From 9644d3426ba9ce0ad9365cb020f8137d733e7854 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 27 May 2021 00:55:38 +0200 Subject: Restructure --- buch/papers/punktgruppen/symmetry.tex | 94 ++++++++++++++++++++--------------- 1 file changed, 53 insertions(+), 41 deletions(-) (limited to 'buch/papers/punktgruppen') diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 330cf51..a3ccbed 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -10,8 +10,11 @@ präzise Bedeutung. Ein mathematisches Objekt wird als symmetrisch bezeichnet, wenn es unter einer bestimmten Operation invariant ist. \end{definition} +Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit +einigen geometrischen Beispielen beginnen. Wie wir jedoch später sehen werden, +ist das Konzept der Symmetrie eigentlich viel allgemeiner. -\begin{figure}[h] +\begin{figure} \centering \begin{tikzpicture}[ node distance = 2cm, @@ -65,17 +68,13 @@ präzise Bedeutung. \subsection{Geometrische Symmetrien} -Die intuitivsten Beispiele kommen aus der Geometrie, daher werden wir mit -einigen geometrischen Beispielen beginnen. Wie wir jedoch später sehen werden, -ist das Konzept der Symmetrie eigentlich viel allgemeiner. - In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat Gerade, an deren gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige -Polygone mit \(n\) Seiten sind gute Beispiele, um eine diskrete +Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um -einen Punkt um einen bestimmten Winkel \(360^\circ/n\) sie unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche +einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert +lässt. Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Dies ist hoffentlich ausreichend, um die Bedeutung hinter der Notation zu verstehen, die @@ -92,15 +91,16 @@ Mit dem oben Gesagten können wir das \(n\)-Gon Beispiel formalisieren. Wenn wir \(r\) eine Drehung von \(2\pi/n\) sein lassen, gibt es eine wohlbekannte Symmetriegruppe \[ C_n = \langle r \rangle - = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} + = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\}, \] die zyklische Gruppe heisst. Hier die Potenzen von \(r\) sind als wiederholte -Komposition gemeint, d.h. \(r^n = r\circ r \circ \cdots r\circ r\). - -Die Schreibweise mit den spitzen Klammern wird als Erzeugendensystem bezeichnet. +Komposition gemeint, d.h. \(r^n = r\circ r \circ \cdots r\circ r\). Die +Schreibweise mit den spitzen Klammern wird als Erzeugendensystem bezeichnet. Das liegt daran, dass alle Elemente der Symmetriegruppe aus Kombinationen einer Teilmenge erzeugt werden, die als erzeugende Elemente bezeichnet werden. +% TODO: more on generators + Die Reflexionssymmetriegruppe ist nicht so interessant, da sie nur \(\left\{\mathds{1}, \sigma\right\}\) enthält. Kombiniert man sie jedoch mit der Rotation, erhält man die so genannte Diedergruppe @@ -111,21 +111,53 @@ der Rotation, erhält man die so genannte Diedergruppe \right\}. \] Diesmal muss die Generator-Notation die Beziehungen zwischen den beiden -Operationen beinhalten. Die ersten beiden sind leicht zu erkennen, für die -letzte empfehlen wir, sie an einem 2D-Quadrat auszuprobieren. +Operationen beinhalten. +% TODO +% Die ersten beiden sind leicht zu erkennen, für die +% letzte empfehlen wir, sie an einem 2D-Quadrat auszuprobieren. + +Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer +mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. Im +Fall der Rotation war es der Drehpunkt, bei der Spiegelung die Punkte der +Spiegelachse. Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es +Symmetrien gibt, die jeden Punkt zu einem anderen Punkt verschieben können. +Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, nennt man +Punktsymmetrie. +\begin{definition}[Punktgruppe] + Wenn jede Operation in einer Symmetriegruppe die Eigenschaft hat, mindestens + einen Punkt unverändert zu lassen, sagt man, dass die Symmetriegruppe eine + Punktgruppe ist. +\end{definition} + +\subsection{Algebraische Symmetrien} Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich -möglich ist, eine nicht kommutative Algebra zu erstellen. Die naheliegende -Frage ist dann, könnte es sein, dass wir bereits etwas haben, das dasselbe tut? -Natürlich, ja. Dafür führen wir den Begriff der Darstellung ein. -\begin{definition}[Darstellung einer Gruppe, Gruppenhomomorphismus] +möglich ist, Gleichungen zu schreiben. Die naheliegende Frage ist dann, könnte +es sein, dass wir bereits etwas haben, das dasselbe tut? Natürlich, ja. +Um es formaler zu beschreiben, werden wir ein einige Begriffe einführen. +\begin{definition}[Gruppenhomomorphismus] Seien \(G\) und \(H\) Gruppe mit unterschiedlicher Operation \(\diamond\) bzw. \(\star\). Ein Homomorphismus\footnote{ Für eine ausführlichere Diskussion siehe \S\ref{buch:grundlagen:subsection:gruppen} im Buch.} ist eine Funktion \(f: G \to H\), so dass für jedes \(a, b \in G\) gilt \(f(a\diamond b) = f(a) \star f(b)\). Man sagt, dass der Homomorphismus - \(f\) \(G\) in \(H\) transformiert, oder dass \(H\) eine Darstellung von - \(G\) ist. + \(f\) \(G\) in \(H\) transformiert. +\end{definition} +\begin{beispiel} + Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen + Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem + komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) + ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben. +\end{beispiel} + +\begin{definition}[Darstellung einer Gruppe] + Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe + auf eine Menge von Matrizen abbildet. + \[ + \Phi: G \to \operatorname{GL}_n(\mathbb{R}). + \] + Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen + Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\). \end{definition} \begin{beispiel} Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine @@ -141,28 +173,8 @@ Natürlich, ja. Dafür führen wir den Begriff der Darstellung ein. die zweite die Matrixmultiplikation. Man kann überprüfen, dass \(\Phi(r^2 \circ r) = \Phi(r^2)\Phi(r)\). \end{beispiel} -\begin{beispiel} - Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen - Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem - komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) - ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben. -\end{beispiel} -Die Symmetrien, die wir bis jetzt besprochen haben, haben immer mindestens -einen Punkt unbesetzt gelassen. Im Fall der Rotation war es der Drehpunkt, bei -der Spiegelung die Achse. Dies ist jedoch keine Voraussetzung für eine -Symmetrie, da es Symmetrien gibt, die jeden Punkt zu einem anderen Punkt -verschieben können. Ein aufmerksamer Leser wird bemerken, dass die -unveränderten Punkte zum Eigenraum\footnote{Zur Erinnerung \(E_\lambda = -\mathrm{null}(\Phi - \lambda I)\), \(\vec{v}\in E_\lambda \implies \Phi \vec{v} -= \lambda\vec{v}\)} der Matrixdarstellung der Symmetrieoperation gehören. -Diesen Spezialfall, bei dem mindestens ein Punkt unverändert bleibt, nennt man -Punktsymmetrie. -\begin{definition}[Punktgruppe] - Wenn jede Operation in einer Symmetriegruppe die Eigenschaft hat, mindestens - einen Punkt unverändert zu lassen, sagt man, dass die Symmetriegruppe eine - Punktgruppe ist. -\end{definition} +%% TODO: title / fix continuity Um das Konzept zu illustrieren, werden wir den umgekehrten Fall diskutieren: eine Symmetrie, die keine Punktsymmetrie ist, die aber in der Physik sehr nützlich ist, nämlich die Translationssymmetrie. Von einem mathematischen -- cgit v1.2.1