From 26ecbb9559558f40e5e05a84ceb8622c5c9bd182 Mon Sep 17 00:00:00 2001 From: Pascal Schmid Date: Mon, 24 May 2021 20:57:36 +0200 Subject: renamed section files --- buch/papers/verkehr/section1.tex | 51 ++++++++++++++++++++++++++++++++++++++++ buch/papers/verkehr/section2.tex | 51 ++++++++++++++++++++++++++++++++++++++++ buch/papers/verkehr/section3.tex | 8 +++++++ buch/papers/verkehr/teil0.tex | 51 ---------------------------------------- buch/papers/verkehr/teil1.tex | 51 ---------------------------------------- buch/papers/verkehr/teil2.tex | 8 ------- 6 files changed, 110 insertions(+), 110 deletions(-) create mode 100644 buch/papers/verkehr/section1.tex create mode 100644 buch/papers/verkehr/section2.tex create mode 100644 buch/papers/verkehr/section3.tex delete mode 100644 buch/papers/verkehr/teil0.tex delete mode 100644 buch/papers/verkehr/teil1.tex delete mode 100644 buch/papers/verkehr/teil2.tex (limited to 'buch/papers') diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex new file mode 100644 index 0000000..78d9311 --- /dev/null +++ b/buch/papers/verkehr/section1.tex @@ -0,0 +1,51 @@ +\section{Versuchsreihe} +\label{section:verkehr/versuchsreihe} + +Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt. +Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert. +Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt. +Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen. + +Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. + +\subsection{Einfluss der Knotenzahl auf die Rechenzeit} +\label{verkehr:Knotenzahl} + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_Vr1.png} + +\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.} +\label{verkehr:Vr1} +\end{wrapfigure} + +In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. +Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist. +Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_pathDiff.png} + +\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.} +\label{verkehr:pathDifference} +\end{wrapfigure} + + +\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit} + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_Vr2.png}\\ +\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.} +\label{verkehr:Vr2} +\end{wrapfigure} + +Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\ +Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären. + +\begin{wrapfigure}{} +\includegraphics[width=6cm]{figures/network_dij.png}\qquad +\includegraphics[width=6cm]{figures/network_aStar.png} +\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.} +\label{verkehr:Comparison} +\end{wrapfigure} + +In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. diff --git a/buch/papers/verkehr/section2.tex b/buch/papers/verkehr/section2.tex new file mode 100644 index 0000000..78d9311 --- /dev/null +++ b/buch/papers/verkehr/section2.tex @@ -0,0 +1,51 @@ +\section{Versuchsreihe} +\label{section:verkehr/versuchsreihe} + +Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt. +Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert. +Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt. +Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen. + +Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. + +\subsection{Einfluss der Knotenzahl auf die Rechenzeit} +\label{verkehr:Knotenzahl} + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_Vr1.png} + +\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.} +\label{verkehr:Vr1} +\end{wrapfigure} + +In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. +Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist. +Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_pathDiff.png} + +\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.} +\label{verkehr:pathDifference} +\end{wrapfigure} + + +\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit} + +\begin{wrapfigure}{} +\includegraphics[width=12cm]{figures/chart_Vr2.png}\\ +\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.} +\label{verkehr:Vr2} +\end{wrapfigure} + +Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\ +Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären. + +\begin{wrapfigure}{} +\includegraphics[width=6cm]{figures/network_dij.png}\qquad +\includegraphics[width=6cm]{figures/network_aStar.png} +\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.} +\label{verkehr:Comparison} +\end{wrapfigure} + +In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. diff --git a/buch/papers/verkehr/section3.tex b/buch/papers/verkehr/section3.tex new file mode 100644 index 0000000..99a0d92 --- /dev/null +++ b/buch/papers/verkehr/section3.tex @@ -0,0 +1,8 @@ +\section{Ausblick} +\subsection{Optimierungsprobleme bei Graphen} +Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Grafen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen.\\ +Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem \emph{Dijkstra}, oder dem \emph{A*}-Algorithmus anstelle der Graph-Matrix (mit Kantengewichten als Einträgen) die Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten. + +\subsection{Wahl der Heuristik} +Ein grundlegendes Problem bei der Anwendung des \emph{A*} oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch.\\ +In nicht-physischen Netzwerken stellt sich jedoch eine zweite Problematik. Da eine physische Distanz entweder nicht ermittelt werden kann, oder aber nicht ausschlaggebend ist, sind andere Netzwerk-Eigenschaften zur Beurteilung beizuziehen. Die Zuverlässigkeit ist dabei aber in den meisten Fällen nicht vergleichbar hoch, wie bei der euklidischen Heuristik. Oftmals werden deshalb bei derartigen Problem auch Algorithmen angewendet, die eine deutlich optimierte Zeitkomplexität aufweisen, dafür aber nicht mit Sicherheit den effizienstesten Pfad finden. diff --git a/buch/papers/verkehr/teil0.tex b/buch/papers/verkehr/teil0.tex deleted file mode 100644 index 78d9311..0000000 --- a/buch/papers/verkehr/teil0.tex +++ /dev/null @@ -1,51 +0,0 @@ -\section{Versuchsreihe} -\label{section:verkehr/versuchsreihe} - -Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt. -Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert. -Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt. -Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen. - -Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. - -\subsection{Einfluss der Knotenzahl auf die Rechenzeit} -\label{verkehr:Knotenzahl} - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_Vr1.png} - -\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.} -\label{verkehr:Vr1} -\end{wrapfigure} - -In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. -Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist. -Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_pathDiff.png} - -\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.} -\label{verkehr:pathDifference} -\end{wrapfigure} - - -\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit} - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_Vr2.png}\\ -\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.} -\label{verkehr:Vr2} -\end{wrapfigure} - -Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\ -Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären. - -\begin{wrapfigure}{} -\includegraphics[width=6cm]{figures/network_dij.png}\qquad -\includegraphics[width=6cm]{figures/network_aStar.png} -\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.} -\label{verkehr:Comparison} -\end{wrapfigure} - -In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. diff --git a/buch/papers/verkehr/teil1.tex b/buch/papers/verkehr/teil1.tex deleted file mode 100644 index 78d9311..0000000 --- a/buch/papers/verkehr/teil1.tex +++ /dev/null @@ -1,51 +0,0 @@ -\section{Versuchsreihe} -\label{section:verkehr/versuchsreihe} - -Um zwei der vorgestellten Suchalgorithmen zu vergleichen, wurden zwei Versuchsreihen erstellt. Dazu wurden in einem ersten Schritt zufällige Netzwerke generiert und anschliessend der \emph{Dijkstra}-, sowie der \emph{$A^*$}-Algorithmus auf das Netzwerk angewandt. -Dieser Vorgang wurde für die zufällig generierten Netzwerke mit einer Knotenzahl von 10, 20 50, 100, 200, 500 und 1000 je zehnmal repetiert. -Die Anzahl der Knoten im abgesuchten Netzwerk wirkt sich direkt auf die Rechenzeit aus. Der \emph{Dijkstra}-Algorithmus weist eine Zeitkomplexität von $\mathcal{O}(E\log{}V)$ auf, wobei $E$ die Anzahl Kanten (engl. \emph{edges}) und $V$ die Anzahl Knoten (engl. \emph{vertices}) darstellt. -Für den \emph{A*}-Algorithmus ist die Zeitkomplexität einerseits abhängig von der verwendeten Heuristik, andererseits aber auch vom vorliegenden Netzwerk selbst. Aus diesem Grund lässt sich keine defintive Angabe zu $\mathcal{O}$ machen. - -Die beiden Versuchsreihen unterscheiden sich zudem dahingehend, dass der Start- und Zielknoten bei der ersten Versuchsreihe im Netzwerk diametral gegenüber liegen. Dadurch gehen viele Knoten verloren, welcher \emph{Dijkstra} als uninformierter Suchalgorithmus absuchen würde. In der zweiten Veruschsreihe werden hingegen Start- un Zielpunkt zufällig im Netzwerk ausgewählt. Es wird deshalb erwwartet, dass die Unterschiede in der Rechenzeit der beiden Algorithmen in der zweiten Versuchsreihe deutlich ausgeprägter sind. - -\subsection{Einfluss der Knotenzahl auf die Rechenzeit} -\label{verkehr:Knotenzahl} - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_Vr1.png} - -\caption{Gemessene Rechenzeiten der ersten Versuchsreihe in Abhängigkeit der Knotenzahl.} -\label{verkehr:Vr1} -\end{wrapfigure} - -In \ref{verkehr:Vr1} ist ersichtlich, dass der Unterschied in der Rechenzeit zwischen \emph{Dijkstra} und \emph{A*} erst aber einer Knotenzahl von ca. $n=500$ merklich ansteigt. Dieses etwas überraschende Resultat ist darauf zurückzuführen, dass bei steigender Knotenzahl die Abweichung des effektiven kürzesten Pfades von der Distanz der Luftlinie abnimmt. -Die Effektivität von \emph{A*} mit euklidischer Heuristik ist wiederum grösser, wenn die Abweichung des kürzesten Pfads von der Luftlinie minimal ist. -Bei Betrachtung von \ref{verkehr:pathDifference} wird dies ersichtlich, wobei die relative Abweichung erstaunlicherweise bei einer Knotenzahl von $n=100$ maximal ist und nach $n=500$ nur noch marginal abnimmt. - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_pathDiff.png} - -\caption{Relative Abweichung des kürzesten Pfads von der Luftlinie.} -\label{verkehr:pathDifference} -\end{wrapfigure} - - -\subsection{Einfluss der Position der Start- und Zielknoten auf die Rechenzeit} - -\begin{wrapfigure}{} -\includegraphics[width=12cm]{figures/chart_Vr2.png}\\ -\caption{Gemessene Rechenzeiten der zweiten Versuchsreihe in Abhängigkeit der Knotenzahl.} -\label{verkehr:Vr2} -\end{wrapfigure} - -Zum Vergleich der Resultate in \ref{verkehr:Knotenzahl} zeigt \ref{verkehr:Vr2} die Rechenzeiten der zweiten Versuchsreihe, in welcher die Start- und Zielknoten zufällig im Netzwerk ausgewählt wurden. Einerseits ist eine reduzierte durchschnittliche Rechenzeit festzustellen, was schlicht daran liegt, dass die zufällige Wahl der Knoten dazu führt, dass diese tendenziell weniger weit auseinander liegen.\\ -Des weiteren ist festzustellen, dass sich die Unterschiede der Rechenzeiten zwischen \emph{Dijkstra} und \emph{A*} deutlich früher abzeichnen. Dieses Phänomen lässt sich leicht durch die zielgerichtete Suche des \emph{A*}-Algorithmus erklären. - -\begin{wrapfigure}{} -\includegraphics[width=6cm]{figures/network_dij.png}\qquad -\includegraphics[width=6cm]{figures/network_aStar.png} -\caption{Suchpfad in grün mit \emph{Dijkstra} (links), und \emph{A*} (rechts). Besuchte Knoten sind in blau, resp. rot markiert.} -\label{verkehr:Comparison} -\end{wrapfigure} - -In \ref{verkehr:Comparison} ist ersichtlich, dass bei einem im Netzwerk liegenden Startknoten die zielgerichtete Suche von \emph{A*} deutlich ausgeprägter zum Zuge kommt, als wenn dieser am Rand des Netzwerks liegen würde. diff --git a/buch/papers/verkehr/teil2.tex b/buch/papers/verkehr/teil2.tex deleted file mode 100644 index 99a0d92..0000000 --- a/buch/papers/verkehr/teil2.tex +++ /dev/null @@ -1,8 +0,0 @@ -\section{Ausblick} -\subsection{Optimierungsprobleme bei Graphen} -Das Finden eines kürzesten Pfades, sprich die Minimierung der Summe der Kantengewichte, ist nur eines der Optimierungsprobleme, die sich im Bereich von Grafen aufstellen lassen. Verschiedene, ähnliche Problemstellungen lassen sich teilweise mit denselben Algorithmen lösen.\\ -Im Bereich vom Computernetzwerken könnte zum Beispiel die Minimierung der Knotenzahl zur Datenübbertragung von Interesse sein. Dabei lässt sich dieses Problem einfach dadurch lösen, dass dem \emph{Dijkstra}, oder dem \emph{A*}-Algorithmus anstelle der Graph-Matrix (mit Kantengewichten als Einträgen) die Adjazenz-Matrix als Argument übergeben wird. Der gefundene kürzeste Pfad enstpricht der Anzahl benutzter Kanten, bzw. der Anzahl besuchter Knoten. - -\subsection{Wahl der Heuristik} -Ein grundlegendes Problem bei der Anwendung des \emph{A*} oder ähnlicher informierter Suchalgorithmen ist die Wahl der Heurstik. Bei einem physischen Verkehrsnetz kann bspw. die euklidische Distanz problems ermittelt werde. Bei einem regionalen Netzwerk ist die Annahme eines orthogonalen X-Y-Koordinatenetzes absolut ausreichend. Dies gilt z.B. auch für das Vernessungsnetz der Schweiz\footnote{Die aktuelle Schweizer Referenzsystem LV95 benutzt ein E/N-Koordinatennetz, wobei aufgrund zunehmender Abweichung vom Referenzellipsoid bei grosser Entfernung vom Nullpunkt ein Korrekturfaktor für die Höhe angebracht werden muss.} Bei überregionalen Netzwerken (Beispiel: Flugverbindungen) ist hingegen eine Berechnung im dreidimensionalen Raum, oder vereinfacht als Projektion auf das Geoid notwendig. Anonsten ist der Ablauf bei der Ausführung des Algorithmus allerdings identisch.\\ -In nicht-physischen Netzwerken stellt sich jedoch eine zweite Problematik. Da eine physische Distanz entweder nicht ermittelt werden kann, oder aber nicht ausschlaggebend ist, sind andere Netzwerk-Eigenschaften zur Beurteilung beizuziehen. Die Zuverlässigkeit ist dabei aber in den meisten Fällen nicht vergleichbar hoch, wie bei der euklidischen Heuristik. Oftmals werden deshalb bei derartigen Problem auch Algorithmen angewendet, die eine deutlich optimierte Zeitkomplexität aufweisen, dafür aber nicht mit Sicherheit den effizienstesten Pfad finden. -- cgit v1.2.1