From 8dc8c7a998d5a2862df90adc8b45d025e692d2d1 Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Wed, 5 May 2021 14:09:44 +0200 Subject: =?UTF-8?q?Arbeiten=20am=20Kapitel,=20zur=20Probe,=20weiteren=20Zu?= =?UTF-8?q?sammenarbeit,=20sodass=20Roy=20Seitz=20es=20einsehen=20k=C3=B6n?= =?UTF-8?q?nte?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/spannung/Einleitung.tex | 91 +++++++++++++++++++++ .../Grafiken/infinitesimalerW\303\274rfel.jpg" | Bin 0 -> 31604 bytes buch/papers/spannung/teil0.tex | 53 +++++++----- buch/papers/spannung/teil1.tex | 77 +++++++---------- buch/papers/spannung/teil2.tex | 48 +++-------- 5 files changed, 164 insertions(+), 105 deletions(-) create mode 100644 buch/papers/spannung/Einleitung.tex create mode 100644 "buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" (limited to 'buch/papers/spannung') diff --git a/buch/papers/spannung/Einleitung.tex b/buch/papers/spannung/Einleitung.tex new file mode 100644 index 0000000..17ca1c9 --- /dev/null +++ b/buch/papers/spannung/Einleitung.tex @@ -0,0 +1,91 @@ +\section{Einleitung\label{spannung:section:Einleitung}} +In diesem Kapitel geht es darum die Matrix im dreidimensionalen Spannungszustand genauer zu untersuchen. +In der Geotechnik wendet man solche Matrizen an, um Spannungen im Boden zu berechnen. +Mit diesen Grundlagen dimensioniert man beispielsweise Böschungen, Fundationen, Dämme und Tunnels. +Ebenfalls benötigt man diese Matrix, um aus Versuchen Kennzahlen über den anstehenden Boden zu gewinnen. +Besonderes Augenmerk liegt dabei auf dem Oedometer - Versuch. + +Bei dieser Untersuchung der zugehörigen Berechnungen hat man es mit Vektoren, Matrizen und Tensoren zu tun. +Um die mathematische Untersuchung vorzunehmen, beschäftigt man sich zuerst mit den spezifischen Gegebenheiten und Voraussetzungen. +Ebenfalls gilt es ein paar wichtige Begriffe und deren mathematisches Zeichen einzuführen, +damit sich den Berechnungen schlüssig folgen lässt. + +In diesem Kapitel hat man es insbesondere mit Spannungen und Dehnungen zu tun. +Mit einer Spannung ist hier jedoch keine elektrische Spannung gemeint, +sondern eine Kraft geteilt durch Fläche. + +\section{Einführung wichtige Begriffe\label{spannung:section:Wichtige Begriffe}} +\[ +\l += +Ausgangslänge\enspace[m] +\] +\[ +\Delta l += +Längenänderung\enspacenach\enspaceKraftauftrag\enspace[m] +\] +\[ +\varepsilon += +Dehnung\enspace[-] +\] +\[ +\sigma += +Spannung\enspace[kPa] +\] +\[ +E += +Elastizitätsmodul +\] +\[ +F += +Kraft\enspace[kN] +\] +\[ +A += +Fläche\enspace[m^2] +\] +\[ +t += +Tiefe\enspace[m] +\] +\[ +s += +Setzung,\enspaceAbsenkung\enspace[m] +\] + +Beziehungen +\[ +\varepsilon += +\frac{\Delta l}{l_0} +\] +\[ +\varepsilon_q += +\frac{\Delta b}{l_0} += +\varepsilon_\upsilon +\] +\[ +\sigma += +\frac{N}{A} +\] +\[ +N += +\int_{A} \sigma \dA +\] +\[ +\varepsilon^{\prime} += +\frac{1}{l_0}\] + diff --git "a/buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" "b/buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" new file mode 100644 index 0000000..e3875bb Binary files /dev/null and "b/buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" differ diff --git a/buch/papers/spannung/teil0.tex b/buch/papers/spannung/teil0.tex index cf47a18..ee19778 100644 --- a/buch/papers/spannung/teil0.tex +++ b/buch/papers/spannung/teil0.tex @@ -1,22 +1,37 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 0\label{spannung:section:teil0}} -\rhead{Teil 0} -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua \cite{spannung:bibtex}. -At vero eos et accusam et justo duo dolores et ea rebum. -Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum -dolor sit amet. +\section{Spannungsausbreitung\label{spannung:section:Spannungsausbreitung}} +\rhead{Spannungsausbreitung} +Anhand untenstehendem Bild kann ein einfaches Beispiel betrachtet werden. +Es gibt eine Kraft, diese wird auf den Boden abgetragen. +Diese Kraft muss dann vom Boden aufgenommen werden. +Im Boden entsteht eine Spannung. Diese Spannung ist abhängig von $\sigma(x,y,t)$ +Je nach dem, wo man sich im Boden befindet variert die Spannung. +Mit der Tiefe wird die Spannung geringer. +Die Ausbreitung der Spannung im Boden hat die Form einer Zwiebel. +Durch Untersuchung der Spannung an verschiedenen Punkten im Boden, kann man eine Funktion abtragen. +Dasselbe macht man auch mit der Dehnung. Es zeigt sich, dass die Form der beiden Funktionen gleich ist. +Dies erklärt sich dadurch, dass die Spannung und die Dehnung proportional sind zueinander sind. -Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam -nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam -erat, sed diam voluptua. -At vero eos et accusam et justo duo dolores et ea rebum. Stet clita -kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit -amet. +Anhand eines etwas schwierigeren Beispiels sieht man, +dass die Spannungsausbreitung nicht immer ganz einfach ist. +Man hat hier eine Baugrube mit einem Baugrubenabschluss, wo ein Teil des Bodens abgetragen wurde. +Was aber immer noch gilt ist, dass die Spannung von drei Variablen abhängig ist. $\sigma(x,y,t)$ +Ansätze um die Spannungsausbreitung zu berechnen gibt es je nach Bodentyp verschiedene. + +Die Spannungsausbreitung ist uns jedoch gegeben, es geht nicht darum, dies genauer zu untersuchen. +Durch die Spannungsausbreitung und das Elastizitätsmodul kann man eine Dehnung berechnen. +Anhand dieser Dehnung kann man mit einem Integral wiederum die Setzung berechnen. +\[ +\varepsilon += +\frac{\sigma}{E} +\] +\[ +s += +\int_{\0}^{\infty} \varepsilon \dt +\] +Die Setzung zu bestimmen ist in der Geotechnik sehr wichtig. +Besonders ungleichmässige Setzungen können bei Bauwerken Probleme ergeben. +Es gilt also die Bauwerke so zu dimensionieren, dass es verträgliche Setzungen gibt. diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex index 95e6f0a..70dbb5a 100644 --- a/buch/papers/spannung/teil1.tex +++ b/buch/papers/spannung/teil1.tex @@ -1,55 +1,34 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{spannung:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx +\section{Proportionalität Spannung-Dehnung\label{spannung:section:Proportionalität Spannung-Dehnung}} +\rhead{Proportionalität Spannung-Dehnung} +Das Hooksche Gesetz beschreibt die elastische Längenänderung von Festkörpern im Zusammenhang mit einer Krafteinwirkung. +Die Längenänderung $\delta l$ ist proportional zur Krafteinwirkung. +$F\sim \Delta l$ +Man kann dies nur im Bereich vom linearen elastischen Materialverhalten anwenden. +Das heisst das alle Verformungen reversibel sind, sobald man die Kraft wegnimmt. +Es findet somit keine dauernde Verformung statt. +Da es sehr praktisch ist die Längenänderung nicht absolut auszudrücken haben wir $\varepsilon$. +$\varepsilon$ beschreibt die relative Längenänderung. +$\varepsilon$ ist wiederum proportional zu der aufgebrachten Spannung. +Im Bauingenieurwesen hat man es oft mit grösseren Teilen oder Grösseren Betrachtungsräumen zu tun. +Da ist es nun natürlich sehr sinnvoll, wenn wir nicht mit absoluten Zahlen rechnen, +sondern unabhängig von der Länge den Zustand mit Epsilon beschreiben können. +Mithilfe vom E-Modul, (steht für Elastizitätsmodul) einer Proportionalitätskonstante, +kann man das in eine Gleichung bringen, wie man hier sieht. Das E-Modul beschreibt, +das Verhältnis von Kraftaufnahme eines Werkstoffes und dessen zusammenhängender Längenveränderung. +\[ +E = -\left[ \frac13 x^3 \right]_a^b +\frac{\Delta\sigma}{\Delta\varepsilon} = -\frac{b^3-a^3}3. -\label{spannung:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. +const. +\] -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? +Aus diesem Verhältnis kann man das E-Modul berechnen. +Je nach Material ist dies verschieden. +Das E-Modul lässt sich nur im linearen-elastischen Materialverhalten anwenden. +Für Bodenmaterial gibt es ein spezielles E-Modul. Dieses wird mit dem Oedometerversuch ermittelt. +Es wird mit $E_{OED}$ ausgedrückt. Dieser Versuch wird später noch beschrieben. +Der Oedometerversuch ist abhängig von den diesem Kapitel zu untersuchenden Matrizen. -\subsection{De finibus bonorum et malorum -\label{spannung:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{spannung:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{spannung:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex index 37d3242..8eb54cb 100644 --- a/buch/papers/spannung/teil2.tex +++ b/buch/papers/spannung/teil2.tex @@ -1,40 +1,14 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{spannung:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? +\section{Dreiachsiger Spannungszustand\label{spannung:section:Dreiachsiger Spannungszustand}} +\rhead{Proportionalität Spannung-Dehnung} +Wie im Kapitel Spannungsausbreitung beschrieben herrscht in jedem Punkt ein anderer Spannungszustand. +Um die Spannung im Boden genauer untersuchen zu können für man einen infinitesimalen Würfel ein. +\begin{figure} + \includegraphics{C:/Users/User/Documents/SeminarMatrizen/buch/papers/spannung/Grafiken/infinitesimalerWürfel.jpg} + \caption{infinitesimaler Würfel} + \label{fig:infintesimaler-wurfel} +\end{figure} -\subsection{De finibus bonorum et malorum -\label{spannung:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +Sobald eine Kraft von oben wirkt hat man auch Kräfte die seitlich wirken. +Nun alle Kräfte ansehen des Infintesimalen Körpers -- cgit v1.2.1 From 7268e7363fddd5878b35de9169b64090a38a8fc5 Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Thu, 6 May 2021 16:51:10 +0200 Subject: Push --- buch/papers/spannung/Einleitung.tex | 6 ++++++ buch/papers/spannung/teil0.tex | 2 +- buch/papers/spannung/teil2.tex | 39 +++++++++++++++++++++++++++++++++++-- 3 files changed, 44 insertions(+), 3 deletions(-) (limited to 'buch/papers/spannung') diff --git a/buch/papers/spannung/Einleitung.tex b/buch/papers/spannung/Einleitung.tex index 17ca1c9..efc3809 100644 --- a/buch/papers/spannung/Einleitung.tex +++ b/buch/papers/spannung/Einleitung.tex @@ -89,3 +89,9 @@ N = \frac{1}{l_0}\] +Der Begriff Tensor +Tensoren werden unter anderem in der Elastizitätstheorie gebraucht. +In der Elastizitätstheorie geht es darum viele verschiedene Komponenten zu beschreiben. + + + diff --git a/buch/papers/spannung/teil0.tex b/buch/papers/spannung/teil0.tex index ee19778..67896b8 100644 --- a/buch/papers/spannung/teil0.tex +++ b/buch/papers/spannung/teil0.tex @@ -28,7 +28,7 @@ Anhand dieser Dehnung kann man mit einem Integral wiederum die Setzung berechnen \[ s = -\int_{\0}^{\infty} \varepsilon \dt +\int_{0}^{\infty}\varepsilon\enspace dt \] Die Setzung zu bestimmen ist in der Geotechnik sehr wichtig. Besonders ungleichmässige Setzungen können bei Bauwerken Probleme ergeben. diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex index 8eb54cb..4aa8204 100644 --- a/buch/papers/spannung/teil2.tex +++ b/buch/papers/spannung/teil2.tex @@ -3,12 +3,47 @@ Wie im Kapitel Spannungsausbreitung beschrieben herrscht in jedem Punkt ein anderer Spannungszustand. Um die Spannung im Boden genauer untersuchen zu können für man einen infinitesimalen Würfel ein. \begin{figure} - \includegraphics{C:/Users/User/Documents/SeminarMatrizen/buch/papers/spannung/Grafiken/infinitesimalerWürfel.jpg} + \centering + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken\infinitesimalerWürfel.jpg} \caption{infinitesimaler Würfel} \label{fig:infintesimaler-wurfel} \end{figure} Sobald eine Kraft von oben wirkt hat man auch Kräfte die seitlich wirken. -Nun alle Kräfte ansehen des Infintesimalen Körpers +An diesem infinitesimalen Würfel hat man ein räumliches Koordinatensystem, die Achsen (1,2,3). +Jede dieser 6 Flächen dieses Würfels hat damit 3 Pfeile. +Geschrieben werden diese mit $\sigma$ mit jeweils zwei Indizes gibt. +Die Indizes geben uns an, in welche Richtung der Pfeil zeigt. +Zur Notation wird die Voigt`sche Notation benutzt. Das sieht wie folgt aus: + +\[ +\overline{\sigma} += +\left[ \begin{array}{rrr} + \sigma_{11} & \sigma_{12} & \sigma_{13} \\ + \sigma_{21} & \sigma_{22} & \sigma_{23} \\ + \sigma_{31} & \sigma_{32} & \sigma_{33} \\ +\end{array}\right] += +\left[ \begin{array}{rrr} + \sigma_{11} & \sigma_{12} & \sigma_{13} \\ + & \sigma_{22} & \sigma_{23} \\ + sym & & \sigma_{33} \\ +\end{array}\right] +\Rightarrow +\overrightarrow{\sigma} += +\left(\begin{array}{c}\sigma_{11}\\\sigma_{22}\\\sigma_{33}\\\sigma_{23}\\\sigma_{13}\\\sigma_{12}\end{array}\right) +\] + +Voigt`sche Notation besagt, dass man diesen Spannungstensor als Vektor aufschreiben darf. +Die Reihenfolge folgt der Regel von Ecke links oben, diagonal zur Ecke rechts unten. +Danach ist noch $\sigma_{23}$, $\sigma_{13}$ und $\sigma_{12}$ aufzuschreiben. + +Eine weitere Besonderheit ist die Symmetrie der Matrix. + +?????Was könnte man hier noch zu den Pfeilen erklären vom Würfel??????? + + -- cgit v1.2.1 From 51dc9a5ccc1b6a238a94e4520082594c4b3b7d26 Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Wed, 12 May 2021 17:04:05 +0200 Subject: Diverse Anpassungen/Korrekturen --- buch/papers/spannung/Einleitung.tex | 25 ++- .../Grafiken/DiagrammOedometer-Versuch.jpg | Bin 0 -> 34089 bytes .../spannung/Grafiken/infinitesimalerWuerfel.jpg | Bin 0 -> 31604 bytes buch/papers/spannung/main.tex | 21 +- buch/papers/spannung/teil1.tex | 2 +- buch/papers/spannung/teil2.tex | 249 +++++++++++++++++++-- buch/papers/spannung/teil3.tex | 130 +++++++---- buch/papers/spannung/teil4.tex | 68 ++++++ 8 files changed, 414 insertions(+), 81 deletions(-) create mode 100644 buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg create mode 100644 buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg create mode 100644 buch/papers/spannung/teil4.tex (limited to 'buch/papers/spannung') diff --git a/buch/papers/spannung/Einleitung.tex b/buch/papers/spannung/Einleitung.tex index efc3809..f1d5d70 100644 --- a/buch/papers/spannung/Einleitung.tex +++ b/buch/papers/spannung/Einleitung.tex @@ -16,39 +16,44 @@ sondern eine Kraft geteilt durch Fläche. \section{Einführung wichtige Begriffe\label{spannung:section:Wichtige Begriffe}} \[ -\l +l = -Ausgangslänge\enspace[m] +\text{Ausgangslänge [\si{\meter}]} \] \[ \Delta l = -Längenänderung\enspacenach\enspaceKraftauftrag\enspace[m] +\text{Längenänderung nach Kraftauftrag [\si{\meter}]} \] \[ \varepsilon = -Dehnung\enspace[-] +\text{Dehnung [$-$]} \] \[ \sigma = -Spannung\enspace[kPa] +\text{Spannung [\si{\kilo\pascal}]} \] \[ E = -Elastizitätsmodul +\text{Elastizitätsmodul} +\] +\[ +\nu += +\text{Querdehnungszahl} \] \[ F = -Kraft\enspace[kN] +\text{Kraft [\si{\kilo\newton}]} \] \[ A = -Fläche\enspace[m^2] +\text{Fläche [\si{\meter\squared}]} \] \[ t @@ -58,7 +63,7 @@ Tiefe\enspace[m] \[ s = -Setzung,\enspaceAbsenkung\enspace[m] +\text{Setzung, Absenkung [m]} \] Beziehungen @@ -82,7 +87,7 @@ Beziehungen \[ N = -\int_{A} \sigma \dA +\int_{A} \sigma dA \] \[ \varepsilon^{\prime} diff --git a/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg b/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg new file mode 100644 index 0000000..52f1b5c Binary files /dev/null and b/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg differ diff --git a/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg b/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg new file mode 100644 index 0000000..e3875bb Binary files /dev/null and b/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg differ diff --git a/buch/papers/spannung/main.tex b/buch/papers/spannung/main.tex index 585a423..60696d4 100644 --- a/buch/papers/spannung/main.tex +++ b/buch/papers/spannung/main.tex @@ -8,29 +8,14 @@ \begin{refsection} \chapterauthor{Adrian Schuler und Thomas Reichlin} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} +% TODO Text +\input{papers/spannung/Einleitung.tex} \input{papers/spannung/teil0.tex} \input{papers/spannung/teil1.tex} \input{papers/spannung/teil2.tex} \input{papers/spannung/teil3.tex} +\input{papers/spannung/teil4.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex index 70dbb5a..cc55664 100644 --- a/buch/papers/spannung/teil1.tex +++ b/buch/papers/spannung/teil1.tex @@ -1,7 +1,7 @@ \section{Proportionalität Spannung-Dehnung\label{spannung:section:Proportionalität Spannung-Dehnung}} \rhead{Proportionalität Spannung-Dehnung} Das Hooksche Gesetz beschreibt die elastische Längenänderung von Festkörpern im Zusammenhang mit einer Krafteinwirkung. -Die Längenänderung $\delta l$ ist proportional zur Krafteinwirkung. +Die Längenänderung $\Delta l$ ist proportional zur Krafteinwirkung. $F\sim \Delta l$ Man kann dies nur im Bereich vom linearen elastischen Materialverhalten anwenden. Das heisst das alle Verformungen reversibel sind, sobald man die Kraft wegnimmt. diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex index 4aa8204..d11b3f6 100644 --- a/buch/papers/spannung/teil2.tex +++ b/buch/papers/spannung/teil2.tex @@ -1,49 +1,270 @@ -\section{Dreiachsiger Spannungszustand\label{spannung:section:Dreiachsiger Spannungszustand}} +\section{Dreiachsiger Spannungszustand\label{spannung:section:Dreiachsiger_Spannungszustand}} \rhead{Proportionalität Spannung-Dehnung} Wie im Kapitel Spannungsausbreitung beschrieben herrscht in jedem Punkt ein anderer Spannungszustand. Um die Spannung im Boden genauer untersuchen zu können für man einen infinitesimalen Würfel ein. \begin{figure} \centering - \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken\infinitesimalerWürfel.jpg} - \caption{infinitesimaler Würfel} + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/infinitesimalerWuerfel.jpg} + \caption{Infinitesimaler Würfel} \label{fig:infintesimaler-wurfel} \end{figure} Sobald eine Kraft von oben wirkt hat man auch Kräfte die seitlich wirken. -An diesem infinitesimalen Würfel hat man ein räumliches Koordinatensystem, die Achsen (1,2,3). +An diesem infinitesimalen Würfel hat man ein räumliches Koordinatensystem, die Achsen $(1,2,3)$. Jede dieser 6 Flächen dieses Würfels hat damit 3 Pfeile. Geschrieben werden diese mit $\sigma$ mit jeweils zwei Indizes gibt. Die Indizes geben uns an, in welche Richtung der Pfeil zeigt. -Zur Notation wird die Voigt`sche Notation benutzt. Das sieht wie folgt aus: +Der erste Index ist die Achse auf welcher man sich befindet. +Der zweite Index gibt an, in welche Richtung der Pfeil zeigt. +Zur Notation wird die Voigt'sche Notation benutzt. Das sieht wie folgt aus: \[ \overline{\sigma} = -\left[ \begin{array}{rrr} +\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ - \sigma_{31} & \sigma_{32} & \sigma_{33} \\ -\end{array}\right] + \sigma_{31} & \sigma_{32} & \sigma_{33} +\end{pmatrix} = -\left[ \begin{array}{rrr} +\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ - & \sigma_{22} & \sigma_{23} \\ + & \sigma_{22} & \sigma_{23} \\ sym & & \sigma_{33} \\ -\end{array}\right] +\end{pmatrix} \Rightarrow \overrightarrow{\sigma} = -\left(\begin{array}{c}\sigma_{11}\\\sigma_{22}\\\sigma_{33}\\\sigma_{23}\\\sigma_{13}\\\sigma_{12}\end{array}\right) +\begin{pmatrix} + \sigma_{11}\\ + \sigma_{22}\\ + \sigma_{33}\\ + \sigma_{23}\\ + \sigma_{13}\\ + \sigma_{12} +\end{pmatrix} \] -Voigt`sche Notation besagt, dass man diesen Spannungstensor als Vektor aufschreiben darf. +Voigt'sche Notation besagt, dass man diesen Spannungstensor als Vektor aufschreiben darf. Die Reihenfolge folgt der Regel von Ecke links oben, diagonal zur Ecke rechts unten. Danach ist noch $\sigma_{23}$, $\sigma_{13}$ und $\sigma_{12}$ aufzuschreiben. Eine weitere Besonderheit ist die Symmetrie der Matrix. +So entspricht $\sigma_{23}$ dem Wert $\sigma_{32}$ oder $\sigma_{13}$ dem Wert $\sigma_{31}$. +Dies ist dadurch bedingt, dass die Kräfte in seitlicher Richtung im Boden die gleichen Werte annehmen. +Man hat in dieser Berechnung ein isotropes Material. +Im infinitesimalen Körper muss ein Gleichgewicht vorherrschen. +Ist kein Gleichgewicht vorhanden, würde sich der Körper zu drehen beginnen. +Es macht somit keinen Unterschied, ob man auf der Achse 2 in Richtung drei geht, +oder auf der Achse 3 in Richtung 2. -?????Was könnte man hier noch zu den Pfeilen erklären vom Würfel??????? +Da die Spannung proportional zur Dehnung ist, kann man die ganze Voigt'sche Notation auch mit der Dehnung ausdrücken. +Auch hier wandelt man das ganze gemäss der Reihenfolge in einen Vektor um. +\[ +\bar{\varepsilon} += +\begin{pmatrix} + \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ + \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ + \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} +\end{pmatrix} += +\begin{pmatrix} + \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ + & \varepsilon_{22} & \varepsilon_{23} \\ + \text{sym} & & \varepsilon_{33} +\end{pmatrix} +\qquad +\Rightarrow +\qquad +\vec{\varepsilon} += +\begin{pmatrix} + \varepsilon_{11} \\ + \varepsilon_{22} \\ + \varepsilon_{33} \\ + \varepsilon_{23} \\ + \varepsilon_{13} \\ + \varepsilon_{12} +\end{pmatrix} +\] + + +Mit der hergeleiteten Beziehung für die Spannungsgleichung anhand vom E-Modul, +der allgemeinen linearen Spannungsgleichung kann man diese Beziehungen neu aufschreiben. +Man benötigt dazu den zuvor berechneten Dehnungsvektor. +Die Gleichung besagt: +Spannungsvektor $=$ Elastitzitätstensor $\times$ Dehnungsvektor + +\[ +\overrightarrow{\sigma} += +\overline{\overline{C}}\cdot \overrightarrow{\varepsilon} +\] + +Die Vektoren haben je 6 Einträge. Um das ganze auszudrücken braucht es einen 6 x 6 Elastizitätstensor. (Kann man das noch weiter erklären weshalb?????) +Das ganze sieht dann wie folgt aus: + +\[ +\begin{pmatrix} + \sigma_{11} \\ + \sigma_{22} \\ + \sigma_{33} \\ + \sigma_{23} \\ + \sigma_{13} \\ + \sigma_{12} +\end{pmatrix} += +\begin{pmatrix} + C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ + C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ + C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ + C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ + C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ + C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} +\end{pmatrix} +\begin{pmatrix} + \varepsilon_{11} \\ + \varepsilon_{22} \\ + \varepsilon_{33} \\ + \varepsilon_{23} \\ + \varepsilon_{13} \\ + \varepsilon_{12} +\end{pmatrix} +\] + +IST DIESE REIHENFOLGE KORREKT???? BEI DEHNUNG + +Die Spannung $\sigma_{11}$ besteht somit aus Anteilen von all diesen sechs Konstanten und den verschiedenen Dehnungen. +Zuvor bei der Voigt'schen Notation hat man jedoch gesehen, dass die Tensoren symmetrisch sind. +Folglich muss auch dieser Elastizitätstensor symmetrisch sein. +Das sind folgendermassen aus: + +\[ +\begin{pmatrix} + \sigma_{11} \\ + \sigma_{22} \\ + \sigma_{33} \\ + \sigma_{23} \\ + \sigma_{13} \\ + \sigma_{12} +\end{pmatrix} += +\begin{pmatrix} + C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ + & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ + & & C_{33} & C_{34} & C_{35} & C_{36} \\ + & & & C_{44} & C_{45} & C_{46} \\ + & & & & C_{55} & C_{56} \\ + \text{sym} & & & & & C_{66} +\end{pmatrix} +\begin{pmatrix} + \varepsilon_{11} \\ + \varepsilon_{22} \\ + \varepsilon_{33} \\ + \varepsilon_{23} \\ + \varepsilon_{13} \\ + \varepsilon_{12} +\end{pmatrix} +\] + +Die Konstanten $C$ kann man nun anders ausdrücken. +Und zwar bewerkstelligt man dies mithilfe vom Hook'schen Gesetz. + +\[ +\begin{pmatrix} + \sigma_{11}\\ + \sigma_{22}\\ + \sigma_{33}\\ + \sigma_{23}\\ + \sigma_{13}\\ + \sigma_{12} +\end{pmatrix} += +\frac{E}{(1+\nu)(1-2\nu)} +\begin{pmatrix} + 1- 2\nu & \nu & \nu & 0 & 0 & 0\\ + \nu & 1- 2\nu & \nu & 0 & 0 & 0\\ + \nu & \nu & 1- 2\nu & 0 & 0 & 0\\ + 0 & 0 & 0 & \frac{1}{2} & 0 & 0\\ + 0 & 0 & 0 & 0 & \frac{1}{2} & 0\\ + 0 & 0 & 0 & 0 & 0 & \frac{1}{2} +\end{pmatrix} +\begin{pmatrix} + \varepsilon_{11}\\ + \varepsilon_{22}\\ + \varepsilon_{33}\\ + \varepsilon_{23}\\ + \varepsilon_{13}\\ + \varepsilon_{12} +\end{pmatrix} +\] + +Mithilfe der Poissonzahl, welche uns die Querdehnung angibt, +sprich wie viel sich der Körper in Querrichtung verformt und dem E-Modul kann man alle Konstanten ausdrücken. +Bei einigen fällt auf, dass diese 0 werden. Der Tensor besagt also, +dass diese jeweiligen Konstanten keinen Einfluss auf unsere Spannung haben. +Als Beispiel kann man sich $\sigma_{33}$ anschauen. +Es ist ersichtlich, dass die Konstante $C_{31}$, $C_{32}$, $C_{33}$, $C_{35}$ und $C_{36}$ keinen Einfluss auf $\sigma_{33}$ haben. +Dies kann wie folgt erklärt werden. Auf Achse 3 geht $\sigma_{33}$ in Richtung 3. +Der Einfluss von $C_{31}$, Achse 3 in Richtung 1 hat keinen Einfluss auf $\sigma_{33}$ + +Von $\overline{\overline{C}}$ bildet man nun die Inverse Matrix $\overline{\overline{C}}~^{-1}$ stellt sich die ganze Gleichung um. + +\[ +\vec{\varepsilon} += +\overline{\overline{C}}~^{-1}\cdot \vec{\sigma} +\] + +\[ +\begin{pmatrix} + \varepsilon_{11}\\ + \varepsilon_{22}\\ + \varepsilon_{33}\\ + \varepsilon_{23}\\ + \varepsilon_{13}\\ + \varepsilon_{12} +\end{pmatrix} += +\frac{1}{E} +\begin{pmatrix} + 1 & -\nu & -\nu & 0 & 0 & 0\\ + -\nu & 1 & -\nu & 0 & 0 & 0\\ + -\nu & -\nu & 1 & 0 & 0 & 0\\ + 0 & 0 & 0 & 2+2\nu & 0 & 0\\ + 0 & 0 & 0 & 0 & 2+2\nu & 0\\ + 0 & 0 & 0 & 0 & 0 & 2+2\nu +\end{pmatrix} +\begin{pmatrix} + \sigma_{11}\\ + \sigma_{22}\\ + \sigma_{33}\\ + \sigma_{23}\\ + \sigma_{13}\\ + \sigma_{12} +\end{pmatrix} +\] + +Die zwei Blöcke links unten und rechts oben sind immer noch vorhanden. +Im Vergleich wo wir die Inverse noch nicht gemacht haben hat sich das nicht geändert. +Um die Einflüsse der Parameter zu veranschaulichen schreibt man folgende Gleichung. + +\[ +\varepsilon_{22} += +\frac{1}{E}\sigma_{22} - \frac{\nu}{E}\sigma_{11} - \frac{\nu}{E}\sigma_{33} +\] + +$\varepsilon_{22}$ beschreibt die Dehnung in Achse 2 und in Richtung 2. +In erster Linie hängt $\varepsilon_{22}$ von $\sigma_{22}$ ab. +Wenn die Poisson - Zahl grösser wird oder $\sigma_{11}$ oder $\sigma_{33}$, dann wird dadurch die Dehnung $\varepsilon_{22}$ kleiner. +Das heisst, auf Kosten von Verformung in anderer Richtung als Achse 2 Richtung 2 erfolgt die Verformung an anderer Stelle. +Wiederum hat die Schubspannung auf $\sigma_{11}$ keinen Einfluss. +Nun kennt man die Beziehung der 6 Dehnungen mit den 6 Spannungen. +In der Geotechnik wäre das aufgrund der vielen Komponenten sehr umständlich um damit Berechnungen zu machen. +Es braucht daher eine Vereinfachung mit Invarianten, welche im nächsten Kapitel beschrieben sind. diff --git a/buch/papers/spannung/teil3.tex b/buch/papers/spannung/teil3.tex index ce7d50f..a3b0b7d 100644 --- a/buch/papers/spannung/teil3.tex +++ b/buch/papers/spannung/teil3.tex @@ -1,40 +1,94 @@ -% -% teil3.tex -- Beispiel-File für Teil 3 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 3 -\label{spannung:section:teil3}} -\rhead{Teil 3} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{spannung:subsection:malorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. +\section{Spannungsausbreitung\label{spannung:section:Invarianten}} +\rhead{Invarianten} +Trotz der Vereinfachung lässt sich mit den Invarianten die Realität adäquat abbilden. +Als erste Bedingung stellt man folgendes Verhältnis auf: +\[ +\sigma_{22} += +\sigma_{33} +\] +Dies deshalb, da man von einem isotropen Bodenmaterial ausgeht. +In Achse 22, Richtung 22 hat man den gleichen Boden wie in Achse 33 und Richtung 33. +Das Verhalten bezüglich Kraftaufnahme, Dehnung Spannung ist somit dasselbe. + +Man führt die zwei Werte p als hydrostatische Spannung und q als deviatorische Spannung ein. +Die Berechnung von p und q sieht wie folgt aus: + +\[ +p += +\frac{\sigma_{11}+\sigma_{22}+\sigma_{33}}{3} +\] + +oder durch Vereinfachung, da $\sigma_{22}=\sigma_{33}$ : + +\[ +p += +\frac{\sigma_{11}+2\sigma_{33}}{3} +\] + +\[ +q += +\sigma_{11}-\sigma_{33} +\] + +p ist das arithmetische Mittel von der Spannung im infinitesimalen Würfel. +q ist die Differenz zwischen der Spannung in vertikaler Richtung und der Spannung in Richtung 2 und 3. +Man kann p als Druckspannung und q als Schubspannung anschauen. + +Aus der Formel vom vorherigen Kapitel konnten wir die Spannungen berechnen. +Deshalb kann man nun p und q in die Gleichung einsetzen. +Die Dehnungen werden mit neuen Variablen eingeführt. +Die Deviatorische Dehnung kann mit einer Schubdehnung verglichen werden. +Die hydrostatische Dehnung kann mit einer Kompressionsdehnung verglichen werden. + +\[ +\overbrace{\sigma_{11}-\sigma_{33}}^{q} += +\frac{3E}{2(1+\nu)} \overbrace{\frac{2}{3}(\varepsilon_{11} - \varepsilon_{33})}^{\varepsilon_{\nu}} +\] + +\[ +\overbrace{\frac{\sigma_{11}+2\sigma_{33}}{3}}^{p} += +\frac{E}{3(1-2\nu)} \overbrace{(\varepsilon_{11} - 2\varepsilon_{33})}^{\varepsilon_{s}} +\] + +\[ +\varepsilon_{s} += +Hydrostatische Dehnung [-] +\] + +\[ +\varepsilon_{\nu} += +Deviatorische Dehnung [-] +\] + +Diese Komponenten kann man nun in die Vereinfachte Matrix einsetzen. +Man hat dann eine Matrix multipliziert mit einem Vektor und erhält einen Vektor. + +\[ +\begin{pmatrix} + q\\ + p +\end{pmatrix} += +\begin{pmatrix} + \frac{3E}{2(1+\nu)} & 0 \\ + 0 & \frac{E}{3(1-2\nu)} +\end{pmatrix} +\begin{pmatrix} + \varepsilon_{s}\\ + \varepsilon_{\nu} +\end{pmatrix} +\] + +Mit dieser Formel lassen sich verschieden Parameter von Versuchen analysieren und berechnen. +Ein solcher Versuch, den oft in der Geotechnik durchgeführt wird ist der Oedometer-Versuch. +Im nächsten Kapitel wird die Anwendung der Matrix an diesem Versuch beschrieben. diff --git a/buch/papers/spannung/teil4.tex b/buch/papers/spannung/teil4.tex new file mode 100644 index 0000000..f1437b1 --- /dev/null +++ b/buch/papers/spannung/teil4.tex @@ -0,0 +1,68 @@ +\section{Spannungsausbreitung\label{spannung:section:Oedometer - Versuch}} +\rhead{Oedometer - Versuch} +Beim Oedometer - Versucht hat man einen Stahlring mit einer Filterplatte am Boden. +In diesen Stahlring wird eine Bodenprobe eingefüllt. +Anschliessend wir mit einer Platte das Bodenmaterial mit einer ansteigenden Kraft belastet. + +Die Probe wird sich so verdichten. Das Volumen nimmt ab. +Der Stahlring verhindert ein seitliches ausbrechen oder entweichen der Bodenprobe. +Die Dehnung auf der Seite beträgt somit 0. +Mit dem Wert der Kraft und der Fläche lässt sich die Spannung berechnen. +Anhand der Volumenabnahme errechnet man die Dehnung. +Aus diesen Werten lässt sich wiederum das E-Modul bestimmen. +Beim Oedometer Versuch ist das E-Modul als $E_{OED}$ bezeichnet. + +Das $E_{OED}$ hat man speziell in der Geotechnik. +Dies aufgrund der speziellen Situation wo man sich mit dem infinitesimalen Würfel befindet. +Mit dem Stahlring, der verhindert das Material seitlich entweichen kann hat man ganz ähnliche Verhältnisse wie tief im Untergrund. +Auch dort kann das Material bei einer Belastung nicht seitlich entweichen. + +Wichtig ist nochmals zu betonen, dass alle diese beschriebenen Berechnungen ausschliesslich im linear-elastischen Materialverhalten funktionieren. +So ist es auch beim Oedometer - Versuch. +Den Versuch kann man auf einem $\sigma$ und $\varepsilon$ Diagramm abtragen. + +\begin{figure} + \centering + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg} + \caption{Diagramm Oedometer - Versuch} + \label{fig:Diagramm Oedometer - Versuch} +\end{figure} + +Bei einem Versuch mit anderem Baumaterial wie beispielsweise Holz nimmt die Dehnung im Laufe des Versuchs stärker zu, obwohl weniger Spannung abgetragen wird. +Bei den meisten Böden ist dies anders. Durch die Komprimierung nimmt der Boden mehr Spannung auf, und verformt sich zugleich weniger stark. + +Man kann die Dehnung in unsere vereinfachte Matrix einsetzen. Das E-Modul ersetzt man mit dem $E_{OED}$. + +\[ +\overbrace{\sigma_{11}-\sigma_{33}}^{q} += +\frac{3E}{2(1+\nu)} \overbrace{\frac{2}{3}(\varepsilon_{11} - 0)}^{\varepsilon_{\nu}} +\] + +\[ +\overbrace{\frac{\sigma_{11}+2\sigma_{33}}{3}}^{p} += +\frac{E}{3(1-2\nu)} \overbrace{(\varepsilon_{11} - 2\cdot0)}^{\varepsilon_{s}} +\] + +\[ +\begin{pmatrix} + \sigma_{11}-\sigma_{33} \\ + \sigma_{11}+2\sigma_{33} +\end{pmatrix} += +\begin{bmatrix} + \frac{E_{OED}}{(1+\nu)} & 0 \\ + 0 & \frac{E_{OED}}{(1-2\nu)} +\end{bmatrix} +\begin{pmatrix} + \varepsilon_{11}\\ + \varepsilon_{11} +\end{pmatrix} +\] + +An einem geeigneten Punkt, wo man noch im linear-elastischen Materialverhalten ist, kann man nun das $E_{OED}$ abtragen. +Es wird nur ein Delta betrachtet um $E_{OED}$ zu berechnen. +Man darf die Dehnung nicht über den gesamten Verlauf betrachten um $E_{OED}$ zu berechnen. + +Mit diesem ermittelten E-Modul kann man nun weitere Berechnungen für die Geotechnik durchführen. -- cgit v1.2.1 From 8c0f3f0193804f257bc6646aef8c3be0f9c9166b Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Sat, 15 May 2021 17:29:20 +0200 Subject: =?UTF-8?q?=C3=9Cberarbeitungen?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/spannung/Einleitung.tex | 42 ++-- buch/papers/spannung/Grafiken/Bild3.png | Bin 0 -> 45727 bytes buch/papers/spannung/Grafiken/Bild4.png | Bin 0 -> 72520 bytes buch/papers/spannung/Grafiken/Bild5.png | Bin 0 -> 34721 bytes .../Grafiken/DiagrammOedometer-Versuch.jpg | Bin 34089 -> 0 bytes .../Grafiken/DiagrammOedometer-Versuch.png | Bin 0 -> 23361 bytes .../spannung/Grafiken/infinitesimalerWuerfel.jpg | Bin 31604 -> 0 bytes .../spannung/Grafiken/infinitesimalerWuerfel.png | Bin 0 -> 24852 bytes .../Grafiken/infinitesimalerW\303\274rfel.jpg" | Bin 31604 -> 0 bytes buch/papers/spannung/teil0.tex | 39 +++- buch/papers/spannung/teil1.tex | 35 +-- buch/papers/spannung/teil2.tex | 249 ++++++++++++++++++--- buch/papers/spannung/teil3.tex | 4 +- buch/papers/spannung/teil4.tex | 6 +- 14 files changed, 299 insertions(+), 76 deletions(-) create mode 100644 buch/papers/spannung/Grafiken/Bild3.png create mode 100644 buch/papers/spannung/Grafiken/Bild4.png create mode 100644 buch/papers/spannung/Grafiken/Bild5.png delete mode 100644 buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg create mode 100644 buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.png delete mode 100644 buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg create mode 100644 buch/papers/spannung/Grafiken/infinitesimalerWuerfel.png delete mode 100644 "buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" (limited to 'buch/papers/spannung') diff --git a/buch/papers/spannung/Einleitung.tex b/buch/papers/spannung/Einleitung.tex index f1d5d70..37c2ec2 100644 --- a/buch/papers/spannung/Einleitung.tex +++ b/buch/papers/spannung/Einleitung.tex @@ -7,7 +7,7 @@ Besonderes Augenmerk liegt dabei auf dem Oedometer - Versuch. Bei dieser Untersuchung der zugehörigen Berechnungen hat man es mit Vektoren, Matrizen und Tensoren zu tun. Um die mathematische Untersuchung vorzunehmen, beschäftigt man sich zuerst mit den spezifischen Gegebenheiten und Voraussetzungen. -Ebenfalls gilt es ein paar wichtige Begriffe und deren mathematisches Zeichen einzuführen, +Ebenfalls gilt es ein paar wichtige Begriffe und deren mathematischen Zeichen einzuführen, damit sich den Berechnungen schlüssig folgen lässt. In diesem Kapitel hat man es insbesondere mit Spannungen und Dehnungen zu tun. @@ -16,7 +16,7 @@ sondern eine Kraft geteilt durch Fläche. \section{Einführung wichtige Begriffe\label{spannung:section:Wichtige Begriffe}} \[ -l +l_0 = \text{Ausgangslänge [\si{\meter}]} \] @@ -26,6 +26,11 @@ l \text{Längenänderung nach Kraftauftrag [\si{\meter}]} \] \[ +\Delta b += +\text{Längenänderung in Querrichtung nach Kraftauftrag [\si{\meter}]} +\] +\[ \varepsilon = \text{Dehnung [$-$]} @@ -38,12 +43,12 @@ l \[ E = -\text{Elastizitätsmodul} +\text{Elastizitätsmodul [\si{\kilo\pascal}]} \] \[ \nu = -\text{Querdehnungszahl} +\text{Querdehnungszahl; Poissonzahl [$-$]} \] \[ F @@ -58,7 +63,7 @@ A \[ t = -Tiefe\enspace[m] +\text{Tiefe [\si{\meter}]} \] \[ s @@ -77,7 +82,7 @@ Beziehungen = \frac{\Delta b}{l_0} = -\varepsilon_\upsilon +\varepsilon\cdot\nu \] \[ \sigma @@ -85,18 +90,29 @@ Beziehungen \frac{N}{A} \] \[ -N +F = \int_{A} \sigma dA \] \[ \varepsilon^{\prime} = -\frac{1}{l_0}\] +\frac{1}{l_0} +\] -Der Begriff Tensor -Tensoren werden unter anderem in der Elastizitätstheorie gebraucht. +\section{Einführung wichtige Begriffe\label{spannung:section:Tensoren}} +Tensoren wurden als erstes in der Elastizitätstheorie eingesetzt. (Quelle Herr Müller) In der Elastizitätstheorie geht es darum viele verschiedene Komponenten zu beschreiben. - - - +Mit einer Matrix oder einem Vektor kann man dies nicht mehr bewerkstelligen. +Wenn man den dreidimensionalen Spannungszustand abbilden möchte, müsste man mehrere Vektoren haben. +Deshalb wurden 1840 von Rowan Hamilton Tensoren in die Mathematik eingeführt. +Woldemar Voigt hat den Begriff in die moderne Bedeutung von Skalar, Matrix und Vektor verallgemeinert. +Albert Einstein hat Tensoren zudem in der allgemeinen Relativitätstheorie benutzt. +Tensor sind eine Stufe höher als Matrizen. Matrizen sind 2. Stufe. +Da Tensoren eine Stufe höher sind, kann man auch Matrizen, Vektoren und Skalare als Tensoren bezeichnen. +Der Nachteil von den Tensoren ist, dass man die gewohnten Rechenregeln, die man bei Vektoren oder Matrizen kennt, +nicht darauf anwenden kann. Man ist deshalb bestrebt die Tensoren als Vektoren und Matrizen darzustellen, +damit man die gewohnten Rechenregeln darauf anwenden kann. (Quelle Wikipedia) +In der vorliegenden Arbeit sind bereits alle Tensoren als Matrizen 2. Stufe abgebildet. +Trotzdem kann man diese Matrizen wie vorher beschrieben als Tensor bezeichnen. +Da diese als Matrizen abgebildet sind, dürfen wir die bekannten Rechenregeln auf unsere Tensoren anwenden. \ No newline at end of file diff --git a/buch/papers/spannung/Grafiken/Bild3.png b/buch/papers/spannung/Grafiken/Bild3.png new file mode 100644 index 0000000..8ca72a1 Binary files /dev/null and b/buch/papers/spannung/Grafiken/Bild3.png differ diff --git a/buch/papers/spannung/Grafiken/Bild4.png b/buch/papers/spannung/Grafiken/Bild4.png new file mode 100644 index 0000000..526ee7b Binary files /dev/null and b/buch/papers/spannung/Grafiken/Bild4.png differ diff --git a/buch/papers/spannung/Grafiken/Bild5.png b/buch/papers/spannung/Grafiken/Bild5.png new file mode 100644 index 0000000..6ee004d Binary files /dev/null and b/buch/papers/spannung/Grafiken/Bild5.png differ diff --git a/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg b/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg deleted file mode 100644 index 52f1b5c..0000000 Binary files a/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg and /dev/null differ diff --git a/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.png b/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.png new file mode 100644 index 0000000..31505bd Binary files /dev/null and b/buch/papers/spannung/Grafiken/DiagrammOedometer-Versuch.png differ diff --git a/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg b/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg deleted file mode 100644 index e3875bb..0000000 Binary files a/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.jpg and /dev/null differ diff --git a/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.png b/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.png new file mode 100644 index 0000000..398529c Binary files /dev/null and b/buch/papers/spannung/Grafiken/infinitesimalerWuerfel.png differ diff --git "a/buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" "b/buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" deleted file mode 100644 index e3875bb..0000000 Binary files "a/buch/papers/spannung/Grafiken/infinitesimalerW\303\274rfel.jpg" and /dev/null differ diff --git a/buch/papers/spannung/teil0.tex b/buch/papers/spannung/teil0.tex index 67896b8..2f4d23b 100644 --- a/buch/papers/spannung/teil0.tex +++ b/buch/papers/spannung/teil0.tex @@ -1,22 +1,43 @@ \section{Spannungsausbreitung\label{spannung:section:Spannungsausbreitung}} \rhead{Spannungsausbreitung} Anhand untenstehendem Bild kann ein einfaches Beispiel betrachtet werden. -Es gibt eine Kraft, diese wird auf den Boden abgetragen. -Diese Kraft muss dann vom Boden aufgenommen werden. -Im Boden entsteht eine Spannung. Diese Spannung ist abhängig von $\sigma(x,y,t)$ +Es gibt eine Flächenlast (Kraft), diese wird auf den Boden abgetragen. +Diese Last muss dann vom Boden aufgenommen werden. +Im Boden entsteht nebst der Eigenspannung eine weitere Spannung durch diese Last (Zusatzspannung). +Diese Zusatzspannung $\sigma$ ist abhängig von $(x,y,t)$. Je nach dem, wo man sich im Boden befindet variert die Spannung. -Mit der Tiefe wird die Spannung geringer. -Die Ausbreitung der Spannung im Boden hat die Form einer Zwiebel. +Mit der Tiefe wird die Zusatzspannung geringer. +Die Ausbreitung der Zusatzspannung im Boden hat die Form einer Zwiebel. Durch Untersuchung der Spannung an verschiedenen Punkten im Boden, kann man eine Funktion abtragen. Dasselbe macht man auch mit der Dehnung. Es zeigt sich, dass die Form der beiden Funktionen gleich ist. -Dies erklärt sich dadurch, dass die Spannung und die Dehnung proportional sind zueinander sind. +Dies erklärt sich dadurch, dass die Spannung und die Dehnung proportional zueinander sind. +\begin{figure} + \centering + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild4.png} + \caption{Ausbreitung der Spannung im Boden} + \label{fig:Bild4} +\end{figure} + +\begin{figure} + \centering + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild5.png} + \caption{Funktionen Spannung und Dehnung} + \label{fig:Bild5} +\end{figure} Anhand eines etwas schwierigeren Beispiels sieht man, dass die Spannungsausbreitung nicht immer ganz einfach ist. Man hat hier eine Baugrube mit einem Baugrubenabschluss, wo ein Teil des Bodens abgetragen wurde. -Was aber immer noch gilt ist, dass die Spannung von drei Variablen abhängig ist. $\sigma(x,y,t)$ +Was aber immer noch gilt ist, dass die Spannung $\sigma$ von drei Variablen abhängig ist $(x,y,t)$. Ansätze um die Spannungsausbreitung zu berechnen gibt es je nach Bodentyp verschiedene. +\begin{figure} + \centering + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/Bild3.png} + \caption{Beispiel Lastauftrag auf Boden} + \label{fig:Bild3} +\end{figure} + Die Spannungsausbreitung ist uns jedoch gegeben, es geht nicht darum, dies genauer zu untersuchen. Durch die Spannungsausbreitung und das Elastizitätsmodul kann man eine Dehnung berechnen. Anhand dieser Dehnung kann man mit einem Integral wiederum die Setzung berechnen. @@ -32,6 +53,4 @@ s \] Die Setzung zu bestimmen ist in der Geotechnik sehr wichtig. Besonders ungleichmässige Setzungen können bei Bauwerken Probleme ergeben. -Es gilt also die Bauwerke so zu dimensionieren, dass es verträgliche Setzungen gibt. - - +Es gilt also die Bauwerke so zu dimensionieren, dass es verträgliche Setzungen gibt. \ No newline at end of file diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex index cc55664..9467d21 100644 --- a/buch/papers/spannung/teil1.tex +++ b/buch/papers/spannung/teil1.tex @@ -1,20 +1,30 @@ \section{Proportionalität Spannung-Dehnung\label{spannung:section:Proportionalität Spannung-Dehnung}} \rhead{Proportionalität Spannung-Dehnung} -Das Hooksche Gesetz beschreibt die elastische Längenänderung von Festkörpern im Zusammenhang mit einer Krafteinwirkung. -Die Längenänderung $\Delta l$ ist proportional zur Krafteinwirkung. -$F\sim \Delta l$ -Man kann dies nur im Bereich vom linearen elastischen Materialverhalten anwenden. -Das heisst das alle Verformungen reversibel sind, sobald man die Kraft wegnimmt. +Das Hook'sche Gesetz beschreibt die elastische Längenänderung von Festkörpern im Zusammenhang mit einer Krafteinwirkung. +Die Längenänderung $\Delta l$ ist proportional zur Krafteinwirkung $F$. +\[ +F +\sim +\Delta l +\] +Man kann dies nur im Bereich vom linearen-elastischen Materialverhalten anwenden. +Das heisst, dass alle Verformungen reversibel sind, sobald man die Kraft wegnimmt. Es findet somit keine dauernde Verformung statt. Da es sehr praktisch ist die Längenänderung nicht absolut auszudrücken haben wir $\varepsilon$. -$\varepsilon$ beschreibt die relative Längenänderung. -$\varepsilon$ ist wiederum proportional zu der aufgebrachten Spannung. -Im Bauingenieurwesen hat man es oft mit grösseren Teilen oder Grösseren Betrachtungsräumen zu tun. +Die Dehnung $\varepsilon$ beschreibt die relative Längenänderung. +Die Dehnung $\varepsilon$ ist wiederum proportional zu der aufgebrachten Spannung. +Im Bauingenieurwesen hat man es oft mit grösseren Teilen oder grösseren Betrachtungsräumen zu tun. Da ist es nun natürlich sehr sinnvoll, wenn wir nicht mit absoluten Zahlen rechnen, -sondern unabhängig von der Länge den Zustand mit Epsilon beschreiben können. +sondern unabhängig von der Länge den Zustand mit Dehnung $\varepsilon$ beschreiben können. Mithilfe vom E-Modul, (steht für Elastizitätsmodul) einer Proportionalitätskonstante, kann man das in eine Gleichung bringen, wie man hier sieht. Das E-Modul beschreibt, das Verhältnis von Kraftaufnahme eines Werkstoffes und dessen zusammenhängender Längenveränderung. +(Quelle Wikipedia) +\[ +\sigma += +E\cdot\varepsilon +\] \[ E = @@ -26,9 +36,6 @@ const. Aus diesem Verhältnis kann man das E-Modul berechnen. Je nach Material ist dies verschieden. Das E-Modul lässt sich nur im linearen-elastischen Materialverhalten anwenden. -Für Bodenmaterial gibt es ein spezielles E-Modul. Dieses wird mit dem Oedometerversuch ermittelt. +Für Bodenmaterial gibt es ein spezielles E-Modul. Dieses wird mit dem Oedometer-Versuch ermittelt. Es wird mit $E_{OED}$ ausgedrückt. Dieser Versuch wird später noch beschrieben. -Der Oedometerversuch ist abhängig von den diesem Kapitel zu untersuchenden Matrizen. - - - +Der Oedometer-Versuch ist abhängig von den diesem Kapitel zu untersuchenden Matrizen. \ No newline at end of file diff --git a/buch/papers/spannung/teil2.tex b/buch/papers/spannung/teil2.tex index d11b3f6..3db3e26 100644 --- a/buch/papers/spannung/teil2.tex +++ b/buch/papers/spannung/teil2.tex @@ -1,22 +1,197 @@ \section{Dreiachsiger Spannungszustand\label{spannung:section:Dreiachsiger_Spannungszustand}} \rhead{Proportionalität Spannung-Dehnung} Wie im Kapitel Spannungsausbreitung beschrieben herrscht in jedem Punkt ein anderer Spannungszustand. -Um die Spannung im Boden genauer untersuchen zu können für man einen infinitesimalen Würfel ein. +Um die Spannung im Boden genauer untersuchen zu können, führt man einen infinitesimales Bodenteilchen ein. +Das Bodenteilchen ist geometrisch gesehen ein Würfel. +An diesem Bodenteilchen trägt man die Spannungen ein in alle Richtungen. + \begin{figure} \centering - \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/infinitesimalerWuerfel.jpg} - \caption{Infinitesimaler Würfel} + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/infinitesimalerWuerfel.png} + \caption{Infinitesimales Bodenteilchen} \label{fig:infintesimaler-wurfel} \end{figure} -Sobald eine Kraft von oben wirkt hat man auch Kräfte die seitlich wirken. +An diesem infinitesimalen Bodenteilchen hat man ein räumliches Koordinatensystem, die Achsen $(1,2,3)$. +Die Achsen vom Koordinatensystem zeigen aus den 3 ersichtlichen Flächen heraus. +Pro ersichtliche Fläche haben wir eine Normalspannung und zwei Schubspannungen. +Im Gegensatz zum eindimensionalen Zustand entstehen bei einer Belastung des Bodenteilchens eine Vielzahl an Spannungen. +Es entstehen diverse Normal- und Schubspannungen. +Die Schubspannungen befinden sich an der Fläche, sie gehen rechtwinklig von den Achsen weg. +Die Schubspannungen auf einer Fläche stehen im 90 Grad Winkel zueinander. +Geschrieben werden diese mit $\sigma$, mit jeweils zwei Indizes. +Die Indizes geben uns an, in welche Richtung die Spannungen zeigen. +Der erste Index ist die Fläche auf welcher man sich befindet. +Der zweite Index gibt an, in welche Richtung die Spannung zeigt, dabei referenzieren die Indizes auch auf die Achsen $(1,2,3)$. +Bei den Spannungen sind immer positive als auch negative Spannungen möglich. +Es können also Druck- oder Zugspannungen sein. + +Zunächst wird untenstehend der allgemeine Spannungszustand betrachtet. + +Spannungstensor 2. Stufe i,j $\in$ {1,2,3} +\[ +\overline{\sigma} += +\sigma_{ij} += +\begin{pmatrix} + \sigma_{11} & \sigma_{12} & \sigma_{13} \\ + \sigma_{21} & \sigma_{22} & \sigma_{23} \\ + \sigma_{31} & \sigma_{32} & \sigma_{33} +\end{pmatrix} += +\qquad +\Rightarrow +\qquad +\vec{\sigma} += +\begin{pmatrix} + \sigma_{11}\\ + \sigma_{12}\\ + \sigma_{13}\\ + \sigma_{21}\\ + \sigma_{22}\\ + \sigma_{23}\\ + \sigma_{31}\\ + \sigma_{32}\\ + \sigma_{33} +\end{pmatrix} +\] + +Dehnungstensor 2. Stufe k,l $\in$ {1,2,3} + +\[ +\overline{\varepsilon} += +\varepsilon_{kl} += +\begin{pmatrix} + \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ + \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ + \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} +\end{pmatrix} += +\qquad +\Rightarrow +\qquad +\vec{\varepsilon} += +\begin{pmatrix} + \varepsilon_{11} \\ + \varepsilon_{12} \\ + \varepsilon_{13} \\ + \varepsilon_{21} \\ + \varepsilon_{22} \\ + \varepsilon_{23} \\ + \varepsilon_{31} \\ + \varepsilon_{32} \\ + \varepsilon_{33} +\end{pmatrix} +\] + +Bei diesen zwei obenstehenden Formeln kann man sehen wie Matrizen zu einem Vektor umgewandelt wurden. +Unter dem Kapitel Hadamard-Algebra kann man sehen, dass man dabei Zeile um Zeile in eine Spalte schreiben kann, +sodass es einen Vektor ergibt. + +Elastizitätstensor 4. Stufe i,j,k,l $\in$ {1,2,3} +\[ +\overline\overline{C} += +C_{ijkl} += +\begin{pmatrix} +C_{1111} & C_{1112} & C_{1113} & C_{1121} & C_{1122} & C_{1123} & C_{1131} & C_{1132} & C_{1133} \\ +C_{1211} & C_{1212} & C_{1213} & C_{1221} & C_{1222} & C_{1223} & C_{1231} & C_{1232} & C_{1233} \\ +C_{1311} & C_{1312} & C_{1313} & C_{1321} & C_{1322} & C_{1323} & C_{1331} & C_{1332} & C_{1333} \\ +C_{2111} & C_{2112} & C_{2113} & C_{2121} & C_{2122} & C_{2123} & C_{2131} & C_{2132} & C_{2133} \\ +C_{2211} & C_{2212} & C_{1113} & C_{2221} & C_{2222} & C_{2223} & C_{2231} & C_{2232} & C_{2233} \\ +C_{2311} & C_{2312} & C_{2313} & C_{2321} & C_{2322} & C_{2323} & C_{2331} & C_{2332} & C_{2333} \\ +C_{3111} & C_{3112} & C_{3113} & C_{3121} & C_{3122} & C_{3123} & C_{3131} & C_{3132} & C_{3133} \\ +C_{3211} & C_{3212} & C_{3213} & C_{3221} & C_{3222} & C_{3223} & C_{3231} & C_{3232} & C_{3233} \\ +C_{3311} & C_{3312} & C_{3313} & C_{3321} & C_{3322} & C_{3323} & C_{3331} & C_{3332} & C_{3333} +\end{pmatrix} +\] + +Dieser Elastizitätstensor muss eine quadratische Matrix mit $3^{4}$ Einträgen ergeben, +da die Basis mit den drei Richtungen $1, 2, 3$ und die Potenz mit den 4 Indizes mit je $1, 2, 3$ definiert sind. +Dies gibt daher eine 9 x 9 Matrix, welche zudem symmetrisch ist. + +Folglich gilt: +\[ +\overline{\overline{C}} += +\overline{\overline{C}}~^{T} +\] + +Allgemeine Spannungsgleichung (mit Vektoren und Tensor) +\[ +\vec\sigma += +\overline{\overline{C}}\cdot\vec{\varepsilon} +\] + +\[ +\begin{pmatrix} + \sigma_{11}\\ + \sigma_{12}\\ + \sigma_{13}\\ + \sigma_{21}\\ + \sigma_{22}\\ + \sigma_{23}\\ + \sigma_{31}\\ + \sigma_{32}\\ + \sigma_{33} +\end{pmatrix} += +\frac{E}{(1+\nu)(1-2\nu)} +\begin{pmatrix} + 1-2\nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & \nu \\ + 0 & frac{1}{4} & 0 & frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & frac{1}{4} & 0 & 0 & 0 & frac{1}{4} & 0 & 0 \\ + 0 & frac{1}{4} & 0 & frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\ + \nu & 0 & 0 & 0 & 1-2\nu & 0 & 0 & 0 & \nu \\ + 0 & 0 & 0 & 0 & 0 & frac{1}{4} & 0 & frac{1}{4} & 0 \\ + 0 & 0 & frac{1}{4} & 0 & 0 & 0 & frac{1}{4} & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & frac{1}{4} & 0 & frac{1}{4} & 0 \\ + \nu & 0 & 0 & 0 & \nu & 0 & 0 & 0 & 1-2\nu +\end{pmatrix} +\begin{pmatrix} + \varepsilon_{11} \\ + \varepsilon_{12} \\ + \varepsilon_{13} \\ + \varepsilon_{21} \\ + \varepsilon_{22} \\ + \varepsilon_{23} \\ + \varepsilon_{31} \\ + \varepsilon_{32} \\ + \varepsilon_{33} +\end{pmatrix} +\] + +Man kann das zudem auch als Indexnotation aufschreiben. + +\[ +\sigma_{ij} += += +\sum_k=1^3 +\sum_l=1^3 +C_{ijkl}\cdot\varepsilon_{kl} +\] + +Um die Berechnung an einem Beispiel zu veranschaulichen: + +\[ +\sigma_{22} += +\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{11}+\frac{E}{(1+\nu)}\cdot\varepsilon_{22}+\frac{E\cdot\nu}{(1+\nu)(1-2\nu)}\cdot\varepsilon_{33} +\] + +Anhand dem Tensor der allgemeinen Spannungsgleichung kann man zwar eine Symmetrie erkennen. +Die verschiedenen Einträge wechseln sich aber mit einander ab und es gibt keine klaren Blöcke mit nur einem gleichen Eintrag. +Man greift deshalb auf die Voigt'sche Notation zurück. + -An diesem infinitesimalen Würfel hat man ein räumliches Koordinatensystem, die Achsen $(1,2,3)$. -Jede dieser 6 Flächen dieses Würfels hat damit 3 Pfeile. -Geschrieben werden diese mit $\sigma$ mit jeweils zwei Indizes gibt. -Die Indizes geben uns an, in welche Richtung der Pfeil zeigt. -Der erste Index ist die Achse auf welcher man sich befindet. -Der zweite Index gibt an, in welche Richtung der Pfeil zeigt. Zur Notation wird die Voigt'sche Notation benutzt. Das sieht wie folgt aus: \[ @@ -30,14 +205,14 @@ Zur Notation wird die Voigt'sche Notation benutzt. Das sieht wie folgt aus: = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ - & \sigma_{22} & \sigma_{23} \\ - sym & & \sigma_{33} \\ + & \sigma_{22} & \sigma_{23} \\ + sym & & \sigma_{33} \end{pmatrix} \Rightarrow -\overrightarrow{\sigma} +\vec{\sigma} = \begin{pmatrix} - \sigma_{11}\\ + \sigma_{11}\\ \sigma_{22}\\ \sigma_{33}\\ \sigma_{23}\\ @@ -46,24 +221,23 @@ Zur Notation wird die Voigt'sche Notation benutzt. Das sieht wie folgt aus: \end{pmatrix} \] -Voigt'sche Notation besagt, dass man diesen Spannungstensor als Vektor aufschreiben darf. -Die Reihenfolge folgt der Regel von Ecke links oben, diagonal zur Ecke rechts unten. -Danach ist noch $\sigma_{23}$, $\sigma_{13}$ und $\sigma_{12}$ aufzuschreiben. +In der Voigt'sche Notation hat man die Reihenfolge von der Ecke links oben, diagonal zur Ecke rechts unten. +Danach ist noch $\sigma_{23}$, $\sigma_{13}$ und $\sigma_{12}$ aufzuschreiben um den Vektor zu erhalten. Eine weitere Besonderheit ist die Symmetrie der Matrix. -So entspricht $\sigma_{23}$ dem Wert $\sigma_{32}$ oder $\sigma_{13}$ dem Wert $\sigma_{31}$. +So entspricht $\sigma_{23}$ dem Wert $\sigma_{32}$ und $\sigma_{13}$ dem Wert $\sigma_{31}$. Dies ist dadurch bedingt, dass die Kräfte in seitlicher Richtung im Boden die gleichen Werte annehmen. Man hat in dieser Berechnung ein isotropes Material. Im infinitesimalen Körper muss ein Gleichgewicht vorherrschen. Ist kein Gleichgewicht vorhanden, würde sich der Körper zu drehen beginnen. -Es macht somit keinen Unterschied, ob man auf der Achse 2 in Richtung drei geht, +Es macht somit keinen Unterschied, ob man auf der Achse 2 in Richtung 3 geht, oder auf der Achse 3 in Richtung 2. Da die Spannung proportional zur Dehnung ist, kann man die ganze Voigt'sche Notation auch mit der Dehnung ausdrücken. Auch hier wandelt man das ganze gemäss der Reihenfolge in einen Vektor um. \[ -\bar{\varepsilon} +\overline{\varepsilon} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ @@ -96,15 +270,22 @@ Mit der hergeleiteten Beziehung für die Spannungsgleichung anhand vom E-Modul, der allgemeinen linearen Spannungsgleichung kann man diese Beziehungen neu aufschreiben. Man benötigt dazu den zuvor berechneten Dehnungsvektor. Die Gleichung besagt: -Spannungsvektor $=$ Elastitzitätstensor $\times$ Dehnungsvektor - \[ -\overrightarrow{\sigma} +\text{Spannungsvektor} += +\text{Elastizitätstensor}\cdot\text{Dehnungsvektor} +\] +\[ +\vec{\sigma} = -\overline{\overline{C}}\cdot \overrightarrow{\varepsilon} +\overline{\overline{C}}\cdot\vec{\varepsilon} \] -Die Vektoren haben je 6 Einträge. Um das ganze auszudrücken braucht es einen 6 x 6 Elastizitätstensor. (Kann man das noch weiter erklären weshalb?????) +Die Vektoren haben je 6 Einträge. Um das ganze auszudrücken braucht es einen 6 x 6 Elastizitätstensor. +Der Tensor hat sich also im Vergleich zum 9 x 9 Tensor verkleinert. +Dies ist deshalb der Fall, da man in den Achsen 2 und 3 Symmetrien hat. +Dadurch kann man die Einträge $(\varepsilon_{21}=\varepsilon_{12}; \varepsilon_{31}=\varepsilon_{13}; \varepsilon_{32}=\varepsilon_{23})$ +zusammenfassen und drei Einträge verschwinden, da drei Dehnungen gleich sind. Das ganze sieht dann wie folgt aus: \[ @@ -135,8 +316,6 @@ Das ganze sieht dann wie folgt aus: \end{pmatrix} \] -IST DIESE REIHENFOLGE KORREKT???? BEI DEHNUNG - Die Spannung $\sigma_{11}$ besteht somit aus Anteilen von all diesen sechs Konstanten und den verschiedenen Dehnungen. Zuvor bei der Voigt'schen Notation hat man jedoch gesehen, dass die Tensoren symmetrisch sind. Folglich muss auch dieser Elastizitätstensor symmetrisch sein. @@ -206,10 +385,12 @@ Mithilfe der Poissonzahl, welche uns die Querdehnung angibt, sprich wie viel sich der Körper in Querrichtung verformt und dem E-Modul kann man alle Konstanten ausdrücken. Bei einigen fällt auf, dass diese 0 werden. Der Tensor besagt also, dass diese jeweiligen Konstanten keinen Einfluss auf unsere Spannung haben. +Man sieht nun auch ganz gut, dass sich im Vergleich bei der allgemeinen Darstellung der Spannungsgleichung, +die Einträge verschoben haben. Man hat nun eine sehr vorteilhafte Anordnung der verschiedenen Blöcke im Tensor. Als Beispiel kann man sich $\sigma_{33}$ anschauen. Es ist ersichtlich, dass die Konstante $C_{31}$, $C_{32}$, $C_{33}$, $C_{35}$ und $C_{36}$ keinen Einfluss auf $\sigma_{33}$ haben. Dies kann wie folgt erklärt werden. Auf Achse 3 geht $\sigma_{33}$ in Richtung 3. -Der Einfluss von $C_{31}$, Achse 3 in Richtung 1 hat keinen Einfluss auf $\sigma_{33}$ +Der Einfluss von $C_{31}$, Achse 3 in Richtung 1 hat keinen Einfluss auf $\sigma_{33}$. Von $\overline{\overline{C}}$ bildet man nun die Inverse Matrix $\overline{\overline{C}}~^{-1}$ stellt sich die ganze Gleichung um. @@ -231,12 +412,12 @@ Von $\overline{\overline{C}}$ bildet man nun die Inverse Matrix $\overline{\ove = \frac{1}{E} \begin{pmatrix} - 1 & -\nu & -\nu & 0 & 0 & 0\\ - -\nu & 1 & -\nu & 0 & 0 & 0\\ - -\nu & -\nu & 1 & 0 & 0 & 0\\ - 0 & 0 & 0 & 2+2\nu & 0 & 0\\ - 0 & 0 & 0 & 0 & 2+2\nu & 0\\ - 0 & 0 & 0 & 0 & 0 & 2+2\nu + 1 & -\nu & -\nu & 0 & 0 & 0 \\ + -\nu & 1 & -\nu & 0 & 0 & 0 \\ + -\nu & -\nu & 1 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 2+2\nu & 0 & 0 \\ + 0 & 0 & 0 & 0 & 2+2\nu & 0 \\ + 0 & 0 & 0 & 0 & 0 & 2+2\nu \end{pmatrix} \begin{pmatrix} \sigma_{11}\\ diff --git a/buch/papers/spannung/teil3.tex b/buch/papers/spannung/teil3.tex index a3b0b7d..4054262 100644 --- a/buch/papers/spannung/teil3.tex +++ b/buch/papers/spannung/teil3.tex @@ -80,8 +80,8 @@ Man hat dann eine Matrix multipliziert mit einem Vektor und erhält einen Vektor \end{pmatrix} = \begin{pmatrix} - \frac{3E}{2(1+\nu)} & 0 \\ - 0 & \frac{E}{3(1-2\nu)} + \frac{3E}{2(1+\nu)} & 0 \\ + 0 & \frac{E}{3(1-2\nu)} \end{pmatrix} \begin{pmatrix} \varepsilon_{s}\\ diff --git a/buch/papers/spannung/teil4.tex b/buch/papers/spannung/teil4.tex index f1437b1..85e9b1b 100644 --- a/buch/papers/spannung/teil4.tex +++ b/buch/papers/spannung/teil4.tex @@ -23,7 +23,7 @@ Den Versuch kann man auf einem $\sigma$ und $\varepsilon$ Diagramm abtragen. \begin{figure} \centering - \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/DiagrammOedometer-Versuch.jpg} + \includegraphics[width=0.5\linewidth,keepaspectratio]{papers/spannung/Grafiken/DiagrammOedometer-Versuch.png} \caption{Diagramm Oedometer - Versuch} \label{fig:Diagramm Oedometer - Versuch} \end{figure} @@ -52,8 +52,8 @@ Man kann die Dehnung in unsere vereinfachte Matrix einsetzen. Das E-Modul ersetz \end{pmatrix} = \begin{bmatrix} - \frac{E_{OED}}{(1+\nu)} & 0 \\ - 0 & \frac{E_{OED}}{(1-2\nu)} + \frac{E_{OED}}{(1+\nu)} & 0 \\ + 0 & \frac{E_{OED}}{(1-2\nu)} \end{bmatrix} \begin{pmatrix} \varepsilon_{11}\\ -- cgit v1.2.1 From d4d4b02c3476fa406e0852ee0eb947d32e3a3d19 Mon Sep 17 00:00:00 2001 From: "User-PC\\User" Date: Sat, 15 May 2021 18:00:28 +0200 Subject: =?UTF-8?q?main.tex=20=C3=BCberarbeitet?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/spannung/main.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/spannung') diff --git a/buch/papers/spannung/main.tex b/buch/papers/spannung/main.tex index 60696d4..bbdf730 100644 --- a/buch/papers/spannung/main.tex +++ b/buch/papers/spannung/main.tex @@ -4,7 +4,7 @@ % (c) 2020 Hochschule Rapperswil % \chapter{Thema\label{chapter:spannung}} -\lhead{Thema} +\lhead{Dreiachsiger Spannungszustand} \begin{refsection} \chapterauthor{Adrian Schuler und Thomas Reichlin} -- cgit v1.2.1