From 898274b6cb5f825fe710eec58349799cdc5f6bc3 Mon Sep 17 00:00:00 2001 From: michael-OST <75078383+michael-OST@users.noreply.github.com> Date: Sun, 16 May 2021 16:04:13 +0200 Subject: create endlichekoerper.tex added chapter description --- buch/papers/reedsolomon/endlichekoerper.tex | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) create mode 100644 buch/papers/reedsolomon/endlichekoerper.tex (limited to 'buch/papers/reedsolomon/endlichekoerper.tex') diff --git a/buch/papers/reedsolomon/endlichekoerper.tex b/buch/papers/reedsolomon/endlichekoerper.tex new file mode 100644 index 0000000..8ccd918 --- /dev/null +++ b/buch/papers/reedsolomon/endlichekoerper.tex @@ -0,0 +1,23 @@ +% +% teil1.tex -- Beispiel-File für das Paper +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Reed-Solomon in Endlichen Körpern +\label{reedsolomon:section:endlichekoerper}} +\rhead{Problemstellung} + +TODO: + +Das rechnen in endlichen Körpern bietet einige Vorteile: + +\begin{itemize} + \item Konkrete Zahlen: In endlichen Körpern gibt es weder rationale noch komplexe Zahlen. Zudem beschränken sich die möglichen Rechenoperationen auf das Addieren und Multiplizieren. Somit können wir nur ganze Zahlen als Resultat erhalten. + + \item Digitale Fehlerkorrektur: lässt sich nur in endlichen Körpern umsetzen. + +\end{itemize} + +Um jetzt eine Nachricht in den endlichen Körpern zu konstruieren legen wir fest, dass diese Nachricht aus einem Nutzdatenteil und einem Fehlerkorrekturteil bestehen muss. Somit ist die zu übertragende Nachricht immer grösser als die Daten, die wir übertragen wollen. Zudem müssen wir einen Weg finden, den Fehlerkorrekturteil so aus den Nutzdaten zu berechnen, dass wir die Nutzdaten auf der Empfängerseite wieder rekonstruieren können, sollte es zu einer fehlerhaften Übertragung kommen. + +Nun stellt sich die Frage, wie wir eine Fehlerhafte Nachricht korrigieren können, ohne ihren ursprünglichen Inhalt zu kennen. Der Reed-Solomon-Code erzielt dies, indem aus dem Fehlerkorrekturteil ein sogenanntes "Lokatorpolynom" generiert werden kann. Dieses Polynom gibt dem Emfänger an, welche Stellen in der Nachricht feherhaft sind. -- cgit v1.2.1 From 73d5c3d4df0f73e96c1bac2ae1ce3b4dfcdc9d90 Mon Sep 17 00:00:00 2001 From: michael-OST <75078383+michael-OST@users.noreply.github.com> Date: Thu, 10 Jun 2021 12:23:57 +0200 Subject: updated a lot --- buch/papers/reedsolomon/endlichekoerper.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch/papers/reedsolomon/endlichekoerper.tex') diff --git a/buch/papers/reedsolomon/endlichekoerper.tex b/buch/papers/reedsolomon/endlichekoerper.tex index 8ccd918..146067a 100644 --- a/buch/papers/reedsolomon/endlichekoerper.tex +++ b/buch/papers/reedsolomon/endlichekoerper.tex @@ -7,9 +7,9 @@ \label{reedsolomon:section:endlichekoerper}} \rhead{Problemstellung} -TODO: +\textcolor{red}{TODO: (warten auf den 1. Teil)} -Das rechnen in endlichen Körpern bietet einige Vorteile: +Das Rechnen in endlichen Körpern bietet einige Vorteile: \begin{itemize} \item Konkrete Zahlen: In endlichen Körpern gibt es weder rationale noch komplexe Zahlen. Zudem beschränken sich die möglichen Rechenoperationen auf das Addieren und Multiplizieren. Somit können wir nur ganze Zahlen als Resultat erhalten. @@ -20,4 +20,4 @@ Das rechnen in endlichen Körpern bietet einige Vorteile: Um jetzt eine Nachricht in den endlichen Körpern zu konstruieren legen wir fest, dass diese Nachricht aus einem Nutzdatenteil und einem Fehlerkorrekturteil bestehen muss. Somit ist die zu übertragende Nachricht immer grösser als die Daten, die wir übertragen wollen. Zudem müssen wir einen Weg finden, den Fehlerkorrekturteil so aus den Nutzdaten zu berechnen, dass wir die Nutzdaten auf der Empfängerseite wieder rekonstruieren können, sollte es zu einer fehlerhaften Übertragung kommen. -Nun stellt sich die Frage, wie wir eine Fehlerhafte Nachricht korrigieren können, ohne ihren ursprünglichen Inhalt zu kennen. Der Reed-Solomon-Code erzielt dies, indem aus dem Fehlerkorrekturteil ein sogenanntes "Lokatorpolynom" generiert werden kann. Dieses Polynom gibt dem Emfänger an, welche Stellen in der Nachricht feherhaft sind. +Nun stellt sich die Frage, wie wir eine fehlerhafte Nachricht korrigieren können, ohne ihren ursprünglichen Inhalt zu kennen. Der Reed-Solomon-Code erzielt dies, indem aus dem Fehlerkorrekturteil ein sogenanntes ``Lokatorpolynom'' generiert werden kann. Dieses Polynom gibt dem Emfänger an, welche Stellen in der Nachricht feherhaft sind. -- cgit v1.2.1 From f04279543c41d828b0684fe603e09cfb4f9ed8b1 Mon Sep 17 00:00:00 2001 From: michael-OST <75078383+michael-OST@users.noreply.github.com> Date: Wed, 23 Jun 2021 20:00:21 +0200 Subject: several changes --- buch/papers/reedsolomon/endlichekoerper.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch/papers/reedsolomon/endlichekoerper.tex') diff --git a/buch/papers/reedsolomon/endlichekoerper.tex b/buch/papers/reedsolomon/endlichekoerper.tex index 146067a..19e5dd4 100644 --- a/buch/papers/reedsolomon/endlichekoerper.tex +++ b/buch/papers/reedsolomon/endlichekoerper.tex @@ -5,10 +5,10 @@ % \section{Reed-Solomon in Endlichen Körpern \label{reedsolomon:section:endlichekoerper}} -\rhead{Problemstellung} - -\textcolor{red}{TODO: (warten auf den 1. Teil)} - +\rhead{Reed-Solomon in endlichen Körpern} +\[ +\textcolor{red}{\text{TODO: (warten auf den 1. Teil)}} +\] Das Rechnen in endlichen Körpern bietet einige Vorteile: \begin{itemize} -- cgit v1.2.1