From 46340ee2972d7f59bf87665fd93298a6a937f797 Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Fri, 28 May 2021 15:06:26 +0200 Subject: =?UTF-8?q?=C3=9Cberarbeitungen=20/=20Verbesserungen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/spannung/teil1.tex | 58 +++++++++++++----------------------------- 1 file changed, 17 insertions(+), 41 deletions(-) (limited to 'buch/papers/spannung/teil1.tex') diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex index 9467d21..3b40ee9 100644 --- a/buch/papers/spannung/teil1.tex +++ b/buch/papers/spannung/teil1.tex @@ -1,41 +1,17 @@ -\section{Proportionalität Spannung-Dehnung\label{spannung:section:Proportionalität Spannung-Dehnung}} -\rhead{Proportionalität Spannung-Dehnung} -Das Hook'sche Gesetz beschreibt die elastische Längenänderung von Festkörpern im Zusammenhang mit einer Krafteinwirkung. -Die Längenänderung $\Delta l$ ist proportional zur Krafteinwirkung $F$. -\[ -F -\sim -\Delta l -\] -Man kann dies nur im Bereich vom linearen-elastischen Materialverhalten anwenden. -Das heisst, dass alle Verformungen reversibel sind, sobald man die Kraft wegnimmt. -Es findet somit keine dauernde Verformung statt. -Da es sehr praktisch ist die Längenänderung nicht absolut auszudrücken haben wir $\varepsilon$. -Die Dehnung $\varepsilon$ beschreibt die relative Längenänderung. -Die Dehnung $\varepsilon$ ist wiederum proportional zu der aufgebrachten Spannung. -Im Bauingenieurwesen hat man es oft mit grösseren Teilen oder grösseren Betrachtungsräumen zu tun. -Da ist es nun natürlich sehr sinnvoll, wenn wir nicht mit absoluten Zahlen rechnen, -sondern unabhängig von der Länge den Zustand mit Dehnung $\varepsilon$ beschreiben können. -Mithilfe vom E-Modul, (steht für Elastizitätsmodul) einer Proportionalitätskonstante, -kann man das in eine Gleichung bringen, wie man hier sieht. Das E-Modul beschreibt, -das Verhältnis von Kraftaufnahme eines Werkstoffes und dessen zusammenhängender Längenveränderung. -(Quelle Wikipedia) -\[ -\sigma -= -E\cdot\varepsilon -\] -\[ -E -= -\frac{\Delta\sigma}{\Delta\varepsilon} -= -const. -\] - -Aus diesem Verhältnis kann man das E-Modul berechnen. -Je nach Material ist dies verschieden. -Das E-Modul lässt sich nur im linearen-elastischen Materialverhalten anwenden. -Für Bodenmaterial gibt es ein spezielles E-Modul. Dieses wird mit dem Oedometer-Versuch ermittelt. -Es wird mit $E_{OED}$ ausgedrückt. Dieser Versuch wird später noch beschrieben. -Der Oedometer-Versuch ist abhängig von den diesem Kapitel zu untersuchenden Matrizen. \ No newline at end of file +\section{Skalare, Vektoren, Matrizen und Tensoren\label{spannung:section:Skalare,_Vektoren,_Matrizen_und_Tensoren}} +\rhead{Skalare, Vektoren, Matrizen und Tensoren} +Tensoren wurden als erstes in der Elastizitätstheorie eingesetzt. (Quelle Herr Müller) +In der Elastizitätstheorie geht es darum viele verschiedene Komponenten zu beschreiben. +Mit einer Matrix oder einem Vektor kann man dies nicht mehr bewerkstelligen. +Wenn man den dreidimensionalen Spannungszustand abbilden möchte, müsste man mehrere Vektoren haben. +Deshalb wurden 1840 von Rowan Hamilton Tensoren in die Mathematik eingeführt. +Woldemar Voigt hat den Begriff in die moderne Bedeutung von Skalar, Matrix und Vektor verallgemeinert. +Albert Einstein hat Tensoren zudem in der allgemeinen Relativitätstheorie benutzt. +Tensor sind eine Stufe höher als Matrizen. Matrizen sind 2. Stufe. +Da Tensoren eine Stufe höher sind, kann man auch Matrizen, Vektoren und Skalare als Tensoren bezeichnen. +Der Nachteil von den Tensoren ist, dass man die gewohnten Rechenregeln, die man bei Vektoren oder Matrizen kennt, +nicht darauf anwenden kann. Man ist deshalb bestrebt die Tensoren als Vektoren und Matrizen darzustellen, +damit man die gewohnten Rechenregeln darauf anwenden kann. (Quelle Wikipedia) +In der vorliegenden Arbeit sind bereits alle Tensoren als Matrizen 2. Stufe abgebildet. +Trotzdem kann man diese Matrizen wie vorher beschrieben als Tensor bezeichnen. +Da diese als Matrizen abgebildet sind, dürfen wir die bekannten Rechenregeln auf unsere Tensoren anwenden. \ No newline at end of file -- cgit v1.2.1 From 401325ee8d395ec4de27f4dcede73e860f3e28a8 Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Mon, 31 May 2021 10:47:48 +0200 Subject: =?UTF-8?q?=C3=9Cberarbeitung=20und=20Verbesserung=20der=20Kapitel?= =?UTF-8?q?=20Bearbeitung=20Literaturverzeichnis=20(im=20Literaturverzeich?= =?UTF-8?q?nis=20noch=20nicht=20alles=20korrekt)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/spannung/teil1.tex | 37 ++++++++++++++++++++++--------------- 1 file changed, 22 insertions(+), 15 deletions(-) (limited to 'buch/papers/spannung/teil1.tex') diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex index 3b40ee9..2db244e 100644 --- a/buch/papers/spannung/teil1.tex +++ b/buch/papers/spannung/teil1.tex @@ -1,17 +1,24 @@ \section{Skalare, Vektoren, Matrizen und Tensoren\label{spannung:section:Skalare,_Vektoren,_Matrizen_und_Tensoren}} \rhead{Skalare, Vektoren, Matrizen und Tensoren} -Tensoren wurden als erstes in der Elastizitätstheorie eingesetzt. (Quelle Herr Müller) -In der Elastizitätstheorie geht es darum viele verschiedene Komponenten zu beschreiben. -Mit einer Matrix oder einem Vektor kann man dies nicht mehr bewerkstelligen. -Wenn man den dreidimensionalen Spannungszustand abbilden möchte, müsste man mehrere Vektoren haben. -Deshalb wurden 1840 von Rowan Hamilton Tensoren in die Mathematik eingeführt. -Woldemar Voigt hat den Begriff in die moderne Bedeutung von Skalar, Matrix und Vektor verallgemeinert. -Albert Einstein hat Tensoren zudem in der allgemeinen Relativitätstheorie benutzt. -Tensor sind eine Stufe höher als Matrizen. Matrizen sind 2. Stufe. -Da Tensoren eine Stufe höher sind, kann man auch Matrizen, Vektoren und Skalare als Tensoren bezeichnen. -Der Nachteil von den Tensoren ist, dass man die gewohnten Rechenregeln, die man bei Vektoren oder Matrizen kennt, -nicht darauf anwenden kann. Man ist deshalb bestrebt die Tensoren als Vektoren und Matrizen darzustellen, -damit man die gewohnten Rechenregeln darauf anwenden kann. (Quelle Wikipedia) -In der vorliegenden Arbeit sind bereits alle Tensoren als Matrizen 2. Stufe abgebildet. -Trotzdem kann man diese Matrizen wie vorher beschrieben als Tensor bezeichnen. -Da diese als Matrizen abgebildet sind, dürfen wir die bekannten Rechenregeln auf unsere Tensoren anwenden. \ No newline at end of file +Der Begriff Tensor kann als Überbegriff, der mathematischen Objekte Skalar, Vektor und Matrix, betrachtet werden. +Allerdings sind noch höhere Stufen dieser Objekte beinhaltet. +Ein Skalar, ein Vektor oder eine Matrix ist daher auch ein Tensor. +Ein Skalar ist ein Tensor 0. Stufe. +Mit einem Vektor können mehrere Skalare auf einmal beschrieben werden. +Ein Vektor hat daher die Stufe 1 und ist höherstufig als ein Skalar. +Mit einer Matrix können wiederum mehrere Vektoren auf einmal beschrieben werden. +Eine Matrix hat daher die Stufe 2 und ist noch höherstufig als ein Vektor. +Versteht man diese Stufen, so versteht man den Sinn des Begriffs Tensor. + +Jede Stufe von Tensoren verlangt andere Rechenregeln. +So zeigt sich auch der Nachteil von Tensoren mit Stufen höher als 2. +Man ist also bestrebt höherstufige Tensoren mit Skalaren, Vektoren oder Matrizen zu beschreiben. + +Der Begriff Tensor wurde 1840 von Rowan Hamilton in die Mathematik eingeführt. +James Clerk Maxwell hat bereits mit Tensoren operiert, ohne den Begriff Tensor gekannt zu haben. +Erst Woldemar Voigt hat den Begriff in die moderne Bedeutung von Skalar, Matrix und Vektor verallgemeinert. +Er hat in der Elastizitätstheorie als erstes Tensoren eingesetzt und beschrieben. +Auch Albert Einstein hat solche Tensoren eingesetzt, +um in der Relativitätstheorie die Änderung der 4D Raumzeit beschreiben zu können. +\cite{spannung:Tensor} +\cite{spannung:Voigtsche Notation} \ No newline at end of file -- cgit v1.2.1 From b70156cbf2d76d1850ddd1fc6f58e79bdc5c5203 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 2 Jun 2021 07:53:42 +0200 Subject: Makefile in clifford, references in spannung --- buch/papers/spannung/teil1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/spannung/teil1.tex') diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex index 2db244e..74516c1 100644 --- a/buch/papers/spannung/teil1.tex +++ b/buch/papers/spannung/teil1.tex @@ -21,4 +21,4 @@ Er hat in der Elastizitätstheorie als erstes Tensoren eingesetzt und beschriebe Auch Albert Einstein hat solche Tensoren eingesetzt, um in der Relativitätstheorie die Änderung der 4D Raumzeit beschreiben zu können. \cite{spannung:Tensor} -\cite{spannung:Voigtsche Notation} \ No newline at end of file +\cite{spannung:Voigtsche-Notation} -- cgit v1.2.1