From 1d1a334cce74e76b5ae18701b39d379580e07edb Mon Sep 17 00:00:00 2001 From: Pascal Schmid <81317360+paschost@users.noreply.github.com> Date: Mon, 24 May 2021 20:36:50 +0200 Subject: Update section 2 of paper --- buch/papers/verkehr/teil1.tex | 102 ++++++++++++++++++++---------------------- 1 file changed, 49 insertions(+), 53 deletions(-) (limited to 'buch/papers/verkehr/teil1.tex') diff --git a/buch/papers/verkehr/teil1.tex b/buch/papers/verkehr/teil1.tex index 855aef8..78d9311 100644 --- a/buch/papers/verkehr/teil1.tex +++ b/buch/papers/verkehr/teil1.tex @@ -1,55 +1,51 @@ -% -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 1 -\label{verkehr:section:teil1}} -\rhead{Problemstellung} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. -Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit -aut fugit, sed quia consequuntur magni dolores eos qui ratione -voluptatem sequi nesciunt -\begin{equation} -\int_a^b x^2\, dx -= -\left[ \frac13 x^3 \right]_a^b -= -\frac{b^3-a^3}3. -\label{verkehr:equation1} -\end{equation} -Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, -consectetur, adipisci velit, sed quia non numquam eius modi tempora -incidunt ut labore et dolore magnam aliquam quaerat voluptatem. - -Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis -suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? -Quis autem vel eum iure reprehenderit qui in ea voluptate velit -esse quam nihil molestiae consequatur, vel illum qui dolorem eum -fugiat quo voluptas nulla pariatur? - -\subsection{De finibus bonorum et malorum -\label{verkehr:subsection:finibus}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}. - -Et harum quidem rerum facilis est et expedita distinctio -\ref{verkehr:section:loesung}. -Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil -impedit quo minus id quod maxime placeat facere possimus, omnis -voluptas assumenda est, omnis dolor repellendus -\ref{verkehr:section:folgerung}. -Temporibus autem quibusdam et aut officiis debitis aut rerum -necessitatibus saepe eveniet ut et voluptates repudiandae sint et -molestiae non recusandae. -Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis -voluptatibus maiores alias consequatur aut perferendis doloribus -asperiores repellat. +\section{Versuchsreihe} +\label{section:verkehr/versuchsreihe} +Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt. +Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert. +Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt. +Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen. +Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. + +\subsection{Einfluss der Knotenzahl auf die Rechenzeit} +\label{verkehr:Knotenzahl} + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_Vr1.png} + +\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.} +\label{verkehr:Vr1} +\end{wrapfigure} + +In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. +Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist. +Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_pathDiff.png} + +\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.} +\label{verkehr:pathDifference} +\end{wrapfigure} + + +\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit} + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_Vr2.png}\\ +\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.} +\label{verkehr:Vr2} +\end{wrapfigure} + +Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\ +Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären. + +\begin{wrapfigure}{} +\includegraphics[width=6cm]{figures/network_dij.png}\qquad +\includegraphics[width=6cm]{figures/network_aStar.png} +\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.} +\label{verkehr:Comparison} +\end{wrapfigure} + +In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. -- cgit v1.2.1 From 26ecbb9559558f40e5e05a84ceb8622c5c9bd182 Mon Sep 17 00:00:00 2001 From: Pascal Schmid Date: Mon, 24 May 2021 20:57:36 +0200 Subject: renamed section files --- buch/papers/verkehr/teil1.tex | 51 ------------------------------------------- 1 file changed, 51 deletions(-) delete mode 100644 buch/papers/verkehr/teil1.tex (limited to 'buch/papers/verkehr/teil1.tex') diff --git a/buch/papers/verkehr/teil1.tex b/buch/papers/verkehr/teil1.tex deleted file mode 100644 index 78d9311..0000000 --- a/buch/papers/verkehr/teil1.tex +++ /dev/null @@ -1,51 +0,0 @@ -\section{Versuchsreihe} -\label{section:verkehr/versuchsreihe} - -Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt. -Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert. -Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt. -Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen. - -Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. - -\subsection{Einfluss der Knotenzahl auf die Rechenzeit} -\label{verkehr:Knotenzahl} - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_Vr1.png} - -\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.} -\label{verkehr:Vr1} -\end{wrapfigure} - -In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. -Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist. -Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_pathDiff.png} - -\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.} -\label{verkehr:pathDifference} -\end{wrapfigure} - - -\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit} - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_Vr2.png}\\ -\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.} -\label{verkehr:Vr2} -\end{wrapfigure} - -Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\ -Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären. - -\begin{wrapfigure}{} -\includegraphics[width=6cm]{figures/network_dij.png}\qquad -\includegraphics[width=6cm]{figures/network_aStar.png} -\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.} -\label{verkehr:Comparison} -\end{wrapfigure} - -In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. -- cgit v1.2.1