma^2 = - \mathds{1}\) und \((\sigma r)^2 = \mathds{1}\). - Die ersten beiden sind ziemlich offensichtlich. Die letzte wird oft auch als - Inversion bezeichnet, weil die Anwendung von \(\sigma r\) dasselbe ist wie - das Ziehen einer Linie von einem Punkt, die durch den Ursprung geht, und das - Verschieben des Punktes auf die andere Seite des Nullpunkts. Wenn man dies - zweimal macht, geht man zurück zum Anfangspunkt. - Daraus ergibt sich die so genannte Diedergruppe - \begin{align*} - D_n &= \langle r, \sigma : r^n = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle \\ - &= \left\{ - \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} - \right\}. - \end{align*} + Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, dass wir die Operationen \(r\) und \(\sigma\) kombinieren. + Die Definitionsgleichungen sind \(r^n = \mathds{1}\), \(\sigma^2 = \mathds{1}\) und \((\sigma r)^2 = \mathds{1}\). + Die ersten beiden sind ziemlich offensichtlich. + Die letzte wird oft auch als Inversion bezeichnet, weil die Anwendung von \(\sigma r\) dasselbe ist wie das Ziehen einer Linie von einem Punkt, die durch den Ursprung geht, und das Verschieben des Punktes auf die andere Seite des Nullpunkts. + Wenn man dies zweimal macht, geht man zurück zum Anfangspunkt. + Daraus ergibt sich die so genannte Diedergruppe + \begin{align*} + D_n &= \langle r, \sigma : r^n = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle \\ + &= \left\{ + \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} + \right\}. + \end{align*} \end{beispiel} -Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer -mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. Im -Fall der Rotation war es der Drehpunkt, bei der Spiegelung die Punkte der -Spiegelachse. Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es -Symmetrien gibt, die jeden Punkt zu einem anderen Punkt verschieben können. -Diesen Spezialfall, bei dem immer mindestens ein Punkt unverändert bleibt, nennt man -Punktsymmetrie. +Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. +Im Fall der Rotation war es der Drehpunkt, bei der Spiegelung die Punkte der Spiegelachse. +Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es Symmetrien gibt, die jeden Punkt zu einem anderen Punkt verschieben können. + Diesen Spezialfall, bei dem immer mindestens ein Punkt unverändert bleibt, nennt man Punktsymmetrie. \begin{definition}[Punktgruppe] - Wenn es einen Punkt gibt, der von jeder Gruppenoperation unverändert gelassen - wird, ist die Symmetriegruppe eine Punktgruppe. + Wenn es einen Punkt gibt, der von jeder Gruppenoperation unverändert gelassen wird, ist die Symmetriegruppe eine Punktgruppe. \end{definition} \subsection{Algebraische Symmetrien} -Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich -möglich ist, Gleichungen zu schreiben. Die anschliesende Frage ist dann, ob wir -bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die -sich auf die gleiche Weise verhalten. Die Antwort lautet natürlich ja. Um es -formaler zu beschreiben, werden wir einige Begriffe einführen. +Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich möglich ist, Gleichungen zu schreiben. +Die anschliesende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. +Die Antwort lautet natürlich ja. +Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \begin{definition}[Gruppenhomomorphismus] - \(G\) und \(H\) seien Gruppen mit unterschiedlichen Operationen \(\diamond\) - bzw. \(\star\). Ein Homomorphismus\footnote{ Für eine ausführlichere - Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist - eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt - \(f(a\diamond b) = f(a) \star f(b)\). Man sagt, dass der Homomorphismus - \(f\) \(G\) in \(H\) transformiert. + \(G\) und \(H\) seien Gruppen mit unterschiedlichen Operationen \(\diamond\) bzw. + \(\star\). + Ein Homomorphismus\footnote{ Für eine ausführlichere Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt \(f(a\diamond b) = f(a) \star f(b)\). + Man sagt, dass der Homomorphismus \(f\) \(G\) in \(H\) transformiert. \end{definition} \begin{beispiel} - Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen - Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem - komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) - ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben. + Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem komplexen Einheitskreis. + Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben. \end{beispiel} \begin{definition}[Darstellung einer Gruppe] - Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe - auf eine Menge von Matrizen abbildet. - \[ - \Phi: G \to \operatorname{GL}_n(\mathbb{R}). - \] - Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen - Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\). + Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe auf eine Menge von Matrizen abbildet. + \[ + \Phi: G \to \operatorname{GL}_n(\mathbb{R}). + \] + Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\). \end{definition} \begin{beispiel} - Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine - Drehung von \(2\pi k/n\) um den Ursprung dar. Die mit der Matrix - \[ - \Phi(r^k) = \begin{pmatrix} - \cos(2\pi k/n) & -\sin(2\pi k/n) \\ - \sin(2\pi k/n) & \cos(2\pi k/n) - \end{pmatrix} - \] - definierte Funktion von \(C_n\) nach \(O(2)\) ist eine Darstellung von - \(C_n\). In diesem Fall ist die erste Gruppenoperation die Komposition und - die zweite die Matrixmultiplikation. Man kann überprüfen, dass \(\Phi(r^2 - \circ r) = \Phi(r^2)\Phi(r)\). + Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine Drehung von \(2\pi k/n\) um den Ursprung dar. + Die mit der Matrix + \[ + \Phi(r^k) = \begin{pmatrix} + \cos(2\pi k/n) & -\sin(2\pi k/n) \\ + \sin(2\pi k/n) & \cos(2\pi k/n) + \end{pmatrix} + \] + definierte Funktion von \(C_n\) nach \(O(2)\) ist eine Darstellung von \(C_n\). + In diesem Fall ist die erste Gruppenoperation die Komposition und die zweite die Matrixmultiplikation. + Man kann überprüfen, dass \(\Phi(r^2 \circ r) = \Phi(r^2)\Phi(r)\). \end{beispiel} - -%% TODO: title / fix continuity -% Um das Konzept zu illustrieren, werden wir den umgekehrten Fall diskutieren: -% eine Symmetrie, die keine Punktsymmetrie ist, die aber in der Physik sehr -% nützlich ist, nämlich die Translationssymmetrie. Von einem mathematischen -% Objekt \(U\) wird gesagt, dass es eine Translationssymmetrie \(Q(x) = x + a\) -% hat, wenn es die Gleichung -% \[ -% U(x) = U(Q(x)) = U(x + a), -% \] -% für ein gewisses \(a\), erfüllt. Zum Beispiel besagt das erste Newtonsche -% Gesetz, dass ein Objekt, auf das keine Kraft einwirkt, eine -% zeitranslationsinvariante Geschwindigkeit hat, d.h. wenn \(\vec{F} = \vec{0}\) -% dann \(\vec{v}(t) = \vec{v}(t + \tau)\). - -% \subsection{Sch\"onflies notation} - -% vim:ts=2 sw=2 spell spelllang=de: -- cgit v1.2.1 From 67c134a41c5b47b926d0b5e461892dd267f36b5a Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Jul 2021 18:07:14 +0200 Subject: Fix typo --- buch/papers/punktgruppen/crystals.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index de3deda..21e29c9 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -149,7 +149,7 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkass Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. - Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, Weol das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. + Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). -- cgit v1.2.1 From 22d2b924b156f953409cd9f524501c7d71f7eb9b Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 27 Jul 2021 08:50:58 +0200 Subject: Some corrections from feedback --- buch/papers/punktgruppen/crystals.tex | 51 ++++++++++++++++++---------------- buch/papers/punktgruppen/piezo.tex | 52 +++++++++++++++++------------------ buch/papers/punktgruppen/symmetry.tex | 18 ++++++------ 3 files changed, 62 insertions(+), 59 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 21e29c9..18b8395 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -1,5 +1,6 @@ \section{Kristalle} -%einleitung sollte noch an das ende von der Symmetrie angepasst werden +% TODO: einleitung sollte noch an das ende von der Symmetrie angepasst werden +% TODO: sich jeder => paper sprache Unter dem Begriff Kristall sollte sich jeder ein Bild machen können. Wir werden uns aber nicht auf sein Äusseres fokussieren, sondern was ihn im Inneren ausmacht. Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. @@ -30,10 +31,11 @@ Sind die Vektoren \(\vec{a}_1\), \(\vec{a}_2\), \(\vec{a}_3\) gegeben, ist ein \subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, da die Umgebungen aller Punkte identisch sind. -Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{Translationssymmetrisch} in der Translation +Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{translationssymmetrisch} in der Translation \[ - \vec{Q}_i(G) = G + \vec{a}_i -\] wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. + \vec{Q}_i(G) = G + \vec{a}_i, +\] +wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind oder kurz, um $\vec{r}$. @@ -62,7 +64,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. 90\(^{\circ}\), 120\(^{\circ}\) und 180\(^{\circ}\) - erlaubt. + m\"oglich. \end{satz} \begin{proof} @@ -78,9 +80,8 @@ solange wir ein unendlich grosses Kristallgitter verschieben. Für uns bedeutet dies lediglich, dass unser zweiter Punkt \(A'\) abgedreht wird. An der neuen Position \(B\) von \(A'\) muss also auch ein Punkt des Gitters sein, um die Rotationssymmetrie zu erfüllen. \item \(B\) ist unser Name für diesen neuen Punkt. - Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir \(C_n\) auch auf \(A'\) anwenden. - Also wenden wir \(C_n\) invertiert\footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren. - Genauere Überlegungen hierzu werden dem Leser überlassen, da sich die Autoren nicht explizit mit dieser Frage Auseinander gesetzt haben.} + Da auch die Eigenschaften des Kristallgitters periodisch mit dem Gitter sein müssen, dürfen wir \(C_n\) auch auf \(A'\) anwenden. + Also wenden wir \(C_n\) invertiert\footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren.} auch auf \(A'\) an. Dies dreht \(A\) auf einen neuen Punkt. \item \(B'\) ist kein zufälliger Name für diesen neuen Punkt, denn wir wissen, dass zwischen allen Punkten eine Translationssymmetrie bestehen muss. @@ -89,14 +90,14 @@ solange wir ein unendlich grosses Kristallgitter verschieben. Mit den gegebenen Punkten lassen sich geometrische Folgerungen ziehen. Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\). Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). - Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes vielfaches von \(\vec{Q}\) sein. - Demnach auch die Längen + Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes Vielfaches von \(\vec{Q}\) sein. + Demnach ist auch die Länge \[ - Q' = nQ = Q + 2x + Q' = nQ = Q + 2x . \] - Die Strecke \(x\) lässt sich auch mit hilfe der Trigonometrie und dem angenommenen Rotationswinkel \(\alpha\) ausdrücken: + Die Strecke \(x\) lässt sich auch mit Hilfe der Trigonometrie und dem angenommenen Rotationswinkel \(\alpha\) ausdrücken: \[ - nQ = Q + 2Q\sin(\alpha - \pi/2) + nQ = Q + 2Q\sin(\alpha - \pi/2) . \] Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. @@ -126,7 +127,7 @@ ein. \subsection{Kristallklassen} -Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. +Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. Mit weiteren ähnlichen Überlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum nur auf genau 32 Arten rein punktsymmetrische Symmetriegruppen bilden können. Diese 32 möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen. @@ -140,21 +141,23 @@ Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht al \label{fig:punktgruppen:Kristallkassen} \end{figure} -\subsubsection{Schönflies-Symbilok} +\subsubsection{Schönflies-Symbolik} Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schöönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. - Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). - Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. - Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. - Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. - Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. - Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). - Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. - \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. + \begin{itemize} + \item Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). + Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. + Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. + \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. + \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. + Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). + \item Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. + \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. + \end{itemize} diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 6defcdc..67e6214 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -1,6 +1,6 @@ \section{Piezoelektrizität} -Die Piezoelektrizität ist per Definition spannend. -Sie beschreibt die Eigenschaft, dass gewisse Kristalle eine elektrische Spannung erzeugen, wenn machanischer Druck auf sie ausgeübt wird. +%% TODO: improve this paragraph +Die Piezoelektrizität ist die spannende Eigenschaft, dass gewisse Kristalle eine elektrische Spannung erzeugen, wenn mechanischer Druck auf sie ausgeübt wird. \begin{figure} \centering @@ -10,10 +10,10 @@ Sie beschreibt die Eigenschaft, dass gewisse Kristalle eine elektrische Spannung \end{figure} \subsection{Polarisierung} -Piezoelektrizität basiert darauf, dass zwischen den Oberflächen des Kristalles ein Ladungsungleichgewicht entsteht siehe Abbildung\ref{fig:punktgruppen:basicPiezo}. +Piezoelektrizität basiert darauf, dass zwischen den Oberflächen des Kristalles ein Ladungsungleichgewicht entsteht (siehe Abbildung\ref{fig:punktgruppen:basicPiezo}). Dieses Ungleichgewicht resultiert, -weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positiv Ione näher an die Oberfläche gelangen, -wärend auf der gegenüberliegenden Oberfläche sich mehr negative Ionen Sammeln. +weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positiv Ionen näher an die Oberfläche gelangen, +wärend auf der gegenüberliegenden Oberfläche sich mehr negative Ionen sammeln. Das sich die atomare Struktur eines Kristalles unter Druck genau so verformt ist nicht bei jedem Kristall gegeben. Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für die Entstehung dieses Effektes. @@ -37,47 +37,45 @@ Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für \subsection{Atomarer Aufbau} Die Polarisation resultiert über eine gesamte Oberfläche eines Kristalles, entscheidend ist aber der atomare Aufbau. Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. -In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise Positive Ionen und blaue negative Ionen repräsentieren. -%liste oder anderes format?.. +In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise positive Ionen und blaue negative Ionen repräsentieren. Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. -Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil mitlleren Ladungsträger weiter auseinander gerdrückt werden. -Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, +Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil die mittleren Ladungsträger weiter auseinander gedrückt werden. +Als Hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. +\par \subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. -Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unterdruck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. +Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unter Druck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, -scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. +scheint es als würden rechts mehr positive Ionen in die Platte gedrückt werden und links umgekehrt. Dies ist aber nicht mehr der Fall, wenn die Struktur sich nach oben und unten periodisch wiederholt. Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. +\par Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. -Daraus kann man schlissen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von $90^\circ$ besitzen kann, -weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. -Das Fehlen dieser Rotationssymmetrie kann mit betrachten von \subref{fig:punktgruppen:atoms-piezo} bestätigt werden. +Daraus kann man schliessen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von \(90^\circ\) besitzen kann, +weil die Eigenschaften ändern bei einer \(90^\circ\) Drehung. +Das Fehlen dieser Rotationssymmetrie kann in \subref{fig:punktgruppen:atoms-piezo} beobachtet werden. \subsection{Punktsymmetrie} -Piezoelektrische Kristalle können nicht Punktsymmetrisch sein. +Piezoelektrische Kristalle können nicht punktsymmetrisch sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. -Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht Punktsymmetrischer Kristall -mit einem Punktsymmetrischen \subref{fig:punktgruppen:atoms-grid}verglichen worden. -Als vereinfachte Erklärung kann mann sich wieder das Bild vor augen führen, eines Kristalles, +Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht punktsymmetrischer Kristall +mit einem punktsymmetrischen \subref{fig:punktgruppen:atoms-grid} verglichen worden. +Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles vor Augen führen, welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. -Spiegelt man nun den Kristall um den Gitterpunkt in der mitte des Kristalles, so würden die negativen Ionen auf den Positiven auf der anderen seite landen, +Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so würden die negativen Ionen auf den positiven auf der anderen Seite landen, was der Definition einer Symmetrie deutlich widerspricht. \subsection{Vom Kristall zum Feuer} -Piezoelektrizität hat durchaus nutzen im Alltag. +Piezoelektrizität hat durchaus Nutzen im Alltag. Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, sonder ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. -Drückt der Nutzende auf den Zündknopf spannt sich eine Feder bis zu einer Konfigurierten Spannung. +Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu eine konfigurierten Spannung. Wird vom Nutzenden weiter gedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, -welcher auf das Piezoelement aufschlägt. -Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so Kurze aber hohe elekrische Spannung. +welchen auf das Piezoelement aufschlägt. +Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. -Sollten Sie also eines Tages in die Situation geraten, in welcher Sie zwei verschiedene Kristalle vor sich haben -und ein piezoelektrisches Feuerzeug bauen müssen, -wobei Sie aber wissen, dass einer eine Punktsymmetrie aufweist, -versuche sie es mit dem anderen. +Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass einer eine Punktsymmetrie aufweist, empfiehlt es sich mit die anderen zu versuchen. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 0bb4aec..a5b2fe2 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -22,27 +22,29 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, der die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. -Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. +Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - \(g\) und \(h\) sein umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. + %% TODO + Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. - Alle möglichen Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. + Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. \(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Inverse anzuwenden). - Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, es wird aber auch oft als Multiplikation geschrieben. +%% TODO + Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B. durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. \begin{definition}[Zyklische Untergruppe, Erzeuger] - \(g\) sei ein Element einer Symmetriegruppe \(G\). + Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. \end{definition} @@ -51,7 +53,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Das bedeutet, dass \(G\) die Elemente \(a, aa, aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales Element \(\mathds{1} = aa^{-1}\) enthält. \end{beispiel} \begin{beispiel} - Als anschaulicheres Beispiel, können wir eine Zyklische Untergruppe des \(n\)-Gon formalisieren. + Als anschaulicheres Beispiel, können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren. Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ @@ -98,7 +100,7 @@ Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es Symmetrien gibt, \subsection{Algebraische Symmetrien} Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich möglich ist, Gleichungen zu schreiben. -Die anschliesende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. +Die anschliessende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. Die Antwort lautet natürlich ja. Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \begin{definition}[Gruppenhomomorphismus] -- cgit v1.2.1 From e26cac3a7ed4957e7ed3cfae4f0fc2281e4b1514 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 28 Jul 2021 17:59:59 +0200 Subject: fix intro Kristalle --- buch/papers/punktgruppen/crystals.tex | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 18b8395..88e683f 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -1,9 +1,7 @@ \section{Kristalle} -% TODO: einleitung sollte noch an das ende von der Symmetrie angepasst werden -% TODO: sich jeder => paper sprache -Unter dem Begriff Kristall sollte sich jeder ein Bild machen können. -Wir werden uns aber nicht auf sein Äusseres fokussieren, sondern was ihn im Inneren ausmacht. -Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. +Eine nicht allzu häufig gestellte Frage ist, wie ein Kristall definiert ist. +Um zu klären, was ein Kristall mit Symmetrien zu tun hat, ist genau diese Frage äusserst relevant. +Glücklicherweise ist das Innere eines Kristalles relativ einfach definiert. \begin{definition}[Kristall] Ein Kristall besteht aus Atomen, welche sich in einem Muster arrangieren, welches sich in drei Dimensionen periodisch wiederholt. \end{definition} @@ -81,8 +79,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. An der neuen Position \(B\) von \(A'\) muss also auch ein Punkt des Gitters sein, um die Rotationssymmetrie zu erfüllen. \item \(B\) ist unser Name für diesen neuen Punkt. Da auch die Eigenschaften des Kristallgitters periodisch mit dem Gitter sein müssen, dürfen wir \(C_n\) auch auf \(A'\) anwenden. - Also wenden wir \(C_n\) invertiert\footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren.} - auch auf \(A'\) an. + Also wenden wir \(C_n^{-1}\) auch auf \(A'\) an. Dies dreht \(A\) auf einen neuen Punkt. \item \(B'\) ist kein zufälliger Name für diesen neuen Punkt, denn wir wissen, dass zwischen allen Punkten eine Translationssymmetrie bestehen muss. Die Translationssymmetrie zwischen \(B\) und \(B'\) ist hier als \(\vec{Q}'\) bezeichnet. -- cgit v1.2.1 From a69eeb70b01b71089c31fb23654d38898ae26f44 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 28 Jul 2021 18:06:44 +0200 Subject: Fix symmetry paragraph and schonflies symbols --- buch/papers/punktgruppen/crystals.tex | 10 +++++----- buch/papers/punktgruppen/symmetry.tex | 7 +++---- 2 files changed, 8 insertions(+), 9 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 88e683f..21c322d 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -88,7 +88,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\). Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes Vielfaches von \(\vec{Q}\) sein. - Demnach ist auch die Länge + Demnach auch die Länge \[ Q' = nQ = Q + 2x . \] @@ -140,7 +140,7 @@ Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kri \subsubsection{Schönflies-Symbolik} -Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schöönflies-Symbol bezeichnet. +Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. @@ -151,10 +151,10 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkass \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. - Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). - \item Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. - \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. + Wie zum Beispiel ein Inversionszentrum \(i\) oder eine horizontale Spiegelachse \(h\). \end{itemize} +Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. + \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index a5b2fe2..0805d8b 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -28,16 +28,15 @@ Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-examp Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - %% TODO - Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. + Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen, sogenannte Symmetrieoperationen. Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. -\(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Inverse anzuwenden). -%% TODO +Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. +Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inverse anzuwenden. Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B. -- cgit v1.2.1 From 7c0959264d5f9ed56fc50f38fef859aa61671c5b Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 28 Jul 2021 18:55:05 +0200 Subject: =?UTF-8?q?rewrite=20sch=C3=B6nflies=20first=20two=20points?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/punktgruppen/crystals.tex | 10 ++++------ 1 file changed, 4 insertions(+), 6 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 21c322d..705dbe5 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -143,13 +143,11 @@ Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kri Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. - Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. \begin{itemize} - \item Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). - Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. - Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. - \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. + \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. + Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles. + \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:Kristallkassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, symbolisiert \(n\), dass es sich um eine \(n\)-fache Symmetrie handelt. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. Wie zum Beispiel ein Inversionszentrum \(i\) oder eine horizontale Spiegelachse \(h\). \end{itemize} -- cgit v1.2.1 From f2fdb2ec6ebef72d604e1919f6fe76b1158a308b Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 28 Jul 2021 18:55:35 +0200 Subject: Wrong schonflies symbol in stereographic projections --- buch/papers/punktgruppen/figures/projections.pdf | Bin 26440 -> 27957 bytes buch/papers/punktgruppen/tikz/projections.tex | 2 +- 2 files changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/figures/projections.pdf b/buch/papers/punktgruppen/figures/projections.pdf index bc04313..9dc3796 100644 Binary files a/buch/papers/punktgruppen/figures/projections.pdf and b/buch/papers/punktgruppen/figures/projections.pdf differ diff --git a/buch/papers/punktgruppen/tikz/projections.tex b/buch/papers/punktgruppen/tikz/projections.tex index 64ab468..e8a4a2e 100644 --- a/buch/papers/punktgruppen/tikz/projections.tex +++ b/buch/papers/punktgruppen/tikz/projections.tex @@ -44,7 +44,7 @@ \node[classcirc] (C2h) {} node[classlabel] {\(C_{2h}\)}; & \node[classcirc] (D2) {} node[classlabel] {\(D_{2}\)}; \\ - \node[classcirc] (D3d) {} node[classlabel] {\(D_{3d}\)}; & + \node[classcirc] (D3d) {} node[classlabel] {\(C_{3v}\)}; & \node[classcirc] (C2v) {} node[classlabel] {\(C_{2v}\)}; & \node[classcirc] (D2h) {} node[classlabel] {\(D_{2h}\)}; & \node[classcirc] (D3) {} node[classlabel] {\(D_{3}\)}; & -- cgit v1.2.1 From b7c2d5a19112e5bb5859797bd36c982f1ac2116a Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 28 Jul 2021 18:56:33 +0200 Subject: On subscripts --- buch/papers/punktgruppen/crystals.tex | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 21c322d..ae48b0a 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -21,7 +21,7 @@ Die eingezeichneten Vektoren \(\vec{a}_1\) und \(\vec{a}_2\) sind die kleinstmö Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{c}\) also \[ - \vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \sum_i n_i \vec{a}_i + \vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \sum_i n_i \vec{a}_i \] erreicht werden sofern \(n_1,n_2,n_3 \in \mathbb{Z}\) sind. Sind die Vektoren \(\vec{a}_1\), \(\vec{a}_2\), \(\vec{a}_3\) gegeben, ist ein Kristallgitter eindeutig beschrieben, weswegen sie auch als Grundvektoren bekannt sind. @@ -151,7 +151,10 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkass \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. - Wie zum Beispiel ein Inversionszentrum \(i\) oder eine horizontale Spiegelachse \(h\). + \begin{itemize} + \item Der Subskript \(h\) bezeichnet eine horizontale Spiegelebene, während \(v\) eine Symmetrieebene. Eine Symmetrieebene ist eine Spiegelebene, die sich mit der Symmetrie dreht. \(C_{3v}\) hat zum Beispiel eine vertikale Spiegelebene, die als 3 Spiegelebenen erscheint, weil es eine 3-fache Drehung gibt. + \item + \end{itemize} \end{itemize} Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. -- cgit v1.2.1 From 0bf83875f83587d3a36ddfb1e6c1b65c9ccf4855 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 28 Jul 2021 20:03:32 +0200 Subject: Subscripts for schoenflies notation --- buch/papers/punktgruppen/crystals.tex | 26 +++++++++++++++-------- buch/papers/punktgruppen/figures/projections.pdf | Bin 27957 -> 27957 bytes 2 files changed, 17 insertions(+), 9 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index befdb46..ce09063 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -127,7 +127,7 @@ ein. Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. Mit weiteren ähnlichen Überlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum nur auf genau 32 Arten rein punktsymmetrische Symmetriegruppen bilden können. Diese 32 möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. - Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen. + Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:kristallklassen} zu sehen. Die Darstellung von dreidimensionalen Punktsymmetrien wurde mit der stereographischen Projektion ermöglicht (siehe Abbildung \ref{fig:punktgruppen:stereographic-projections}), wobei die gestrichelten Klassen aus Gründen der Überschaubarkeit nicht im Detail gezeichnet wurden. @@ -135,23 +135,31 @@ Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kri \centering \includegraphics[]{papers/punktgruppen/figures/projections} \caption{Kristallklassen mit zugehörigem Schönflies-Symbol} - \label{fig:punktgruppen:Kristallkassen} + \label{fig:punktgruppen:kristallklassen} \end{figure} \subsubsection{Schönflies-Symbolik} -Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schönflies-Symbol bezeichnet. +Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklassen} ist mit ihrem zugehörigen Schönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. - Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. + Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:kristallklassen} zu sehen sind. \begin{itemize} \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. - Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles. - \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:Kristallkassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, symbolisiert \(n\), dass es sich um eine \(n\)-fache Symmetrie handelt. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. + Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher für uns nicht relevant. + \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. + Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. + Für die folgenden Betrachtungen müssen wir uns Abbildung \ref{fig:punktgruppen:kristallklassen} genauer ansehen. + Dabei ist mit horizontal flach auf dem Papier gemeint. \begin{itemize} - \item Der Subskript \(h\) bezeichnet eine horizontale Spiegelebene, während \(v\) eine Symmetrieebene. Eine Symmetrieebene ist eine Spiegelebene, die sich mit der Symmetrie dreht. \(C_{3v}\) hat zum Beispiel eine vertikale Spiegelebene, die als 3 Spiegelebenen erscheint, weil es eine 3-fache Drehung gibt. - \item + \item[\(h\)] bezeichnet eine horizontale Spiegelebene und + \item[\(v\)] eine Symmetrieebene, was eine Spiegelebene ist, die sich mit der Symmetrie mitdreht. + Zum Beispiel hat \(C_{3v}\) eine vertikale Spiegelebene, die durch die 3-fache Drehsymmetrie als 3 Spiegelebenen erscheinen. + \item[\(s\)] ist ein spezielles Subskript um die beiden Symmetriegruppen \(C_{1v}\) und \(C_{1h}\) zu beschreiben, weil \(C_{1v} = C_{1h}\). + \item[\(d\)] symbolisiert eine diagonale Symmetrieebene. + Es wird ersichtlich wie diagonal gemeint ist, wenn man \(D_2\) zu \(D_{2d}\) vergleicht. + \item[\(i\)] steht für ein Inversionszentrum. Hat eine Symmetriegruppe ein Inversionszentrum, bedeutet dies dass sie im Ursprung punktsymmetrisch ist. \end{itemize} \end{itemize} Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. diff --git a/buch/papers/punktgruppen/figures/projections.pdf b/buch/papers/punktgruppen/figures/projections.pdf index 9dc3796..202fc8d 100644 Binary files a/buch/papers/punktgruppen/figures/projections.pdf and b/buch/papers/punktgruppen/figures/projections.pdf differ -- cgit v1.2.1 From 98e861762b2c70c04209f88222e8d5ff3437eb91 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 28 Jul 2021 22:13:15 +0200 Subject: small adjustments in intro --- buch/papers/punktgruppen/intro.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index b6a72b5..7b3c6e3 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,6 +1,6 @@ \section{Einleitung} Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wen man nur die mathematischen Betrachtungsweisen berücksichtigt, +Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. Zu Beginn werden wir zeigen was eine Symmetrie ausmacht und @@ -15,9 +15,9 @@ und sich kategorisieren lassen. Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. -Die Piezoelektrizität ist vielleicht noch nicht jedem bekannt, -sie versteckt sich aber in diversen Altagsgegenständen -zum Beispiel sorgen sie in den meisten Feuerzeugen für die Zündung. +Piezoelektrizität ist kein weit verbreiteter Begriff, +jedoch beschreibt er ein Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. +Wie zum Beispiel sorgen er in den allermeisten Feuerzeugen für die Zündung. Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. -- cgit v1.2.1 From c17aee47f007b102c81cafa36cb307069612f185 Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 29 Jul 2021 09:41:20 +0200 Subject: small rewrites in Kristalle --- buch/papers/punktgruppen/crystals.tex | 15 +++++++-------- 1 file changed, 7 insertions(+), 8 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index ce09063..42008e1 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -1,6 +1,6 @@ \section{Kristalle} Eine nicht allzu häufig gestellte Frage ist, wie ein Kristall definiert ist. -Um zu klären, was ein Kristall mit Symmetrien zu tun hat, ist genau diese Frage äusserst relevant. +Um zu klären, was ein Kristall mit Symmetrien zu tun hat, ist jedoch genau diese Frage äusserst relevant. Glücklicherweise ist das Innere eines Kristalles relativ einfach definiert. \begin{definition}[Kristall] Ein Kristall besteht aus Atomen, welche sich in einem Muster arrangieren, welches sich in drei Dimensionen periodisch wiederholt. @@ -36,14 +36,13 @@ Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{translationssymmetrisch wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination -der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind oder kurz, um $\vec{r}$. -Verschiebungen um $\vec{r}$ bewirken demnach keine Veränderungen, -solange wir ein unendlich grosses Kristallgitter verschieben. +der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind. +Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich grossen Kristallgittern besteht. \subsection{Limitierte Kristallsymmetrien} \label{txt:punktgruppen:Translationssymmetrie} Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet. - Was nicht direkt ersichtlich ist, dass bei beliebigen Grundvektoren nicht beliebige Symmetrien erstellt werden können. - Die geforderte Translationssymmetrie eines Kristalles schränkt weitere Symmetrien deutlich ein. + Was nicht direkt ersichtlich ist, ist dass bei beliebigen Grundvektoren nicht beliebige Symmetrien erstellt werden können. + Dies weil die Translationssymmetrie eines Kristalles weitere Symmetrien deutlich einschränkt. \begin{figure} \centering @@ -145,10 +144,10 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklas Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:kristallklassen} zu sehen sind. \begin{itemize} \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. - Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher für uns nicht relevant. + Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. Für die folgenden Betrachtungen müssen wir uns Abbildung \ref{fig:punktgruppen:kristallklassen} genauer ansehen. Dabei ist mit horizontal flach auf dem Papier gemeint. -- cgit v1.2.1 From f2fde7d2b5abf7c11cd7dc1535b0db64a2e84ffd Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 29 Jul 2021 09:42:42 +0200 Subject: rewrite small things in intro & symmetry --- buch/papers/punktgruppen/intro.tex | 2 +- buch/papers/punktgruppen/symmetry.tex | 13 +++++++------ 2 files changed, 8 insertions(+), 7 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 7b3c6e3..1293234 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -17,7 +17,7 @@ sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. Piezoelektrizität ist kein weit verbreiteter Begriff, jedoch beschreibt er ein Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. -Wie zum Beispiel sorgen er in den allermeisten Feuerzeugen für die Zündung. +Wie zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 0805d8b..6aeeb85 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -22,20 +22,20 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, der die Form unverändert lassen. +Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen, sogenannte Symmetrieoperationen. + Seien \(g\) und \(h\) umkehrbare Operationen, sogenannte Symmetrieoperationen, die ein mathematisches Objekt unverändert lassen. Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. -Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. +Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. % intuitiv weglassen oder anstelle sinnbildlich Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inverse anzuwenden. Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. @@ -64,15 +64,16 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine In ähnlicher Weise, aber weniger interessant enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). \end{beispiel} -Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystemen +Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystem komplexere Strukturen aufbauen. +%TODO kontroliere alle erzeugendensystem ich glaube es hatt noch en fall fehler ich weiss nicht wie das wort genau definiert ist \begin{definition}[Erzeugendensysteme] Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. - Da es mehrere Erzeuger gibt, müssen auch die sogenannte Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. + Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. - Die erzeugende Elementen zusammen mit der Definitionsgleichungen bauen ein Erzeugendensysteme. + Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensysteme. \end{definition} \begin{beispiel} Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, dass wir die Operationen \(r\) und \(\sigma\) kombinieren. -- cgit v1.2.1 From 58cd49c22e5eea9f72bbe648a13e2e149c131ea7 Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 29 Jul 2021 10:46:38 +0200 Subject: rewrite minor things in Piezo --- buch/papers/punktgruppen/piezo.tex | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 67e6214..6ed7ee9 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -12,9 +12,9 @@ Die Piezoelektrizität ist die spannende Eigenschaft, dass gewisse Kristalle ein \subsection{Polarisierung} Piezoelektrizität basiert darauf, dass zwischen den Oberflächen des Kristalles ein Ladungsungleichgewicht entsteht (siehe Abbildung\ref{fig:punktgruppen:basicPiezo}). Dieses Ungleichgewicht resultiert, -weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positiv Ionen näher an die Oberfläche gelangen, -wärend auf der gegenüberliegenden Oberfläche sich mehr negative Ionen sammeln. -Das sich die atomare Struktur eines Kristalles unter Druck genau so verformt ist nicht bei jedem Kristall gegeben. +weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positive Ionen näher an die Oberfläche gelangen, +wärend auf der gegenüberliegenden Seite dasselbe mit negativen Ionen passiert. +Es besitzt jedoch nicht jeder Kristall eine atomare Struktur welche sich unter Druck genau so verformt. Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für die Entstehung dieses Effektes. \begin{figure} @@ -35,35 +35,35 @@ Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für \end{figure} \subsection{Atomarer Aufbau} -Die Polarisation resultiert über eine gesamte Oberfläche eines Kristalles, entscheidend ist aber der atomare Aufbau. +Die Polarisation entsteht an der Oberfläche eines Kristalles, die Erklärung dazu finden wir jedoch im atomaren Aufbau. Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise positive Ionen und blaue negative Ionen repräsentieren. Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. -Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil die mittleren Ladungsträger weiter auseinander gedrückt werden. +Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil die Ladungsträger ganz links und rechts weiter auseinander gedrückt werden. Als Hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. \par -\subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. +Die Struktur \subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unter Druck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, scheint es als würden rechts mehr positive Ionen in die Platte gedrückt werden und links umgekehrt. -Dies ist aber nicht mehr der Fall, wenn die Struktur sich nach oben und unten periodisch wiederholt. -Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. +Dies ist aber nicht mehr der Fall, wenn sich die Struktur nach oben und unten periodisch wiederholt. \par +Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, -ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, +ist, dass die entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. Daraus kann man schliessen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von \(90^\circ\) besitzen kann, -weil die Eigenschaften ändern bei einer \(90^\circ\) Drehung. -Das Fehlen dieser Rotationssymmetrie kann in \subref{fig:punktgruppen:atoms-piezo} beobachtet werden. +weil die Eigenschaften der Struktur sich bei einer \(90^\circ\) Drehung ändern. +Das Fehlen dieser Rotationssymmetrie bestätigt sich auch wenn \subref{fig:punktgruppen:atoms-piezo} als Hexagon betrachtet wird. \subsection{Punktsymmetrie} Piezoelektrische Kristalle können nicht punktsymmetrisch sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht punktsymmetrischer Kristall mit einem punktsymmetrischen \subref{fig:punktgruppen:atoms-grid} verglichen worden. -Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles vor Augen führen, +Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles wie \subref{fig:punktgruppen:atoms-piezo} vor Augen führen, welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so würden die negativen Ionen auf den positiven auf der anderen Seite landen, was der Definition einer Symmetrie deutlich widerspricht. @@ -72,10 +72,10 @@ was der Definition einer Symmetrie deutlich widerspricht. Piezoelektrizität hat durchaus Nutzen im Alltag. Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, sonder ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. -Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu eine konfigurierten Spannung. -Wird vom Nutzenden weiter gedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, -welchen auf das Piezoelement aufschlägt. +Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer konfigurierten Spannung. +Wird vom Nutzenden fester zugedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, +welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. -Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass einer eine Punktsymmetrie aufweist, empfiehlt es sich mit die anderen zu versuchen. +Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. -- cgit v1.2.1 From caea2650f150ddafa73b86885bcc9d759dded9a8 Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 29 Jul 2021 10:51:51 +0200 Subject: fix? Erzeugendensystem --- buch/papers/punktgruppen/symmetry.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 6aeeb85..2067663 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -67,13 +67,13 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystem komplexere Strukturen aufbauen. -%TODO kontroliere alle erzeugendensystem ich glaube es hatt noch en fall fehler ich weiss nicht wie das wort genau definiert ist -\begin{definition}[Erzeugendensysteme] +%@Naoki Are you ok with my grammar fixes I'm not 101% shore how to use the word Erzeugendensystem? +\begin{definition}[Erzeugendensystem] Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. - Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensysteme. + Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensystem. \end{definition} \begin{beispiel} Wir werden nun alle Symmetrien eines \(n\)-Gons beschreiben, was bedeutet, dass wir die Operationen \(r\) und \(\sigma\) kombinieren. -- cgit v1.2.1 From 8cc40f152c49a8fe039e78bb6355fb077b932117 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 30 Jul 2021 10:57:58 +0200 Subject: add crystal video source --- buch/papers/punktgruppen/references.bib | 9 +++++++++ 1 file changed, 9 insertions(+) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib index a29640c..b669036 100644 --- a/buch/papers/punktgruppen/references.bib +++ b/buch/papers/punktgruppen/references.bib @@ -42,3 +42,12 @@ url = {http://archive.today/2021.07.22-083802/http://xrayweb.chem.ou.edu/notes/symmetry.html}, urldate = {2021-07-22}, } + +@online{punktgruppen:restriction, + title = {Structure of Materials}, + author = {Silvija Gradecak-Garaj}, + year = {2020}, + month = {4}, + day = {9}, + url = {https://www.youtube.com/watch?v=Ia2eHF1ZKoI}, + urldate = {2021-07-30}, \ No newline at end of file -- cgit v1.2.1 From c8e34520177223dee18e92c3c12334b68faef360 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 30 Jul 2021 11:04:11 +0200 Subject: add restriction citation to main but does still not work! --- buch/papers/punktgruppen/main.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/main.tex b/buch/papers/punktgruppen/main.tex index ea19421..556fc2b 100644 --- a/buch/papers/punktgruppen/main.tex +++ b/buch/papers/punktgruppen/main.tex @@ -19,6 +19,7 @@ \nocite{punktgruppen:sands-crystal} \nocite{punktgruppen:lang-elt2} \nocite{punktgruppen:ouchem} +\nocite{punktgruppen:restriction} \printbibliography[heading=subbibliography] \end{refsection} -- cgit v1.2.1 From 34a84dc4897d19d29fcf4a3ddb82ce4528d5dbec Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 30 Jul 2021 11:08:48 +0200 Subject: Fix missing } in references.bib --- buch/papers/punktgruppen/references.bib | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib index b669036..43125ad 100644 --- a/buch/papers/punktgruppen/references.bib +++ b/buch/papers/punktgruppen/references.bib @@ -50,4 +50,5 @@ month = {4}, day = {9}, url = {https://www.youtube.com/watch?v=Ia2eHF1ZKoI}, - urldate = {2021-07-30}, \ No newline at end of file + urldate = {2021-07-30}, +} -- cgit v1.2.1 From a36ac5a29b664e802f57ac2a965056f1f5dd1a41 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 30 Jul 2021 11:18:28 +0200 Subject: Fix commas and details in references.bib --- buch/papers/punktgruppen/references.bib | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib index 43125ad..05c803f 100644 --- a/buch/papers/punktgruppen/references.bib +++ b/buch/papers/punktgruppen/references.bib @@ -26,7 +26,7 @@ @book{punktgruppen:lang-elt2, title = {Elektrotechnik 2}, - author = {Hans-Dieter Lang}, + author = {Prof. Hans-Dieter Lang Ph.D}, publisher = {Fachhochschule Ostschweiz Rapperswil}, year = {2020}, month = {2}, @@ -35,7 +35,7 @@ @online{punktgruppen:ouchem, title = {Symmetry in Crystallography}, - author = {Dept. of Chemistry \& Biochemistry, Chemical Crystallography Laboratory, University of Oklahoma}, + author = {Dept. of Chemistry \& Biochemistry{,} Chemical Crystallography Laboratory{,} University of Oklahoma}, year = {2019}, month = {11}, day = {17}, @@ -44,8 +44,8 @@ } @online{punktgruppen:restriction, - title = {Structure of Materials}, - author = {Silvija Gradecak-Garaj}, + title = {Structure of Materials: Allowed Rotational Symmetry in Crystals}, + author = {Prof. Silvija Gradecak-Garaj{,} Massachusetts Institute of Technology (MIT)}, year = {2020}, month = {4}, day = {9}, -- cgit v1.2.1 From 98ac2080365000294d00804faab6e623e7f67570 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 3 Aug 2021 18:59:30 +0200 Subject: Fix typos and integrate suggestions, but minor TODOs left --- buch/papers/punktgruppen/crystals.tex | 22 ++++++------- buch/papers/punktgruppen/intro.tex | 29 ++++++----------- buch/papers/punktgruppen/piezo.tex | 58 ++++++++++++++++----------------- buch/papers/punktgruppen/references.bib | 4 +-- buch/papers/punktgruppen/symmetry.tex | 10 +++--- 5 files changed, 56 insertions(+), 67 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 42008e1..45761f8 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -18,7 +18,7 @@ Glücklicherweise ist das Innere eines Kristalles relativ einfach definiert. Ein zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattice}. Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes dargestellt und betrachten dies nur in zwei Dimensionen. Die eingezeichneten Vektoren \(\vec{a}_1\) und \(\vec{a}_2\) sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. -Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. +Wird ein beliebiger grauer Gitterpunkt in Abbildung \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{c}\) also \[ \vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \sum_i n_i \vec{a}_i @@ -39,7 +39,7 @@ können wir auch sagen, dass alle Verschiebungen um eine Linearkombination der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind. Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich grossen Kristallgittern besteht. -\subsection{Limitierte Kristallsymmetrien} \label{txt:punktgruppen:Translationssymmetrie} +\subsection{Einschränkungen durch Kristallsymmetrien} \label{sec:punktgruppen:Translationssymmetrie} Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet. Was nicht direkt ersichtlich ist, ist dass bei beliebigen Grundvektoren nicht beliebige Symmetrien erstellt werden können. Dies weil die Translationssymmetrie eines Kristalles weitere Symmetrien deutlich einschränkt. @@ -53,7 +53,7 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g \label{fig:punktgruppen:rot-geometry} \end{figure} -\begin{satz} +\begin{satz} \label{thm:punktgruppen:crystal-restriction} Die Rotationssymmetrien eines Kristalls sind auf 2-fach, 3-fach, 4-fach und 6-fach beschränkt. Mit anderen Worten: Es sind nur Drehwinkel von 0\(^{\circ}\), @@ -87,7 +87,7 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\). Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes Vielfaches von \(\vec{Q}\) sein. - Demnach auch die Länge + Demnach ist auch die Länge \[ Q' = nQ = Q + 2x . \] @@ -95,12 +95,12 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g \[ nQ = Q + 2Q\sin(\alpha - \pi/2) . \] - Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, + Wir können durch \(Q\), dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. - Zusätzlich können wir den Sinusterm vereinfachen. + Zusätzlich können wir den Sinusterm vereinfachen. Somit wird \[ - n = 1 - 2\cos\alpha \quad\iff\quad - \alpha = \cos^{-1}\left(\frac{1-n}{2}\right) + n = 1 - 2\cos\alpha \quad\text{oder}\quad + \alpha = \cos^{-1}\left(\frac{1-n}{2}\right). \] Dies schränkt die möglichen Rotationssymmetrien auf \( @@ -144,10 +144,10 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklas Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:kristallklassen} zu sehen sind. \begin{itemize} \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. - Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. - \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. + Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nach Satz \ref{thm:punktgruppen:crystal-restriction} nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. + \item Dank Abschintt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Satz \ref{thm:punktgruppen:crystal-restriction} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. Für die folgenden Betrachtungen müssen wir uns Abbildung \ref{fig:punktgruppen:kristallklassen} genauer ansehen. Dabei ist mit horizontal flach auf dem Papier gemeint. diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 1293234..e369cf5 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,26 +1,17 @@ \section{Einleitung} + Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, -hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. +Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. -Zu Beginn werden wir zeigen was eine Symmetrie ausmacht und -dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. -Die vorgestellten Symmetrien sind äusserst gut geeignet, -um die Grundeigenschaften eines Kristalles zu beschreiben. -Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, -was in der Welt der Kristallographie alles möglich ist oder nicht. -Einschränkungen in Kristallsymmetrien sind durchaus willkommen, -da dank ihnen sich die möglichen Kristallgitter in Grenzen halten -und sich kategorisieren lassen. -Kategorien sind nicht nur für einen besseren Überblick nützlich, -sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen. +Zu Beginn werden wir zeigen, was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. +Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. +Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, was in der Welt der Kristallographie alles möglich ist oder nicht. +% TODO: die moglichen Kristallgitter in Grenzen etc ist (apparently) not okay +Einschränkungen in Kristallsymmetrien sind durchaus willkommen, da dank ihnen sich die möglichen Kristallgitter in Grenzen halten und sich kategorisieren lassen. +Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. -Piezoelektrizität ist kein weit verbreiteter Begriff, -jedoch beschreibt er ein Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. +Piezoelektrizität beschreibt einen Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. Wie zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. -Hiermit ist hoffentlich ein Funken Interesse geweckt -um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. - - +Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. %% vim:linebreak breakindent showbreak=.. spell spelllang=de: diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 6ed7ee9..ff9f1e2 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -10,13 +10,13 @@ Die Piezoelektrizität ist die spannende Eigenschaft, dass gewisse Kristalle ein \end{figure} \subsection{Polarisierung} + Piezoelektrizität basiert darauf, dass zwischen den Oberflächen des Kristalles ein Ladungsungleichgewicht entsteht (siehe Abbildung\ref{fig:punktgruppen:basicPiezo}). -Dieses Ungleichgewicht resultiert, -weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positive Ionen näher an die Oberfläche gelangen, -wärend auf der gegenüberliegenden Seite dasselbe mit negativen Ionen passiert. -Es besitzt jedoch nicht jeder Kristall eine atomare Struktur welche sich unter Druck genau so verformt. +Dieses Ungleichgewicht resultiert, weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positive Ionen näher an die Oberfläche gelangen, wärend auf der gegenüberliegenden Seite dasselbe mit negativen Ionen passiert. +Es besitzt jedoch nicht jeder Kristall eine atomare Struktur, welche sich unter Druck genau so verformt. Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für die Entstehung dieses Effektes. + \begin{figure} \centering \begin{tabular}{c |c} @@ -35,46 +35,44 @@ Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für \end{figure} \subsection{Atomarer Aufbau} + Die Polarisation entsteht an der Oberfläche eines Kristalles, die Erklärung dazu finden wir jedoch im atomaren Aufbau. Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. -In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise positive Ionen und blaue negative Ionen repräsentieren. -Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. -Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. +In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise positive Ionen und blaue negative Ionen repräsentieren. +Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. +Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil die Ladungsträger ganz links und rechts weiter auseinander gedrückt werden. -Als Hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, -dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. -\par +Als Hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. + + Die Struktur \subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unter Druck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. -Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, -scheint es als würden rechts mehr positive Ionen in die Platte gedrückt werden und links umgekehrt. +Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, scheint es, als würden rechts mehr positive Ionen in die Platte gedrückt werden und links umgekehrt. Dies ist aber nicht mehr der Fall, wenn sich die Struktur nach oben und unten periodisch wiederholt. -\par -Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. -Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, -ist, dass die entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, -im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. -Daraus kann man schliessen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von \(90^\circ\) besitzen kann, -weil die Eigenschaften der Struktur sich bei einer \(90^\circ\) Drehung ändern. -Das Fehlen dieser Rotationssymmetrie bestätigt sich auch wenn \subref{fig:punktgruppen:atoms-piezo} als Hexagon betrachtet wird. + + +Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. +Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, dass die entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. +Daraus kann man schliessen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von \(90^\circ\) besitzen kann, weil die Eigenschaften der Struktur sich bei einer \(90^\circ\) Drehung ändern. +Das Fehlen dieser Rotationssymmetrie bestätigt sich auch wenn \subref{fig:punktgruppen:atoms-piezo} als Hexagon betrachtet wird. + \subsection{Punktsymmetrie} + Piezoelektrische Kristalle können nicht punktsymmetrisch sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. -Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht punktsymmetrischer Kristall -mit einem punktsymmetrischen \subref{fig:punktgruppen:atoms-grid} verglichen worden. -Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles wie \subref{fig:punktgruppen:atoms-piezo} vor Augen führen, -welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. -Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so würden die negativen Ionen auf den positiven auf der anderen Seite landen, -was der Definition einer Symmetrie deutlich widerspricht. +Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht punktsymmetrischer Kristall mit einem punktsymmetrischen \subref{fig:punktgruppen:atoms-grid} verglichen worden. +Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles wie \subref{fig:punktgruppen:atoms-piezo} vor Augen führen, welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. +Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so würden die negativen Ionen auf den positiven auf der anderen Seite landen, was der Definition einer Symmetrie deutlich widerspricht. + \subsection{Vom Kristall zum Feuer} + Piezoelektrizität hat durchaus Nutzen im Alltag. -Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, -sonder ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. +Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, sondern ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer konfigurierten Spannung. -Wird vom Nutzenden fester zugedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, -welcher auf das Piezoelement aufschlägt. +%% TODO: replace with (?): Drückt der Nutzende stärker +Wird vom Nutzenden fester zugedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib index 05c803f..7928b22 100644 --- a/buch/papers/punktgruppen/references.bib +++ b/buch/papers/punktgruppen/references.bib @@ -26,7 +26,7 @@ @book{punktgruppen:lang-elt2, title = {Elektrotechnik 2}, - author = {Prof. Hans-Dieter Lang Ph.D}, + author = {Hans-Dieter Lang Ph.D}, publisher = {Fachhochschule Ostschweiz Rapperswil}, year = {2020}, month = {2}, @@ -45,7 +45,7 @@ @online{punktgruppen:restriction, title = {Structure of Materials: Allowed Rotational Symmetry in Crystals}, - author = {Prof. Silvija Gradecak-Garaj{,} Massachusetts Institute of Technology (MIT)}, + author = {Silvija Gradecak-Garaj{,} Massachusetts Institute of Technology (MIT)}, year = {2020}, month = {4}, day = {9}, diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 2067663..51620a4 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -35,7 +35,7 @@ Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. -Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. % intuitiv weglassen oder anstelle sinnbildlich +Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die rückgängig macht, was \(g\) getan hat. Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inverse anzuwenden. Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. @@ -52,7 +52,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Das bedeutet, dass \(G\) die Elemente \(a, aa, aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales Element \(\mathds{1} = aa^{-1}\) enthält. \end{beispiel} \begin{beispiel} - Als anschaulicheres Beispiel, können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren. + Als anschaulicheres Beispiel können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren. Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ @@ -69,7 +69,7 @@ komplexere Strukturen aufbauen. %@Naoki Are you ok with my grammar fixes I'm not 101% shore how to use the word Erzeugendensystem? \begin{definition}[Erzeugendensystem] - Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. + Jede diskrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. @@ -87,7 +87,7 @@ komplexere Strukturen aufbauen. &= \left\{ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} \right\}. - \end{align*} + \end{align*} \qedhere \end{beispiel} Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. @@ -110,7 +110,7 @@ Um es formaler zu beschreiben, werden wir einige Begriffe einführen. Man sagt, dass der Homomorphismus \(f\) \(G\) in \(H\) transformiert. \end{definition} \begin{beispiel} - Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem komplexen Einheitskreis. + Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht genau dem komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben. \end{beispiel} -- cgit v1.2.1 From b705856321c6bc362027ac7a5770fb7b6a3c56c3 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 4 Aug 2021 17:42:36 +0200 Subject: Fix last two sentences --- buch/papers/punktgruppen/intro.tex | 3 +-- buch/papers/punktgruppen/piezo.tex | 4 +--- 2 files changed, 2 insertions(+), 5 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index e369cf5..0a0cc86 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -6,8 +6,7 @@ In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. Zu Beginn werden wir zeigen, was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, was in der Welt der Kristallographie alles möglich ist oder nicht. -% TODO: die moglichen Kristallgitter in Grenzen etc ist (apparently) not okay -Einschränkungen in Kristallsymmetrien sind durchaus willkommen, da dank ihnen sich die möglichen Kristallgitter in Grenzen halten und sich kategorisieren lassen. +Diese erlauben alle möglichen Kristalle nach ihren Symmetrien in erstaunlich wenige Klassen zu kategorisieren. Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. Piezoelektrizität beschreibt einen Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index ff9f1e2..334e4e7 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -1,5 +1,4 @@ \section{Piezoelektrizität} -%% TODO: improve this paragraph Die Piezoelektrizität ist die spannende Eigenschaft, dass gewisse Kristalle eine elektrische Spannung erzeugen, wenn mechanischer Druck auf sie ausgeübt wird. \begin{figure} @@ -71,8 +70,7 @@ Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so Piezoelektrizität hat durchaus Nutzen im Alltag. Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, sondern ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer konfigurierten Spannung. -%% TODO: replace with (?): Drückt der Nutzende stärker -Wird vom Nutzenden fester zugedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. +Drückt der Nutzende stärker zu, entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. -- cgit v1.2.1 From 8f906697fbe2f35756537e95e034ae8f88f8f026 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 6 Aug 2021 13:38:46 +0200 Subject: Corrections from feedback --- buch/papers/punktgruppen/crystals.tex | 2 +- buch/papers/punktgruppen/intro.tex | 4 ++-- buch/papers/punktgruppen/piezo.tex | 2 +- buch/papers/punktgruppen/symmetry.tex | 27 ++++++++++++++------------- 4 files changed, 18 insertions(+), 17 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 45761f8..4b93927 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -145,7 +145,7 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklas \begin{itemize} \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nach Satz \ref{thm:punktgruppen:crystal-restriction} nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. - \item Dank Abschintt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. + \item Dank Abschnitt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie. Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Satz \ref{thm:punktgruppen:crystal-restriction} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 0a0cc86..e3f0226 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,7 +1,7 @@ \section{Einleitung} Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. +Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen, sich mit Kristallen zu beschäftigen. In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. Zu Beginn werden wir zeigen, was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. @@ -10,7 +10,7 @@ Diese erlauben alle möglichen Kristalle nach ihren Symmetrien in erstaunlich we Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. Piezoelektrizität beschreibt einen Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. -Wie zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. +Zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. %% vim:linebreak breakindent showbreak=.. spell spelllang=de: diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 334e4e7..1cf9b98 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -73,5 +73,5 @@ Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer kon Drückt der Nutzende stärker zu, entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. -Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. +Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich mit dem anderen zu versuchen. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 51620a4..4a8d911 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -20,11 +20,11 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi \subsection{Geometrische Symmetrien} In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. -Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. +Zum Beispiel hat das Quadrat eine Gerade, an der es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Das letzte Beispiel auf der rechts ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. -Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. +Zum Beispiel kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] @@ -45,7 +45,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine \begin{definition}[Zyklische Untergruppe, Erzeuger] Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. - Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. + Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}\) wird mit spitzen Klammern bezeichnet. \end{definition} \begin{beispiel} Um die Syntax zu verstehen, betrachten wir eine durch \(a\) erzeugte Gruppe \(G = \langle a \rangle\). @@ -57,11 +57,11 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ C_n = \langle r \rangle - = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} + = \{\mathds{1}, r, r^2, \ldots, r^{n-1}\} \] der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die Rotationssymmetrie bewahrt. - In ähnlicher Weise, aber weniger interessant enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). + In ähnlicher Weise, aber weniger interessant, enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). \end{beispiel} Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystem @@ -70,7 +70,7 @@ komplexere Strukturen aufbauen. %@Naoki Are you ok with my grammar fixes I'm not 101% shore how to use the word Erzeugendensystem? \begin{definition}[Erzeugendensystem] Jede diskrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. - Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. + Wir lassen \(g_1, g_2, g_3, \ldots\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensystem. @@ -84,10 +84,10 @@ komplexere Strukturen aufbauen. Daraus ergibt sich die so genannte Diedergruppe \begin{align*} D_n &= \langle r, \sigma : r^n = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle \\ - &= \left\{ + &= \{ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} - \right\}. - \end{align*} \qedhere + \}. \qedhere + \end{align*} \end{beispiel} Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. @@ -115,11 +115,12 @@ Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \end{beispiel} \begin{definition}[Darstellung einer Gruppe] - Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe auf eine Menge von Matrizen abbildet. + Die Darstellung einer Gruppe ist ein Homomorphismus \[ - \Phi: G \to \operatorname{GL}_n(\mathbb{R}). + \Phi: G \to \operatorname{GL}_n(\mathbb{R}), \] - Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\). + der eine Symmetriegruppe auf eine Menge von Matrizen abbildet. + Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man \(\Phi : G \times V \to V\) definiert. \end{definition} \begin{beispiel} Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine Drehung von \(2\pi k/n\) um den Ursprung dar. -- cgit v1.2.1 From e8986f6de598bf3299ff00843a56ae92f72d9ac3 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sun, 15 Aug 2021 11:43:47 +0200 Subject: Tiny change --- buch/papers/punktgruppen/crystals.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 4b93927..0a9d3b6 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -19,7 +19,7 @@ Ein zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punkt Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes dargestellt und betrachten dies nur in zwei Dimensionen. Die eingezeichneten Vektoren \(\vec{a}_1\) und \(\vec{a}_2\) sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. Wird ein beliebiger grauer Gitterpunkt in Abbildung \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. -Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{c}\) also +Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{a}_3\) also \[ \vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \sum_i n_i \vec{a}_i \] -- cgit v1.2.1