From 0cd67d0c23d8781999522a05cf2c5c49e76e3326 Mon Sep 17 00:00:00 2001 From: JODBaer Date: Fri, 30 Jul 2021 11:41:58 +0200 Subject: save --- buch/papers/reedsolomon/idee.tex | 31 ++++++++++++++++--------------- 1 file changed, 16 insertions(+), 15 deletions(-) (limited to 'buch/papers/reedsolomon/idee.tex') diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index d8b8a93..41e0d4c 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -1,8 +1,6 @@ % % idee.tex -- Polynom Idee % -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% \section{Idee \label{reedsolomon:section:idee}} \rhead{Problemstellung} @@ -12,14 +10,14 @@ Doch nur schon um Fehler zu erkennen werden überproportional viele Daten doppel Der Reed-Solomon-Code macht dies auf eine andere, clevere Weise. Das Problem liegt darin Informationen, Zahlen, zu Übertragen und Fehler zu erkennen. -Beim Reed-Solomon-Code kann man nicht nur Fehler erkennen, +Speziell beim Reed-Solomon-Code kann man nicht nur Fehler erkennen, man kann sogar einige Fehler korrigieren. Der Unterschied des Fehler erkennen und korrigiren, ist das beim Erkennen nur die Frage beantwortet wird: Ist die Übertragung fehlerhaft oder nicht? Beim Korrigieren werden Fehler erkannt und dann zusätzlich noch den original Wert rekonstruieren. -Auch eine Variante wäre die Daten nach einer Fehlerhaften sendung, nochmals zum senden auffordern(auch hier wieder doppelt und dreifach Sendung), +Auch eine Variante wäre die Daten nach einer Fehlerhaften sendung, nochmals zum senden auffordern(auch hier wird doppelt und dreifach gesendung), was bei Reed-Solomon-Code-Anwendungen nicht immer sinnvoll ist. -\externaldocument{papers/reedsolomon/anwendungen} -\ref{reedsolomon:section:anwendung} +Anwendungen finden sind im Abchnitt \externaldocument{papers/reedsolomon/anwendungen} +\ref{reedsolomon:section:anwendung} beschrieben. \subsection{Polynom-Ansatz \label{reedsolomon:section:polynomansatz}} @@ -43,28 +41,29 @@ mit den Punkten, $p(1),p(2),...,p(7) = (\textcolor{darkgreen}{8}, \textcolor{darkgreen}{41}, \textcolor{darkgreen}{60}, \textcolor{darkgreen}{83}, \textcolor{darkgreen}{110})$ Wenn ein Fehler sich in die Übertragung eingeschlichen hat, muss der Leser/Empfänger diesen erkennen und das Polynom rekonstruieren. -Der Leser/Empfänger weiss, den Grad des Polynoms und dessen Werte übermittelt wurden. +Der Leser/Empfänger weiss, den Grad des Polynoms und dessen \textcolor{darkgreen}{Werte} übermittelt wurden. Die Farbe blau brauchen wir für die \textcolor{blue}{Daten} welche wir mit der Farbe grün \textcolor{darkgreen}{Übermitteln}. \end{beispiel} \begin{beispiel} Ein Polynome zweiten Grades ist durch drei Punkte eindeutig bestimmbar. -Hat es Fehler in der Übertragunge gegeben,(Bei Abb. \ref{fig:polynom} \textcolor{red}{roten Punkte}), -kann man diese erkennen, da alle Punkte, die korrekt sind, auf der Parabel liegen müssen. -(Bei Abb. \ref{fig:polynom} \textcolor{darkgreen}{grünen Punkte}) +Hat es Fehler in der Übertragunge gegeben,in der Abbilbung \ref{fig:polynom} die \textcolor{red}{roten Punkte}). +Erkennt man diese Fehler, da alle korrekten Punkte auf der Parabel liegen müssen. +Die \textcolor{darkgreen}{grünen Punkte} bestimmen die Parabel, und die Fehler können zu den +\textcolor{gray}{Orginalpunkte} rekonstruiert werden. Ab wie vielen Fehler ist das Polynom nicht mehr erkennbar beim Übertragen von 7 Punkten? Bei 2 Fehlern kann man noch eindeutig bestimmen, dass das Polynom mit 4 Punkten, gegenüber dem mit 5 Punkten falsch liegt. \ref{fig:polynom} Werden es mehr Fehler kann nur erkannt werden, dass das Polynom nicht stimmt. Das orginale Polynom kann aber nicht mehr gefunden werden. -Da das Konkurrenzpolynom, grau gestrichelt in Abbildung \ref{fig:polynom}, das orginal fehlleitet. +Da andere Polynome oder das Konkurrenzpolynom, grau gestrichelt in Abbildung \ref{fig:polynom}, das orginal fehlleitet. Um das Konkurrenzpolynom auszuschliessen, währen mehr \textcolor{darkgreen}{Übertragungspunkte} nötig. \end{beispiel} -\begin{figure} +\begin{figure}%[!ht] \centering - \includegraphics[width=\textwidth]{papers/reedsolomon/figures/polynom2} - %\input{papers/reedsolomon/tikz/polynom2.tex} + %\includegraphics[width=\textwidth]{papers/reedsolomon/figures/polynom2} + \input{papers/reedsolomon/tikz/polynomraw.tex} \caption{Polynom $p(x)$ von der Gleichung\eqref{reedsolomon:equation1}} \label{fig:polynom} \end{figure} @@ -90,6 +89,7 @@ Man könnte auch dies in der Tabelle \ref{tab:fehlerkorrekturstellen} erkennen, zeigt sich, dass es $k+2t$ Übertragungspunkte braucht. \begin{table} + \centering \begin{tabular}{ c c | c} \hline Nutzlas & Fehler & Übertragen \\ @@ -101,7 +101,8 @@ zeigt sich, dass es $k+2t$ Übertragungspunkte braucht. $k$ & $t$ & $k+2t$ Werte eines Polynoms vom Grad $k-1$ \\ \hline \end{tabular} - \caption{\label{tab:fehlerkorrekturstellen} Fehlerkorrekturstellen Bestimmung.} + \caption{ Fehlerkorrekturstellen Bestimmung.} + \label{tab:fehlerkorrekturstellen} \end{table} Ein Nebeneffekt ist, dass dadurch auch $2t$ Fehler erkannt werden können, nicht aber korrigiert. -- cgit v1.2.1