From 2b0d4d1b98f7bed5fa05e2ab6c30352390f22eef Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Tue, 27 Jul 2021 11:15:54 +0200 Subject: =?UTF-8?q?Diverse=20=C3=84nderungen=20/=20Korrekturen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/spannung/teil3.tex | 32 +++++++++++++++++--------------- 1 file changed, 17 insertions(+), 15 deletions(-) (limited to 'buch/papers/spannung/teil3.tex') diff --git a/buch/papers/spannung/teil3.tex b/buch/papers/spannung/teil3.tex index 3e456c3..a9080ea 100644 --- a/buch/papers/spannung/teil3.tex +++ b/buch/papers/spannung/teil3.tex @@ -30,7 +30,7 @@ q \label{spannung:Invariante_q} . \end{equation} -Diese Zusammenhänge werden im Skript [\cite{spannung:Stoffgesetze-und-numerische-Modellierung-in-der-Geotechnik}] aufgezeigt. +Diese Zusammenhänge werden im Skript \cite{spannung:Stoffgesetze-und-numerische-Modellierung-in-der-Geotechnik} aufgezeigt. Die hydrostatische Spannung $p$ kann gemäss Gleichung \eqref{spannung:Invariante_p} als \[ p @@ -38,28 +38,28 @@ p \frac{\sigma_{11}+2\sigma_{33}}{3} \] vereinfacht werden. -Die deviatorische Spannung $q$ wird gemäss Gleichung \eqref{spannung:Invariante_q}als +Die deviatorische Spannung $q$ wird gemäss Gleichung \eqref{spannung:Invariante_q} als \[ q = \sigma_{11}-\sigma_{33} \] -vereinfacht. Man kann $p$ als Isotrop und $q$ als Schub betrachten. +vereinfacht. Man kann $p$ als Druck und $q$ als Schub betrachten. -Die Invarianten können mit der Spannungsformel \eqref{spannung:Spannungsgleichung} berechnet werden. +Die Invarianten $p$ und $q$ können mit der Spannungsgleichung \eqref{spannung:Spannungsgleichung} berechnet werden. Durch geschickte Umformung dieser Gleichung, lassen sich die Module als Faktor separieren. Dabei entstehen spezielle Faktoren mit den Dehnungskomponenten. So ergibt sich \[ -\overbrace{\frac{\sigma_{11}+2\sigma_{33}}{3}}^{p} +\overbrace{\frac{\sigma_{11}+2\sigma_{33}}{3}}^{\displaystyle{p}} = -\frac{E}{3(1-2\nu)} \overbrace{(\varepsilon_{11} - 2\varepsilon_{33})}^{\varepsilon_{v}} +\frac{E}{3(1-2\nu)} \overbrace{(\varepsilon_{11} - 2\varepsilon_{33})}^{\displaystyle{{\varepsilon_{v}}}} \] und \[ -\overbrace{\sigma_{11}-\sigma_{33}}^{q} +\overbrace{\sigma_{11}-\sigma_{33}}^{\displaystyle{q}} = -\frac{3E}{2(1+\nu)} \overbrace{\frac{2}{3}(\varepsilon_{11} - \varepsilon_{33})}^{\varepsilon_{s}} +\frac{3E}{2(1+\nu)} \overbrace{\frac{2}{3}(\varepsilon_{11} - \varepsilon_{33})}^{\displaystyle{\varepsilon_{s}}} . \] Die Faktoren mit den Dehnungskomponenten können so mit @@ -79,8 +79,8 @@ eingeführt werden, mit \varepsilon_{v} &= \text{Hydrostatische Dehnung [-]} \\ \varepsilon_{s} &= \text{Deviatorische Dehnung [-].} \end{align*} -Die hydrostatische Dehnung $\varepsilon_{v}$ kann mit einer Kompression verglichen werden. -Die deviatorische Dehnung $\varepsilon_{s}$ kann mit einer Verzerrung verglichen werden. +Die hydrostatische Dehnung $\varepsilon_{v}$ kann mit einer Kompression und +die deviatorische Dehnung $\varepsilon_{s}$ mit einer Verzerrung verglichen werden. Diese zwei Gleichungen kann man durch die Matrixschreibweise \begin{equation} @@ -90,8 +90,8 @@ Diese zwei Gleichungen kann man durch die Matrixschreibweise \end{pmatrix} = \begin{pmatrix} - \frac{3E}{2(1+\nu)} & 0 \\ - 0 & \frac{E}{3(1-2\nu)} + \displaystyle{\frac{3E}{2(1+\nu)}} & 0 \\ + 0 & \displaystyle{\frac{E}{3(1-2\nu)}} \end{pmatrix} \begin{pmatrix} \varepsilon_{s}\\ @@ -100,9 +100,11 @@ Diese zwei Gleichungen kann man durch die Matrixschreibweise \label{spannung:Matrixschreibweise} \end{equation} vereinfachen. -Man hat so eine Matrix multipliziert mit einem Vektor und erhält einen Vektor. -Änderungen des Spannungszustandes können mit dieser Gleichung vollumfänglich erfasst werden. +Änderungen des Spannungszustandes können mit diesen Gleichungen vollumfänglich erfasst werden. +Diese Spannungsgleichung mit den zwei Einträgen ($p$ und $q$) ist gleichwertig +wie die ursprüngliche Spannungsgleichung mit den neun Einträgen +($\sigma_{11}$, $\sigma_{12}$, $\sigma_{13}$, $\sigma_{21}$, $\sigma_{22}$, $\sigma_{23}$, $\sigma_{31}$, $\sigma_{32}$, $\sigma_{33}$). Mit dieser Formel \eqref{spannung:Matrixschreibweise} lassen sich verschieden Ergebnisse von Versuchen analysieren und berechnen. -Ein solcher Versuch, den oft in der Geotechnik durchgeführt wird, ist der Oedometer-Versuch. +Ein solcher Versuch, der oft in der Geotechnik durchgeführt wird, ist der Oedometer-Versuch. Im nächsten Kapitel wird die Anwendung der Matrix an diesem Versuch beschrieben. -- cgit v1.2.1