From 60d4a3350dc813cbd17c8dd8cf0a4b50b0f84346 Mon Sep 17 00:00:00 2001 From: michael-OST <75078383+michael-OST@users.noreply.github.com> Date: Wed, 14 Jul 2021 17:01:21 +0200 Subject: various chapters updated, zusammenfassung filld with content --- buch/papers/reedsolomon/zusammenfassung.tex | 52 +++++++++++++++++++++++++++-- 1 file changed, 49 insertions(+), 3 deletions(-) (limited to 'buch/papers/reedsolomon/zusammenfassung.tex') diff --git a/buch/papers/reedsolomon/zusammenfassung.tex b/buch/papers/reedsolomon/zusammenfassung.tex index 568356f..b4050b8 100644 --- a/buch/papers/reedsolomon/zusammenfassung.tex +++ b/buch/papers/reedsolomon/zusammenfassung.tex @@ -3,13 +3,59 @@ \rhead{Zusammenfassung} Dieser Abschnitt beinhaltet eine Übersicht über die Funktionsweise eines Reed-Solomon-Codes für beliebige endliche Körper. -TODO: - \subsubsection{Schritt 1: primitives Element} +Zu Beginn soll entschieden werden, in welchem endlichen Körper $\mathbb{F}_{q}$ gerechnet werden soll. +Ausserdem muss im gewählten Körper eine primitive Einheitswurzel gefunden, bzw. bestimmt werden. \subsubsection{Schritt 2: Codierung} +Für die Codierung wird die Nachricht als Koeffizienten des Polynoms $m(X)$ geschrieben, anschliessend wird $a^i$ in $m(X)$ eingesetzt. +Daraus ergibt sich die Codierungsmatrix +\[ +A(a) = +\begin{pmatrix} +a^0 & a^0 & a^0 & \dots \\ +a^0 & a^1 & a^2 & \dots \\ +a^0 & a^2 & a^4 & \dots \\ +\vdots&\vdots&\vdots&\ddots +\end{pmatrix} +. +\] +Mit dieser Matrix können wir den Nachrichtenblock zum Übertragungsvektor codieren. \subsubsection{Schritt 3: Decodierung ohne Fehler} +Im ersten Schritt zur Decodierung muss geprüft werden, ob der Übertragungsvektor Fehler beinhaltet. +Ist dies nicht der Fall, so kann die Matrix $A(a)$ invertiert werden mit +\[ +A(a)^{-1} = \frac{1}{q-1} \cdot A(a^{-1}). +\] +Die Codierungsmatrix ändert sich somit zur Decodierungsmatrix +\[ +\begin{pmatrix} + a^0 & a^0 & a^0 & \dots \\ + a^0 & a^1 & a^2 & \dots \\ + a^0 & a^2 & a^4 & \dots \\ + \vdots&\vdots&\vdots &\ddots +\end{pmatrix} += +\frac{1}{q-1} +\cdot +\begin{pmatrix} + a^0 & a^0 & a^0 & \dots \\ + a^0 & a^{-1} & a^{-2} & \dots \\ + a^0 & a^{-2} & a^{-4} & \dots \\ + \vdots&\vdots&\vdots&\ddots +\end{pmatrix} +. +\] +Daraus lässt sich der Nachrichtenblock aus dem Übertragungsvektor rekonstruieren. \subsubsection{Schritt 4: Decodierung mit Fehler} - +Sollte der Übertragungsvektor fehlerhaft empfangen werden, so kann der Nachrichtenblock nicht durch invertieren der Matrix rekonstruiert werden. +Zur Lokalisierung der Fehlerstellen nehmen wir das Polynom $f(X)$ zur Hilfe, welches wir über den Satz von Fermat bestimmt haben. +Berechnen wir daraus das $\operatorname{kgV}$ von $f(X)$ und $d(X)$, so erhalten wir ein Lokatorpolynom. +Durch das bestimmen der Exponenten erhalten wir die Fehlerhaften Stellen im Übertragungsvektor. +Für die Rekonstruktion stellen wir ein Gleichungssystem auf und entfernen daraus die Fehlerhaften Zeilen. +Im Anschluss kann das verkleinerte Gleichungssystem gelöst werden. +Als Resultat erhalten wir die fehlerfreie Nachricht. +%Aus diesem Grund suchen wir nach einem Lokatorpolynom, welches uns die Fehlerhaften Stellen im Übertragungsvektor anzeigt. +%Dazu nehmen wir das Polynom $f(X)$, welches wir durch den Satz von Fermat erhalten, und berechnen so das $\operatorname{kgV}(f(X),d(X))$ und kommen so auf das Lokatorpolynom $l(X)$. Durch das bestimmen von den Exponenten erhalten wir die Fehlerstellen, welche wir aus dem Gleichungssystem entfernen müssen. Übrig bleibt das berechnen dieses Gleichungssystems. -- cgit v1.2.1