From a4817013b542cd6aa1a0cd955806c82ac337dca6 Mon Sep 17 00:00:00 2001 From: Nunigan Date: Wed, 28 Jul 2021 22:27:27 +0200 Subject: added corrections from prof mueller --- buch/papers/multiplikation/einlteung.tex | 20 +++--- buch/papers/multiplikation/images/bigo.pdf | Bin 24288 -> 26821 bytes buch/papers/multiplikation/images/bigo.tex | 36 ++++++----- buch/papers/multiplikation/images/strassen.pdf | Bin 15850 -> 19970 bytes buch/papers/multiplikation/images/strassen.tex | 14 ++--- buch/papers/multiplikation/loesungsmethoden.tex | 80 ++++++++++++------------ buch/papers/multiplikation/problemstellung.tex | 27 ++++---- buch/papers/multiplikation/references.bib | 20 ++++++ 8 files changed, 113 insertions(+), 84 deletions(-) (limited to 'buch') diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex index bc4bfcf..ea71d91 100755 --- a/buch/papers/multiplikation/einlteung.tex +++ b/buch/papers/multiplikation/einlteung.tex @@ -17,14 +17,8 @@ Koeffizienten c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. \label{multiplikation:eq:MM} \end{equation} -Grafisch kann die Matrizenmultiplikation $AB=C$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden. -\begin{figure} - \center - \includegraphics[]{papers/multiplikation/images/mm_visualisation} - \caption{Matrizen Multiplikation} - \label{multiplikation:fig:mm_viz} -\end{figure} -Im Fall einer Matrizengr\"osse von $2\times 2$ +Grafisch kann die Matrizenmultiplikation $\mathbf{AB}=\mathbf{C}$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden. +Im Fall einer Matrizengr\"osse von $2\times 2$ kann die Matrixgleichung \begin{equation} \begin{bmatrix} A_{11} & A_{12}\\ @@ -40,7 +34,7 @@ C_{11} & C_{12}\\ C_{21} & C_{22} \end{bmatrix} \end{equation} -kann die Gleichung der einzelnen Terme +explizt als Gleichung \begin{equation} \label{multiplikation:eq:MM_exp} \begin{split} C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\ @@ -49,4 +43,10 @@ C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}\\ C_{22} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{split} \end{equation} -explizit geschrieben werden. +der einzelnen Terme geschrieben werden. +\begin{figure} + \center + \includegraphics[]{papers/multiplikation/images/mm_visualisation} + \caption{Matrizen Multiplikation} + \label{multiplikation:fig:mm_viz} +\end{figure} \ No newline at end of file diff --git a/buch/papers/multiplikation/images/bigo.pdf b/buch/papers/multiplikation/images/bigo.pdf index dfa2ba4..a2599fa 100644 Binary files a/buch/papers/multiplikation/images/bigo.pdf and b/buch/papers/multiplikation/images/bigo.pdf differ diff --git a/buch/papers/multiplikation/images/bigo.tex b/buch/papers/multiplikation/images/bigo.tex index e3293e4..71826f5 100644 --- a/buch/papers/multiplikation/images/bigo.tex +++ b/buch/papers/multiplikation/images/bigo.tex @@ -39,67 +39,73 @@ \begin{document} \begin{tikzpicture} + \begin{axis}[ - axis lines = left, + xmode=log, + ymode=log, + log ticks with fixed point, xlabel = $n$ (Data Input), ylabel = {$t$ (time)}, legend pos=north east, very thick, - ymax = 500, + grid=minor, + ymax = 100000, + ymin = 0.5, + xmin = 1, yticklabels=\empty, xticklabels=\empty, scale only axis=true, width=12cm, height=6cm, ] \addplot [ - domain= 1:20, + domain= 1:50, samples=100, color=red, ] {1}; \addlegendentry{$\mathcal{O}(1)$} \addplot [ - domain= 1:20, + domain= 1:50, samples=100, color=green, ] {x}; \addlegendentry{$\mathcal{O}(n)$} \addplot [ - domain= 1:20, + domain= 1:50, samples=100, color=blue, ] {x^2}; -\addlegendentry{$\mathcal{O}(n^2)$} +\addlegendentry{$\mathcal{O}\left(n^2\right)$} \addplot [ - domain= 1:10, + domain= 1:50, samples=100, color=purple, ] {x^3}; -\addlegendentry{$\mathcal{O}(n^3)$} +\addlegendentry{$\mathcal{O}\left(n^3\right)$} \addplot [ - domain= 1:10, + domain= 1:50, samples=100, color=black, ] -{exp(x)}; -\addlegendentry{$\mathcal{O}(e^n)$} +{exp(x) - 1.7}; +\addlegendentry{$\mathcal{O}\left(e^n\right)$} \addplot [ - domain= 1:20, + domain= 1:50, samples=100, color=orange, ] -{log2(x)}; +{log2(x)+1}; \addlegendentry{$\mathcal{O}(\log n)$} \addplot [ - domain= 1:20, + domain= 1:50, samples=100, color=gray, ] -{x*log2(x)}; +{x*log2(x)+1}; \addlegendentry{$\mathcal{O}(n \log n)$} \end{axis} \end{tikzpicture} diff --git a/buch/papers/multiplikation/images/strassen.pdf b/buch/papers/multiplikation/images/strassen.pdf index 9899dcb..a30fdaa 100644 Binary files a/buch/papers/multiplikation/images/strassen.pdf and b/buch/papers/multiplikation/images/strassen.pdf differ diff --git a/buch/papers/multiplikation/images/strassen.tex b/buch/papers/multiplikation/images/strassen.tex index 797772b..5cf39b4 100644 --- a/buch/papers/multiplikation/images/strassen.tex +++ b/buch/papers/multiplikation/images/strassen.tex @@ -81,13 +81,13 @@ \node at (-3,-10) {$C_{12}=$} ; \node at (-3,-5) {$C_{11}=$} ; - \node at (5,-2) {I}; - \node at (10,-2) {II}; - \node at (15,-2) {III}; - \node at (20,-2) {IV}; - \node at (25,-2) {V}; - \node at (30,-2) {VI}; - \node at (35,-2) {VII}; + \node at (5,-2) {P}; + \node at (10,-2) {Q}; + \node at (15,-2) {R}; + \node at (20,-2) {S}; + \node at (25,-2) {T}; + \node at (30,-2) {U}; + \node at (35,-2) {V}; } diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 83be814..8bdbf2c 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -4,16 +4,16 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{L\"osungsmethoden} -\rhead{L\"osungsmethoden} +\section{Algorithmen} +\rhead{Algorithmen} In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Libraries zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt. \subsection{Standard Algorithmus} -Der Standard Methode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden. +Die Standardmethode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden. Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert. -Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{For j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{For k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten. +Die \texttt{for i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{for j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{for k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten. \begin{algorithm}\caption{Matrix Multiplication} \label{multiplikation:alg:smm} @@ -39,16 +39,18 @@ Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, \end{algorithmic} \end{algorithm} -Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}(n^3)$ +Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}\left(n^3\right)$ \subsubsection{Divide and Conquer Methode} -F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze zu markant besseren Laufzeiten. -Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}(n^2)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann. +F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze \cite{multiplikation:DAC} zu markant besseren Laufzeiten. +Die Grundidee ist, dass ein Problem in mehrere, meist simplere und kleinere Teilprobleme aufgeteilt wird. +Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}\left(n^2\right)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann. Die Matrizenmultiplikation kann ebenfalls mit solch einem Ansatz berechnet werden. -Zur vereinfachten Veranschaulichung kann die Situation, mit $\mathbf{A}$ und $\mathbf{B}$ der gr\"osse $2^n \times 2^n$ verwendet werden. -Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der gr\"osse $2^{n-1} \times 2^{n-1}$ +Zur vereinfachten Veranschaulichung kann die Situation mit $\mathbf{A}$ und $\mathbf{B}$ der Gr\"osse $2^n \times 2^n$ verwendet werden. +Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der Gr\"osse $2^{n-1} \times 2^{n-1}$ aufgeteilt. +Das Matrizen produklt \begin{equation} \mathbf{A}\mathbf{B}= \begin{bmatrix} @@ -64,11 +66,9 @@ Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen \mathbf{C}_{11} & \mathbf{C}_{12}\\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix} -\end{equation} -aufgeteilt. -Die Berechnung +\end{equation}, \begin{equation} -\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj} +\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj}. \label{multiplikation:eq:MM_block} \end{equation} ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, wobei hier f\"ur die Multiplikation die Matrizenmultiplikation verwendet wird. @@ -105,15 +105,11 @@ Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ \end{algorithmic} \end{algorithm} -Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} berechnet werden. -Ohne auf diesen vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit. +Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} \cite{multiplikation:master_theorem} berechnet werden. Das \textit{Master Theorem} bestimmt die Zeitkomplexit\"at von rekursiven Algortihmen. +Ohne auf dieses vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit. In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt \begin{equation} \label{multiplikation:eq:laufzeitdac} - \mathcal{T}(n) = - \begin{cases} - 1 & \text{if } n \leq 2\\ - 8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2 - \end{cases} = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}(n^{3}) + \mathcal{T}(n) = 8 \cdot \mathcal{T}\left (\frac{n}{2}\right ) + n^2 = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}\left (n^{3} \right ) \end{equation} zu einer kubischen Laufzeit. Die Addition zweier Matrizen $\mathbf{A} + \mathbf{B} = \mathbf{C}$ hat eine Laufzeit von $\mathcal{O}(n^{2})$ und kann neben dem dominierendem Anteil von $\mathcal{O}(n^{3})$ ignoriert werden. @@ -122,20 +118,20 @@ In diesem Fall hat der \textit{Divide and Conquer} Ansatz zu keiner Verbesserung \subsection{Strassen's Algorithmus} -Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen. -Die Grundlegenden Terme +Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen von Blockmatrizen. +Die grundlegenden Terme \begin{equation} \label{multiplikation:eq:strassen} \begin{split} -\text{\textbf{P}} &= (\mathbf{A}_{11} + \mathbf{A}_{22}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{22}) \\ -\text{\textbf{Q}} &= (\mathbf{A}_{21} + \mathbf{A}_{22}) \cdot \mathbf{B}_{11} \\ -\text{\textbf{R}} &= \mathbf{A}_{11} \cdot (\mathbf{B}_{12}-\mathbf{B}_{22}) \\ -\text{\textbf{S}} &= \mathbf{A}_{22} \cdot (-\mathbf{B}_{11}+\mathbf{B}_{21}) \\ -\text{\textbf{T}} &= (\mathbf{A}_{11} + \mathbf{A}_{12}) \cdot \mathbf{B}_{22} \\ -\text{\textbf{U}} &= (-\mathbf{A}_{11} + \mathbf{A}_{21}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{12}) \\ -\text{\textbf{V}} &= (\mathbf{A}_{12} - \mathbf{A}_{22}) \cdot (\mathbf{B}_{21} + \mathbf{B}_{22}) +\text{\textbf{P}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{22}\right ) \\ +\text{\textbf{Q}} &= \left(\mathbf{A}_{21} + \mathbf{A}_{22}\right ) \cdot \mathbf{B}_{11} \\ +\text{\textbf{R}} &= \mathbf{A}_{11} \cdot \left(\mathbf{B}_{12}-\mathbf{B}_{22}\right ) \\ +\text{\textbf{S}} &= \mathbf{A}_{22} \cdot \left(-\mathbf{B}_{11}+\mathbf{B}_{21}\right ) \\ +\text{\textbf{T}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{12}\right ) \cdot \mathbf{B}_{22} \\ +\text{\textbf{U}} &= \left(-\mathbf{A}_{11} + \mathbf{A}_{21}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{12}\right ) \\ +\text{\textbf{V}} &= \left(\mathbf{A}_{12} - \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{21} + \mathbf{B}_{22}\right ) \end{split} \end{equation} -aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\mathbf{C}$ +aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Bl\"ocke \begin{equation} \label{multiplikation:eq:strassen2} \begin{split} \mathbf{C}_{11} &= \text{\textbf{P}} + \text{\textbf{S}} - \text{\textbf{T}} + \text{\textbf{V}} \\ @@ -144,7 +140,7 @@ aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\math \mathbf{C}_{22} &= \text{\textbf{P}} + \text{\textbf{R}} - \text{\textbf{Q}} + \text{\textbf{U}} \end{split} \end{equation} -gebraucht. +der Matrix $\mathbf{C}$ gebraucht. \begin{algorithm}\caption{Strassen Matrix Multiplication} \label{multiplikation:alg:strassen} \setlength{\lineskip}{7pt} @@ -190,7 +186,11 @@ gebraucht. \EndFunction \end{algorithmic} \end{algorithm} -Strassens's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. +Strassen's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. +Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ . +Die gr\"unen Felder auf der linken Seite, zeigen die addition welche f\"ur den dazugeh\"origen Term ben\"otigt wird. +Die sieben Spalten beschreiben die Matrizen $\mathbf{P,Q,R, \dotsb, V}$. +Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition. \begin{figure} \center \includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf} @@ -202,17 +202,14 @@ Die Funktion wird sieben mal rekursiv aufgerufen. Dies f\"uhrt zu einer Laufzeit von \begin{equation} \label{multiplikation:eq:laufzeitstrassen} \mathcal{T}(n) = -\begin{cases} -1 & \text{if } n \leq 2\\ -7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2 -\end{cases} = \mathcal{O}(n^{\log_2 7}) = \mathcal{O}(n^{2.8074}) +7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 = \mathcal{O}\left(n^{\log_2 7}\right ) = \mathcal{O}\left(n^{2.8074} \right ) \end{equation} -und ist somit schneller als die Standard Methode. +und ist somit schneller als die Standardmethode. \subsection{Winograd's Algorithmus} -Ein weiterer Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}. -Er zeigte einen neuen Algorithmus f\"ur das +Einen weiteren Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}. +Er beschrieb einen neuen Algorithmus f\"ur das \begin{equation} \langle x,y \rangle = \sum_{i=1}^{n}x_i y_i \end{equation} @@ -236,6 +233,7 @@ Das Skalarprodukt ist nun geben mit Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte. Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt. + Eine Matrizenmultiplikation mit $\mathbf{A}$ einer $m \times n$ und $\mathbf{B}$ einer $n \times p$ Matrix, entspricht $N=m+p$ Vektoren mit welchen man $T=mp$ Skalarprodukte berechnet. Dies f\"uhrt zu \begin{equation} @@ -243,8 +241,8 @@ Dies f\"uhrt zu \end{equation} Multiplikationen. Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt. -Was im Vergleich zu den $mpn$ Multiplikation der Standard Methode nur die H\"alfte ist. -Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnommen werden. +Was im Vergleich zu den $mpn$ Multiplikation der Standardmethode nur die H\"alfte ist. +Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen werden. \begin{algorithm}\caption{Winograd Matrix Multiplication} \setlength{\lineskip}{7pt} diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex index b20a791..fed6a9f 100755 --- a/buch/papers/multiplikation/problemstellung.tex +++ b/buch/papers/multiplikation/problemstellung.tex @@ -6,24 +6,24 @@ \section{Problemstellung} \rhead{Problemstellung} Dank der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung. -Das Ziel dieses Papers ist verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen. -Wobei gezielt auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen wird. +Das Ziel dieses Papers ist, verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen. +Gezielt werden auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen. \subsection{Big $\mathcal{O}$ Notation} Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus \cite{multiplikation:bigo}. -$f(x) \in \mathcal{O}(g(x))$ besagt das die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$. +$f(x) \in \mathcal{O}(g(x))$ besagt, dass die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$. Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet: \begin{itemize} \item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt \item $f \in \mathcal{O}(n) \rightarrow f$ w\"achst linear - \item $f \in \mathcal{O}(n^2) \rightarrow f$ w\"achst quadratisch + \item $f \in \mathcal{O}\left (n^2 \right ) \rightarrow f$ w\"achst quadratisch \item $f \in \mathcal{O}(\log n) \rightarrow f$ w\"achst logarithmisch \item $f \in \mathcal{O}(n \log n) \rightarrow f$ hat super-lineares Wachstum - \item $f \in \mathcal{O}(e^n) \rightarrow f$ w\"achst exponentiell + \item $f \in \mathcal{O}\left (e^n \right ) \rightarrow f$ w\"achst exponentiell \item usw. \end{itemize} -In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die Verschiedenen Laufzeiten miteinander verglichen werden. +In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden. \begin{figure} \center @@ -33,9 +33,11 @@ In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die Verschiedenen Laufze \end{figure} \subsubsection{Beispiel Algorithmen} + +Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklassen geh\"oren. \paragraph{Beschr\"ankter Algorithmus} -Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. +Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen einfluss auf die Laufzeit. \begin{algorithm}\caption{} \label{multiplikation:alg:b1} @@ -47,7 +49,7 @@ Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmu \end{algorithmic} \end{algorithm} -Wobei Konstanten nicht beachtet werden, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$. +Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$. \begin{algorithm}\caption{} \label{multiplikation:alg:b2} @@ -63,13 +65,14 @@ Wobei Konstanten nicht beachtet werden, der Algorithmus \ref{multiplikation:alg: \paragraph{Linearer Algorithmus} -Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares $\mathcal{O}(n)$ Verhalten. +Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares Verhalten. +Die \texttt{for}-Schleife wird $n$-mal durchgef\"hrt und f\"uhrt deshalb zu $\mathcal{O}(n)$. \begin{algorithm}\caption{} \setlength{\lineskip}{7pt} \begin{algorithmic} \label{multiplikation:alg:l1} - \Function{L}{$\mathbf{A}, \mathbf{B}$,n} + \Function{L}{$\mathbf{a}, \mathbf{b}$,n} \State $ sum \gets 0$ \For{$i = 0,1,2 \dots,n$} \State $ sum \gets sum + A[i] \cdot B[i] $ @@ -83,7 +86,9 @@ Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares $\mathcal{O}( \paragraph{Quadratischer Algorithmus} -Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches $\mathcal{O}(n^2)$ Verhalten. +Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten. +Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchgef\"hrt und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. + \begin{algorithm}[H]\caption{} \label{multiplikation:alg:q1} diff --git a/buch/papers/multiplikation/references.bib b/buch/papers/multiplikation/references.bib index 9d76e8e..63cb976 100755 --- a/buch/papers/multiplikation/references.bib +++ b/buch/papers/multiplikation/references.bib @@ -63,3 +63,23 @@ month = {7}, day = {27} } + +@online{multiplikation:master_theorem, + title = {Master theorem (analysis of algorithms)}, + url = {https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)}, + date = {2021-07-28}, + year = {2021}, + month = {7}, + day = {28} +} + + +@online{multiplikation:DAC, + title = {Divide-and-conquer algorithm}, + url = {https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm}, + date = {2021-07-28}, + year = {2021}, + month = {7}, + day = {28} +} + -- cgit v1.2.1 From 31b66acba16f525d41c42094601ade8afb3fd549 Mon Sep 17 00:00:00 2001 From: Nunigan Date: Sat, 31 Jul 2021 21:36:30 +0200 Subject: updare --- buch/papers/multiplikation/images/bigo.pdf | Bin 26821 -> 27173 bytes buch/papers/multiplikation/images/bigo.tex | 12 +++++------- buch/papers/multiplikation/loesungsmethoden.tex | 8 ++++---- buch/papers/multiplikation/problemstellung.tex | 6 +++--- 4 files changed, 12 insertions(+), 14 deletions(-) (limited to 'buch') diff --git a/buch/papers/multiplikation/images/bigo.pdf b/buch/papers/multiplikation/images/bigo.pdf index a2599fa..c29a891 100644 Binary files a/buch/papers/multiplikation/images/bigo.pdf and b/buch/papers/multiplikation/images/bigo.pdf differ diff --git a/buch/papers/multiplikation/images/bigo.tex b/buch/papers/multiplikation/images/bigo.tex index 71826f5..a415ccb 100644 --- a/buch/papers/multiplikation/images/bigo.tex +++ b/buch/papers/multiplikation/images/bigo.tex @@ -41,17 +41,15 @@ \begin{tikzpicture} \begin{axis}[ - xmode=log, - ymode=log, - log ticks with fixed point, + xmode=log, ymode=log, + xmin=1e-0, xmax=5e1, + ymin=10e-1, ymax=1e7, + grid=both, + major grid style={black!50}, xlabel = $n$ (Data Input), ylabel = {$t$ (time)}, legend pos=north east, very thick, - grid=minor, - ymax = 100000, - ymin = 0.5, - xmin = 1, yticklabels=\empty, xticklabels=\empty, scale only axis=true, diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 8bdbf2c..7ee0b6e 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -65,13 +65,13 @@ Das Matrizen produklt \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{12}\\ \mathbf{C}_{21} & \mathbf{C}_{22} -\end{bmatrix} -\end{equation}, +\end{bmatrix}, +\end{equation} \begin{equation} -\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj}. +\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj} \label{multiplikation:eq:MM_block} \end{equation} -ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, wobei hier f\"ur die Multiplikation die Matrizenmultiplikation verwendet wird. +ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, f\"ur die Multiplikation wird die Matrizenmultiplikation verwendet. Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz, Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen. diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex index fed6a9f..2688f27 100755 --- a/buch/papers/multiplikation/problemstellung.tex +++ b/buch/papers/multiplikation/problemstellung.tex @@ -34,7 +34,7 @@ In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufze \subsubsection{Beispiel Algorithmen} -Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklassen geh\"oren. +Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden kann. \paragraph{Beschr\"ankter Algorithmus} Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen einfluss auf die Laufzeit. @@ -66,7 +66,7 @@ Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\ \paragraph{Linearer Algorithmus} Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares Verhalten. -Die \texttt{for}-Schleife wird $n$-mal durchgef\"hrt und f\"uhrt deshalb zu $\mathcal{O}(n)$. +Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$. \begin{algorithm}\caption{} \setlength{\lineskip}{7pt} @@ -87,7 +87,7 @@ Die \texttt{for}-Schleife wird $n$-mal durchgef\"hrt und f\"uhrt deshalb zu $\ma \paragraph{Quadratischer Algorithmus} Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten. -Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchgef\"hrt und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. +Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchglaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. \begin{algorithm}[H]\caption{} -- cgit v1.2.1 From 28efadd162ae3d48c04276da8e971155921d5812 Mon Sep 17 00:00:00 2001 From: Nunigan Date: Sun, 1 Aug 2021 22:50:04 +0200 Subject: update --- buch/papers/multiplikation/code/MM.py | 23 +++++----- buch/papers/multiplikation/code/meas_1024.pdf | Bin 17660 -> 17653 bytes buch/papers/multiplikation/code/meas_1024.txt | 10 ++--- buch/papers/multiplikation/code/meas_128.pdf | Bin 17961 -> 18120 bytes buch/papers/multiplikation/code/meas_128.txt | 10 ++--- buch/papers/multiplikation/code/meas_256.pdf | Bin 18067 -> 19428 bytes buch/papers/multiplikation/code/meas_256.txt | 10 ++--- buch/papers/multiplikation/code/meas_32.pdf | Bin 17078 -> 17964 bytes buch/papers/multiplikation/code/meas_32.txt | 10 ++--- buch/papers/multiplikation/code/meas_64.pdf | Bin 17678 -> 17747 bytes buch/papers/multiplikation/code/meas_64.txt | 10 ++--- buch/papers/multiplikation/loesungsmethoden.tex | 53 +++++++++++++++++++++++- buch/papers/multiplikation/main.tex | 22 ++++++++++ buch/papers/multiplikation/references.bib | 17 ++++++++ 14 files changed, 127 insertions(+), 38 deletions(-) (limited to 'buch') diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py index 626b82d..352771f 100644 --- a/buch/papers/multiplikation/code/MM.py +++ b/buch/papers/multiplikation/code/MM.py @@ -174,10 +174,11 @@ def test_perfomance(n): plt.plot(n, t_mm_strassen, label='Strassen', lw=5) plt.plot(n, t_wino, label='Winograd', lw=5) plt.plot(n, t_np, label='NumPy A@B', lw=5) + plt.xscale('log', base=2) plt.legend() plt.xlabel("n") plt.ylabel("time (s)") - plt.grid(True) + plt.grid(True, which="both", ls="-") plt.tight_layout() # plt.yscale('log') plt.legend(fontsize=19) @@ -198,7 +199,7 @@ def plot(num): plt.plot(n, t_mm, label='3 For Loops', lw=5) plt.plot(n, t_mm_dc, label='Divide and Conquer', lw=5) plt.plot(n, t_mm_strassen, label='Strassen', lw=5) - # plt.plot(n, t_wino, label='Winograd', lw=5) + plt.plot(n, t_wino, label='Winograd', lw=5) plt.plot(n, t_np, label='NumPy A@B', lw=5) plt.legend() plt.xlabel("n") @@ -275,22 +276,22 @@ def plot_c_res(ave, num): # test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if __name__ == '__main__': - plot_c_res(1, 4096) + # plot_c_res(1, 4096) # plot(8) - # n = np.logspace(1,10,10,base=2,dtype=(np.int)) + n = np.logspace(1,8,8,base=2,dtype=(np.int)) # n = np.arange(1,50,2) - A = np.random.randint(-10, 10, (5,3)) - B = np.random.randint(-10, 10, (3,5)) + # A = np.random.randint(-10, 6, (5,3)) + # B = np.random.randint(-10, 6, (3,5)) - C = winograd2(A, B) - C_test = A@B - print(C) - print(C_test) + # C = winograd2(A, B) + # C_test = A@B + # print(C) + # print(C_test) # print(np.equal(C, C_test)) - # t_np = test_perfomance(n) + t_np = test_perfomance(n) # C = strassen(A, B) # C_test = A@B diff --git a/buch/papers/multiplikation/code/meas_1024.pdf b/buch/papers/multiplikation/code/meas_1024.pdf index fd0a108..7b7a133 100644 Binary files a/buch/papers/multiplikation/code/meas_1024.pdf and b/buch/papers/multiplikation/code/meas_1024.pdf differ diff --git a/buch/papers/multiplikation/code/meas_1024.txt b/buch/papers/multiplikation/code/meas_1024.txt index c5ce619..ab507a2 100644 --- a/buch/papers/multiplikation/code/meas_1024.txt +++ b/buch/papers/multiplikation/code/meas_1024.txt @@ -1,6 +1,6 @@ 2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02 5.120000000000000000e+02 1.024000000000000000e+03 -1.502037048339843750e-05 6.628036499023437500e-05 4.780292510986328125e-04 2.713203430175781250e-03 2.115225791931152344e-02 1.758832931518554688e-01 1.338865518569946289e+00 1.009106445312500000e+01 8.192077994346618652e+01 7.835870332717895508e+02 -6.675720214843750000e-06 7.200241088867187500e-05 5.540847778320312500e-04 3.144979476928710938e-03 2.545046806335449219e-02 2.083067893981933594e-01 1.659256219863891602e+00 1.319160294532775879e+01 1.046767003536224365e+02 9.679818902015686035e+02 -1.668930053710937500e-05 1.628398895263671875e-04 7.648468017578125000e-04 4.426956176757812500e-03 2.922415733337402344e-02 1.800994873046875000e-01 1.286747694015502930e+00 9.412034273147583008e+00 6.263725924491882324e+01 4.427414393424987793e+02 -2.408027648925781250e-05 8.463859558105468750e-05 4.761219024658203125e-04 2.339839935302734375e-03 1.682758331298828125e-02 1.299476623535156250e-01 1.048770904541015625e+00 8.114667415618896484e+00 6.373566389083862305e+01 6.489995403289794922e+02 -1.573562622070312500e-05 7.152557373046875000e-06 7.152557373046875000e-06 2.074241638183593750e-05 5.388259887695312500e-05 6.365776062011718750e-05 3.257751464843750000e-03 1.396179199218750000e-03 3.274917602539062500e-03 2.186250686645507812e-02 +1.859664916992187500e-05 8.296966552734375000e-05 5.471706390380859375e-04 3.053665161132812500e-03 2.407431602478027344e-02 1.868948936462402344e-01 1.563691616058349609e+00 1.100623321533203125e+01 8.547679090499877930e+01 7.507572824954986572e+02 +8.106231689453125000e-06 9.012222290039062500e-05 7.290840148925781250e-04 4.970788955688476562e-03 2.718997001647949219e-02 2.652802467346191406e-01 1.777865171432495117e+00 1.327002429962158203e+01 1.053971357345581055e+02 8.473208103179931641e+02 +2.098083496093750000e-05 1.742839813232421875e-04 9.438991546630859375e-04 4.754066467285156250e-03 4.852557182312011719e-02 2.204136848449707031e-01 1.447179555892944336e+00 9.938656568527221680e+00 6.396102952957153320e+01 4.614939928054809570e+02 +2.789497375488281250e-05 1.049041748046875000e-04 5.528926849365234375e-04 4.555702209472656250e-03 1.871442794799804688e-02 1.530685424804687500e-01 1.194762229919433594e+00 8.298985958099365234e+00 6.836994743347167969e+01 5.373736469745635986e+02 +1.835823059082031250e-05 7.867813110351562500e-06 1.001358032226562500e-05 5.412101745605468750e-05 4.267692565917968750e-05 1.184940338134765625e-04 2.441406250000000000e-04 6.957054138183593750e-04 2.217054367065429688e-03 1.880884170532226562e-02 diff --git a/buch/papers/multiplikation/code/meas_128.pdf b/buch/papers/multiplikation/code/meas_128.pdf index ed1ec63..c54648f 100644 Binary files a/buch/papers/multiplikation/code/meas_128.pdf and b/buch/papers/multiplikation/code/meas_128.pdf differ diff --git a/buch/papers/multiplikation/code/meas_128.txt b/buch/papers/multiplikation/code/meas_128.txt index 976bbdf..f3a5beb 100644 --- a/buch/papers/multiplikation/code/meas_128.txt +++ b/buch/papers/multiplikation/code/meas_128.txt @@ -1,6 +1,6 @@ 2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 -1.978874206542968750e-05 1.134872436523437500e-04 4.298686981201171875e-04 2.815246582031250000e-03 2.616596221923828125e-02 1.767718791961669922e-01 1.293319463729858398e+00 -6.675720214843750000e-06 1.251697540283203125e-04 4.818439483642578125e-04 3.490447998046875000e-03 2.465796470642089844e-02 2.014584541320800781e-01 1.630620479583740234e+00 -2.408027648925781250e-05 2.126693725585937500e-04 1.172780990600585938e-03 4.364490509033203125e-03 3.148293495178222656e-02 2.010228633880615234e-01 1.429297924041748047e+00 -2.932548522949218750e-05 1.466274261474609375e-04 4.270076751708984375e-04 2.837419509887695312e-03 1.723575592041015625e-02 1.308519840240478516e-01 1.015527009963989258e+00 -3.337860107421875000e-05 1.096725463867187500e-05 9.536743164062500000e-06 3.600120544433593750e-05 2.837181091308593750e-05 5.912780761718750000e-05 1.981019973754882812e-03 +1.239776611328125000e-05 5.507469177246093750e-05 3.888607025146484375e-04 2.762079238891601562e-03 2.097773551940917969e-02 1.672370433807373047e-01 1.410297393798828125e+00 +5.483627319335937500e-06 5.888938903808593750e-05 3.871917724609375000e-04 3.364324569702148438e-03 2.481031417846679688e-02 2.047052383422851562e-01 1.712310314178466797e+00 +1.358985900878906250e-05 1.189708709716796875e-04 6.430149078369140625e-04 5.586385726928710938e-03 3.101944923400878906e-02 1.874091625213623047e-01 1.327976465225219727e+00 +1.978874206542968750e-05 7.224082946777343750e-05 4.618167877197265625e-04 3.294944763183593750e-03 1.755571365356445312e-02 1.360688209533691406e-01 1.028253555297851562e+00 +1.215934753417968750e-05 5.722045898437500000e-06 2.074241638183593750e-05 4.339218139648437500e-05 2.813339233398437500e-05 5.292892456054687500e-05 1.921653747558593750e-04 diff --git a/buch/papers/multiplikation/code/meas_256.pdf b/buch/papers/multiplikation/code/meas_256.pdf index 5f049dc..4ca7102 100644 Binary files a/buch/papers/multiplikation/code/meas_256.pdf and b/buch/papers/multiplikation/code/meas_256.pdf differ diff --git a/buch/papers/multiplikation/code/meas_256.txt b/buch/papers/multiplikation/code/meas_256.txt index 15035c6..2ca4447 100644 --- a/buch/papers/multiplikation/code/meas_256.txt +++ b/buch/papers/multiplikation/code/meas_256.txt @@ -1,6 +1,6 @@ 2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02 -1.049041748046875000e-05 5.340576171875000000e-05 5.936622619628906250e-04 2.707719802856445312e-03 2.246093750000000000e-02 1.631326675415039062e-01 1.335460901260375977e+00 1.052024245262145996e+01 -4.768371582031250000e-06 5.531311035156250000e-05 8.208751678466796875e-04 3.099203109741210938e-03 2.490711212158203125e-02 2.070860862731933594e-01 1.739669799804687500e+00 1.384817218780517578e+01 -1.478195190429687500e-05 1.132488250732421875e-04 5.970001220703125000e-04 3.906726837158203125e-03 3.041696548461914062e-02 2.000186443328857422e-01 1.392681598663330078e+00 9.388872385025024414e+00 -1.716613769531250000e-05 6.866455078125000000e-05 5.314350128173828125e-04 2.688407897949218750e-03 1.695108413696289062e-02 1.297233104705810547e-01 1.087257385253906250e+00 8.699601650238037109e+00 -2.336502075195312500e-05 4.529953002929687500e-06 8.106231689453125000e-06 4.291534423828125000e-05 6.008148193359375000e-05 8.988380432128906250e-05 1.647472381591796875e-04 4.460811614990234375e-04 +1.096725463867187500e-05 5.531311035156250000e-05 3.712177276611328125e-04 2.662897109985351562e-03 2.111244201660156250e-02 1.660463809967041016e-01 1.280746459960937500e+00 1.149287748336791992e+01 +5.483627319335937500e-06 5.745887756347656250e-05 4.055500030517578125e-04 3.203868865966796875e-03 2.503871917724609375e-02 2.148163318634033203e-01 1.655935287475585938e+00 1.472915720939636230e+01 +1.335144042968750000e-05 1.153945922851562500e-04 6.134510040283203125e-04 3.850460052490234375e-03 2.817606925964355469e-02 1.827111244201660156e-01 1.277473211288452148e+00 9.337273359298706055e+00 +1.907348632812500000e-05 9.274482727050781250e-05 3.526210784912109375e-04 2.403974533081054688e-03 1.725149154663085938e-02 1.314754486083984375e-01 1.121860027313232422e+00 8.884316682815551758e+00 +3.147125244140625000e-05 6.675720214843750000e-06 4.768371582031250000e-06 7.867813110351562500e-06 2.574920654296875000e-05 5.888938903808593750e-05 2.071857452392578125e-04 6.518363952636718750e-04 diff --git a/buch/papers/multiplikation/code/meas_32.pdf b/buch/papers/multiplikation/code/meas_32.pdf index 94c3731..b926095 100644 Binary files a/buch/papers/multiplikation/code/meas_32.pdf and b/buch/papers/multiplikation/code/meas_32.pdf differ diff --git a/buch/papers/multiplikation/code/meas_32.txt b/buch/papers/multiplikation/code/meas_32.txt index afdb6d5..0fdc18d 100644 --- a/buch/papers/multiplikation/code/meas_32.txt +++ b/buch/papers/multiplikation/code/meas_32.txt @@ -1,6 +1,6 @@ 2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 -1.215934753417968750e-05 5.459785461425781250e-05 3.700256347656250000e-04 3.249406814575195312e-03 1.996850967407226562e-02 -4.529953002929687500e-06 5.650520324707031250e-05 4.577636718750000000e-04 4.029273986816406250e-03 2.444481849670410156e-02 -1.311302185058593750e-05 1.165866851806640625e-04 6.275177001953125000e-04 4.323244094848632812e-03 2.624726295471191406e-02 -1.835823059082031250e-05 6.890296936035156250e-05 3.914833068847656250e-04 2.423048019409179688e-03 1.761770248413085938e-02 -1.263618469238281250e-05 5.006790161132812500e-06 5.960464477539062500e-06 1.144409179687500000e-05 3.600120544433593750e-05 +1.239776611328125000e-05 5.507469177246093750e-05 3.802776336669921875e-04 2.795457839965820312e-03 2.073740959167480469e-02 +5.006790161132812500e-06 5.841255187988281250e-05 3.988742828369140625e-04 3.505229949951171875e-03 2.511668205261230469e-02 +1.335144042968750000e-05 1.149177551269531250e-04 6.387233734130859375e-04 4.088878631591796875e-03 2.969408035278320312e-02 +1.955032348632812500e-05 8.058547973632812500e-05 3.998279571533203125e-04 2.514839172363281250e-03 1.842117309570312500e-02 +1.215934753417968750e-05 8.583068847656250000e-06 6.675720214843750000e-06 2.694129943847656250e-05 2.789497375488281250e-05 diff --git a/buch/papers/multiplikation/code/meas_64.pdf b/buch/papers/multiplikation/code/meas_64.pdf index 3a90949..92af29b 100644 Binary files a/buch/papers/multiplikation/code/meas_64.pdf and b/buch/papers/multiplikation/code/meas_64.pdf differ diff --git a/buch/papers/multiplikation/code/meas_64.txt b/buch/papers/multiplikation/code/meas_64.txt index ae6ff9b..b4fc7a1 100644 --- a/buch/papers/multiplikation/code/meas_64.txt +++ b/buch/papers/multiplikation/code/meas_64.txt @@ -1,6 +1,6 @@ 2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 -1.645088195800781250e-05 7.295608520507812500e-05 3.807544708251953125e-04 2.672195434570312500e-03 2.010774612426757812e-02 1.662156581878662109e-01 -7.390975952148437500e-06 7.843971252441406250e-05 4.265308380126953125e-04 3.107070922851562500e-03 2.457642555236816406e-02 2.122807502746582031e-01 -1.931190490722656250e-05 1.568794250488281250e-04 7.593631744384765625e-04 3.937005996704101562e-03 3.596329689025878906e-02 2.131938934326171875e-01 -2.622604370117187500e-05 9.226799011230468750e-05 3.504753112792968750e-04 2.469539642333984375e-03 1.652932167053222656e-02 1.281068325042724609e-01 -1.788139343261718750e-05 7.152557373046875000e-06 6.914138793945312500e-06 1.120567321777343750e-05 2.884864807128906250e-05 6.914138793945312500e-05 +2.145767211914062500e-05 6.175041198730468750e-05 4.422664642333984375e-04 3.235816955566406250e-03 2.289748191833496094e-02 1.855163574218750000e-01 +1.025199890136718750e-05 6.341934204101562500e-05 5.202293395996093750e-04 3.566026687622070312e-03 3.026723861694335938e-02 2.312932014465332031e-01 +2.384185791015625000e-05 1.807212829589843750e-04 6.821155548095703125e-04 4.796504974365234375e-03 2.968001365661621094e-02 2.291278839111328125e-01 +3.504753112792968750e-05 1.106262207031250000e-04 4.322528839111328125e-04 2.696514129638671875e-03 2.188420295715332031e-02 1.477701663970947266e-01 +3.218650817871093750e-05 1.144409179687500000e-05 7.390975952148437500e-06 4.625320434570312500e-05 3.814697265625000000e-05 5.435943603515625000e-05 diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 7ee0b6e..0f6aa6b 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -295,9 +295,58 @@ Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen \end{algorithmic} \end{algorithm} -\subsection{Weitere Algorithmen} +\subsection{Basic Linear Algebra Subprograms (BLAS)} + +die gebr\"uchlichen Methode f\"ur die Anwendung einer optimierten Matrizenmultiplikation ist die Verwendung einer Subrutine aus den \textit{Basic Linear Algebra Subprograms (BLAS)} \cite{multiplikation:BLAS}. +Die meisten Numerischen Bibliotheken von High-Level Skriptsprachen wie \texttt{Matlab}, \texttt{NumPy (Python)}, \texttt{GNU Octave} oder \texttt{Mathematica} ben\"utzen eine Form von \textit{BLAS}. + +\textit{BLAS} sind dabei in drei unterschiedliche Levels aufgeteilt. + +\begin{itemize} + \item Level 1 + \begin{itemize} + \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{x}+\mathbf{y}$ + \item Dieses Level hat $\mathcal{O}(n)$ karakteristik + \end{itemize} + \item Level 2 + \begin{itemize} + \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{A}\mathbf{x}+\beta \mathbf{y}$ + \item Dieses Level hat $\mathcal{O}\left(n^2\right)$ karakteristik + \end{itemize} + \item Level 3 + \begin{itemize} + \item Operationen der Art: $\mathbf{C} \leftarrow \alpha \mathbf{A}\mathbf{B}+\beta\mathbf{C}$ + \item Dieses Level hat $\mathcal{O}\left(n^3\right)$ karakteristik + \end{itemize} +\end{itemize} + +Die \textit{BLAS} sind auf die modernen Computer Prozessoren optimiert und k\"onnen dank einer ausgek\"ugelter Verwedung der Speicher Architektur zur erheblichen Leistungoprimierung f\"uhren. + + +\subsubsection{General Matrix Multiplication (GEMM)} + +Die \textit{Double-GEMM} ist in \cite{multiplikation:DGEMM} definiert als: + +\textit{DGEMM performs one of the matrix-matrix operations} +$$ + C := \alpha \cdot op( A )\cdot op( B ) + \beta \cdot C, + $$ + \textit{where op( X ) is one of} +$$ +op( X ) = X \quad \text{ or } \quad op( X ) = X^T, +$$ + \textit{alpha and beta are scalars, and A, B and C are matrices, with op( A ) + an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. + } + +Die Implementaion von $\alpha\mathbf{A}\mathbf{B} + \beta \mathbf{C} = \mathbf{C}$, wobei $\alpha = 1.0$ und $\beta = 0.0$ in der \texttt{C}-Version von \textit{BLAS}, ist als +\begin{lstlisting}[style=multiplikationC] +cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, + m, n, k, 1, A, m , B, k, 0, C, m); +\end{lstlisting} +definiert. + -\textcolor{red}{TODO: BLAS} \section{Implementation} \rhead{Implementation} diff --git a/buch/papers/multiplikation/main.tex b/buch/papers/multiplikation/main.tex index 8d0a8df..fb1908e 100755 --- a/buch/papers/multiplikation/main.tex +++ b/buch/papers/multiplikation/main.tex @@ -4,6 +4,28 @@ % % (c) 2021 Hochschule Rapperswil % +\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue +\definecolor{mylilas}{RGB}{170,55,241} +\definecolor{backcolour}{rgb}{0.95,0.95,0.92} +\lstdefinestyle{multiplikationC}{ + numbers=left, + belowcaptionskip=1\baselineskip, + breaklines=true, + frame=l, + framerule=0pt, + framesep=-1pt, + xleftmargin=1em, + language=C, + showstringspaces=false, + basicstyle=\ttfamily, + keywordstyle=\bfseries\color{green!40!black}, + commentstyle=\itshape\color{purple!40!black}, + identifierstyle=\color{blue}, + stringstyle=\color{red}, + numberstyle=\ttfamily\tiny, + backgroundcolor=\color{backcolour} +} + \chapter{Schnelle Matrizen Multiplikation\label{chapter:multiplikation}} \lhead{FMM} \begin{refsection} diff --git a/buch/papers/multiplikation/references.bib b/buch/papers/multiplikation/references.bib index 63cb976..8815386 100755 --- a/buch/papers/multiplikation/references.bib +++ b/buch/papers/multiplikation/references.bib @@ -83,3 +83,20 @@ day = {28} } +@online{multiplikation:BLAS, + title = {BLAS (Basic Linear Algebra Subprograms)}, + url = {http://www.netlib.org/blas/}, + date = {2021-08-01}, + year = {2021}, + month = {8}, + day = {01} +} + +@online{multiplikation:DGEMM, + title = {DGEMM}, + url = {http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html#gaeda3cbd99c8fb834a60a6412878226e1}, + date = {2021-08-01}, + year = {2021}, + month = {8}, + day = {01} +} -- cgit v1.2.1 From 11264adfdeba52738aa6ee7a96958936a20d4984 Mon Sep 17 00:00:00 2001 From: Nunigan Date: Mon, 2 Aug 2021 08:14:39 +0200 Subject: update --- buch/papers/multiplikation/loesungsmethoden.tex | 24 +++++++++++++++++++++--- 1 file changed, 21 insertions(+), 3 deletions(-) (limited to 'buch') diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 7ee0b6e..8e3369d 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -131,7 +131,7 @@ Die grundlegenden Terme \text{\textbf{V}} &= \left(\mathbf{A}_{12} - \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{21} + \mathbf{B}_{22}\right ) \end{split} \end{equation} -aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Bl\"ocke +aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Bl\"ocke \begin{equation} \label{multiplikation:eq:strassen2} \begin{split} \mathbf{C}_{11} &= \text{\textbf{P}} + \text{\textbf{S}} - \text{\textbf{T}} + \text{\textbf{V}} \\ @@ -187,10 +187,10 @@ der Matrix $\mathbf{C}$ gebraucht. \end{algorithmic} \end{algorithm} Strassen's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. -Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ . +Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ . Die gr\"unen Felder auf der linken Seite, zeigen die addition welche f\"ur den dazugeh\"origen Term ben\"otigt wird. Die sieben Spalten beschreiben die Matrizen $\mathbf{P,Q,R, \dotsb, V}$. -Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition. +Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition. \begin{figure} \center \includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf} @@ -303,5 +303,23 @@ Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen \rhead{Implementation} \textcolor{red}{TODO: messresultate} +Folgende Algorithmen wurden jweiles in \texttt{C} und \texttt{Python} implementiert. +\begin{itemize} + \item Standard Matrizenmultiplikation + \item \textit{Devide and Conquer} Matrizenmultiplikation + \item Strassen's Matrizenmultiplikation + \item Winograd's Matrizenmultiplikation + \item \texttt{CBLAS} Matrizenmultiplikation in \texttt{C} + \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python} +\end{itemize} + \section{Fazit} \rhead{Fazit} + +Wie man in \textcolor{red}{hyperlink Messresultate} gesehen haben, sind die geziegten Algorithmen, trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen. +Einen optimierten Speicherzugriff hat einen weitaus grösseren Einfluss auf die Laufzeit als die Zeitkomplexität des Algorithmus. + +Doch haben Entdeckungen wie jene von Strassen und Winograd ihre Daseinsberechtigung. +Nicht auf jeden Computersystemen können die \textit{BLAS} angewandt werden. +Denke man an sehr keleine Mikrocontroller ohne Floatingpoint Recheneinhieten oder auch an \textit{Field Programmable Gate Arrays (FPGA's)}. +Sobland sehr grosse Matrizen multipliziert werden müssen und eine Addition in weniger Taktzyklen als eine Multiplikation durcheführt werden kann, können die gezeigten Algorithmen von Vorteil sein. -- cgit v1.2.1 From e42e7f03932de6d3d0966bb603c58f7e603b240c Mon Sep 17 00:00:00 2001 From: JODBaer Date: Mon, 2 Aug 2021 16:46:52 +0200 Subject: save --- buch/papers/reedsolomon/dtf.tex | 2 +- buch/papers/reedsolomon/idee.tex | 2 +- buch/papers/reedsolomon/standalone/standalone.pdf | Bin 1835758 -> 1830948 bytes buch/papers/reedsolomon/tikz/plotfft.tex | 5 +++-- buch/papers/reedsolomon/tikz/plotfftraw.tex | 1 + 5 files changed, 6 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex index 4552bed..3e16d81 100644 --- a/buch/papers/reedsolomon/dtf.tex +++ b/buch/papers/reedsolomon/dtf.tex @@ -42,7 +42,7 @@ Zu Beachten ist auch noch, dass der Fehler um das 20- bis 150-Fache kleiner ist. \item Diese Fehlerkorrekturstellen 64 bis 96, dies definieren wir als Syndrom. In diesem Syndrom ist die Fehlerinformation gespeichert und muss nur noch transformiert werden. \item Hier sieht man genau wo die Fehler stattgefunden haben. - Leider nicht mehr mit der Qualtiätt der Ursprünglichen Fehler, sie sind nur noch 0.6 oder 0.4 gross. + Leider nicht mehr mit der Qualtiätt der ursprünglichen Fehler, sie sind nur noch 0.6 oder 0.4 gross. Obwohl der Fehler um das 20Fache kleiner ist erkennt man im Locator die Fehlerstellen wieder. \end{enumerate} Nun haben wir mit Hilfe der Fourietransformation die 3 Fehlerstellen durch das Syndrom lokalisiert, diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index 41e0d4c..7620df1 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -16,7 +16,7 @@ Der Unterschied des Fehler erkennen und korrigiren, ist das beim Erkennen nur di Beim Korrigieren werden Fehler erkannt und dann zusätzlich noch den original Wert rekonstruieren. Auch eine Variante wäre die Daten nach einer Fehlerhaften sendung, nochmals zum senden auffordern(auch hier wird doppelt und dreifach gesendung), was bei Reed-Solomon-Code-Anwendungen nicht immer sinnvoll ist. -Anwendungen finden sind im Abchnitt \externaldocument{papers/reedsolomon/anwendungen} +Anwendungen finden sind im Abschnitt \externaldocument{papers/reedsolomon/anwendungen} \ref{reedsolomon:section:anwendung} beschrieben. \subsection{Polynom-Ansatz diff --git a/buch/papers/reedsolomon/standalone/standalone.pdf b/buch/papers/reedsolomon/standalone/standalone.pdf index 4a44333..2666d1e 100644 Binary files a/buch/papers/reedsolomon/standalone/standalone.pdf and b/buch/papers/reedsolomon/standalone/standalone.pdf differ diff --git a/buch/papers/reedsolomon/tikz/plotfft.tex b/buch/papers/reedsolomon/tikz/plotfft.tex index bb74dfb..3b0c421 100644 --- a/buch/papers/reedsolomon/tikz/plotfft.tex +++ b/buch/papers/reedsolomon/tikz/plotfft.tex @@ -8,6 +8,7 @@ \usepackage{pgfplotstable} \usepackage{csvsimple} \usepackage{filecontents} +\definecolor{darkgreen}{RGB}{0,0.6,0} \begin{document} @@ -30,7 +31,7 @@ \begin{tikzpicture}[] \begin{axis}[ title = {\Large {Codiert \space + \space Fehler}}, xtick={0,40,60,100}, axis y line*=left] - \addplot[green] table[col sep=comma] {tikz/codiert.txt}; + \addplot[darkgreen] table[col sep=comma] {tikz/codiert.txt}; \end{axis} \begin{axis}[xtick={7,21,75}, axis y line*=right] \addplot[red] table[col sep=comma] {tikz/fehler.txt}; @@ -47,7 +48,7 @@ \node(empfangen) [] { \begin{tikzpicture} \begin{axis}[title = {\Large {Empfangen}}] - \addplot[green] table[col sep=comma] {tikz/empfangen.txt}; + \addplot[darkgreen] table[col sep=comma] {tikz/empfangen.txt}; \end{axis} \end{tikzpicture}};\\ diff --git a/buch/papers/reedsolomon/tikz/plotfftraw.tex b/buch/papers/reedsolomon/tikz/plotfftraw.tex index 141d2ce..db35734 100644 --- a/buch/papers/reedsolomon/tikz/plotfftraw.tex +++ b/buch/papers/reedsolomon/tikz/plotfftraw.tex @@ -1,3 +1,4 @@ + \begin{tikzpicture}[] %--------------------------------------------------------------- -- cgit v1.2.1 From f96b0b2b66fe215a9e471eec44c58f4de11c7c0b Mon Sep 17 00:00:00 2001 From: Nunigan Date: Mon, 2 Aug 2021 22:49:09 +0200 Subject: update --- buch/papers/multiplikation/code/MM | Bin 26848 -> 26848 bytes buch/papers/multiplikation/code/MM.c | 2 +- buch/papers/multiplikation/code/MM.py | 23 ++--- buch/papers/multiplikation/code/c_matrix.h | 114 +++++++++++----------- buch/papers/multiplikation/code/c_meas_4096.pdf | Bin 15865 -> 17400 bytes buch/papers/multiplikation/code/meas/MM.txt | 20 ++-- buch/papers/multiplikation/code/meas/MM_dc.txt | 24 ++--- buch/papers/multiplikation/code/meas/blas.txt | 16 +-- buch/papers/multiplikation/code/meas/strassen.txt | 18 ++-- buch/papers/multiplikation/code/meas/winograd.txt | 15 +-- buch/papers/multiplikation/code/meas_1024.pdf | Bin 17653 -> 18813 bytes buch/papers/multiplikation/code/meas_256.pdf | Bin 19428 -> 17715 bytes buch/papers/multiplikation/code/meas_256.txt | 10 +- buch/papers/multiplikation/images/c_meas_4096.pdf | Bin 0 -> 15865 bytes buch/papers/multiplikation/images/meas_1024.pdf | Bin 0 -> 18813 bytes buch/papers/multiplikation/loesungsmethoden.tex | 16 +++ 16 files changed, 138 insertions(+), 120 deletions(-) create mode 100644 buch/papers/multiplikation/images/c_meas_4096.pdf create mode 100644 buch/papers/multiplikation/images/meas_1024.pdf (limited to 'buch') diff --git a/buch/papers/multiplikation/code/MM b/buch/papers/multiplikation/code/MM index f07985f..d52dda4 100755 Binary files a/buch/papers/multiplikation/code/MM and b/buch/papers/multiplikation/code/MM differ diff --git a/buch/papers/multiplikation/code/MM.c b/buch/papers/multiplikation/code/MM.c index 04c4dab..a897d4f 100755 --- a/buch/papers/multiplikation/code/MM.c +++ b/buch/papers/multiplikation/code/MM.c @@ -31,7 +31,7 @@ int main() { run_algo(strassen, "strassen",0); run_algo(MM, "MM", 0); - // run_algo(winograd, "winograd", 0); + run_algo(winograd, "winograd", 0); run_algo_cblas(0); return 0; diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py index 352771f..ee6f598 100644 --- a/buch/papers/multiplikation/code/MM.py +++ b/buch/papers/multiplikation/code/MM.py @@ -174,7 +174,7 @@ def test_perfomance(n): plt.plot(n, t_mm_strassen, label='Strassen', lw=5) plt.plot(n, t_wino, label='Winograd', lw=5) plt.plot(n, t_np, label='NumPy A@B', lw=5) - plt.xscale('log', base=2) + # plt.xscale('log', base=2) plt.legend() plt.xlabel("n") plt.ylabel("time (s)") @@ -203,6 +203,7 @@ def plot(num): plt.plot(n, t_np, label='NumPy A@B', lw=5) plt.legend() plt.xlabel("n") + # plt.yscale('log', base=10) plt.ylabel("time (s)") plt.grid(True) plt.tight_layout() @@ -213,7 +214,7 @@ def plot(num): def plot_c_res(ave, num): MM = np.loadtxt("meas/MM.txt", delimiter=',') - # winograd = np.loadtxt("meas/winograd.txt", delimiter=',') + winograd = np.loadtxt("meas/winograd.txt", delimiter=',') blas = np.loadtxt("meas/blas.txt", delimiter=',') MM_dc = np.loadtxt("meas/MM_dc.txt", delimiter=',') strassen = np.loadtxt("meas/strassen.txt", delimiter=',') @@ -233,10 +234,10 @@ def plot_c_res(ave, num): strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1) strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1) - # winograd_t = winograd[:,0] - # winograd_n = winograd[:,1] - # winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1) - # winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1) + winograd_t = winograd[:,0] + winograd_n = winograd[:,1] + winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1) + winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1) blas_t = blas[:,0] blas_n = blas[:,1] @@ -256,7 +257,7 @@ def plot_c_res(ave, num): plt.rc('xtick', labelsize=23) plt.rc('ytick', labelsize=23) plt.plot(MM_n, MM_t, label='3 For Loops', lw=5) - # plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5) + plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5) plt.plot(blas_n, blas_t, label='Blas', lw=5) plt.plot(strassen_n, strassen_t, label='Strassen', lw=5) plt.plot(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5) @@ -276,11 +277,11 @@ def plot_c_res(ave, num): # test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if __name__ == '__main__': - # plot_c_res(1, 4096) + plot_c_res(1, 4096) - # plot(8) - n = np.logspace(1,8,8,base=2,dtype=(np.int)) + # plot(1024) + # n = np.logspace(1,10,10,base=2,dtype=(np.int)) # n = np.arange(1,50,2) # A = np.random.randint(-10, 6, (5,3)) # B = np.random.randint(-10, 6, (3,5)) @@ -291,7 +292,7 @@ if __name__ == '__main__': # print(C_test) # print(np.equal(C, C_test)) - t_np = test_perfomance(n) + # t_np = test_perfomance(n) # C = strassen(A, B) # C_test = A@B diff --git a/buch/papers/multiplikation/code/c_matrix.h b/buch/papers/multiplikation/code/c_matrix.h index 13df55d..14389fc 100644 --- a/buch/papers/multiplikation/code/c_matrix.h +++ b/buch/papers/multiplikation/code/c_matrix.h @@ -1,97 +1,97 @@ -/* Seminar Matrizen, autogenerated File, Michael Schmid, 30/05/2021, 22:00:57 */ +/* Seminar Matrizen, autogenerated File, Michael Schmid, 02/08/2021, 22:48:43 */ #include const int A0[][2] = { - {-15,68}, - {49,86} + {75,47}, + {-41,-24} }; const int B0[][2] = { - {33,73}, - {38,-76} + {-53,-95}, + {-93,30} }; const double dB0[][2] = { - {33,73}, - {38,-76} + {-53,-95}, + {-93,30} }; const double dA0[][2] = { - {-15,68}, - {49,86} + {75,47}, + {-41,-24} }; const int A1[][4] = { - {75,-38,-32,-65}, - {37,74,-31,29}, - {15,-62,-20,-20}, - {-31,-35,-89,47} + {47,11,-66,8}, + {36,98,39,82}, + {-32,12,40,-79}, + {61,-20,-85,-98} }; const int B1[][4] = { - {71,90,78,-98}, - {4,63,12,-47}, - {11,-44,75,-69}, - {95,-15,64,23} + {37,75,-53,9}, + {37,-33,-67,38}, + {70,39,-93,43}, + {43,41,23,-4} }; const double dB1[][4] = { - {71,90,78,-98}, - {4,63,12,-47}, - {11,-44,75,-69}, - {95,-15,64,23} + {37,75,-53,9}, + {37,-33,-67,38}, + {70,39,-93,43}, + {43,41,23,-4} }; const double dA1[][4] = { - {75,-38,-32,-65}, - {37,74,-31,29}, - {15,-62,-20,-20}, - {-31,-35,-89,47} + {47,11,-66,8}, + {36,98,39,82}, + {-32,12,40,-79}, + {61,-20,-85,-98} }; const int A2[][8] = { - {80,42,3,-16,6,55,87,16}, - {-99,-14,21,-1,-94,-56,91,10}, - {-47,-55,-59,62,12,-53,87,-65}, - {-60,94,-67,23,-62,33,-63,-72}, - {12,-75,16,21,22,-37,1,16}, - {-100,-99,82,-66,2,64,-13,44}, - {59,-100,-90,8,36,-24,18,88}, - {73,-58,75,-100,-19,-29,85,-19} + {-54,-87,87,69,52,-21,-86,55}, + {19,-75,-61,-50,-55,-23,66,-92}, + {-73,-67,-36,19,84,-11,24,46}, + {-98,62,-76,57,-100,6,-23,-51}, + {62,46,1,-64,42,-9,85,-12}, + {35,-59,-17,-47,78,86,-50,74}, + {-15,45,33,-59,-9,-81,49,96}, + {-57,22,-43,7,-30,-45,-5,13} }; const int B2[][8] = { - {-61,88,69,49,-53,47,73,45}, - {16,14,-88,-11,-67,-73,-20,43}, - {-60,-63,26,32,-29,18,-44,-69}, - {1,21,21,38,7,-100,-61,-76}, - {-90,95,-99,88,49,-80,27,-36}, - {24,-12,-47,-7,29,15,52,37}, - {-98,-76,29,76,-41,-75,97,79}, - {62,-90,-35,-14,-30,-42,-95,52} + {-71,-82,-80,-78,83,-97,48,-24}, + {15,75,15,-60,-63,-53,1,-50}, + {-84,63,67,-2,78,93,-13,95}, + {61,-26,-88,56,56,27,26,1}, + {2,54,21,36,9,-41,53,53}, + {85,-11,42,-51,-6,3,27,97}, + {10,-2,90,-76,-75,0,8,-37}, + {10,-64,47,-69,66,-50,89,-66} }; const double dB2[][8] = { - {-61,88,69,49,-53,47,73,45}, - {16,14,-88,-11,-67,-73,-20,43}, - {-60,-63,26,32,-29,18,-44,-69}, - {1,21,21,38,7,-100,-61,-76}, - {-90,95,-99,88,49,-80,27,-36}, - {24,-12,-47,-7,29,15,52,37}, - {-98,-76,29,76,-41,-75,97,79}, - {62,-90,-35,-14,-30,-42,-95,52} + {-71,-82,-80,-78,83,-97,48,-24}, + {15,75,15,-60,-63,-53,1,-50}, + {-84,63,67,-2,78,93,-13,95}, + {61,-26,-88,56,56,27,26,1}, + {2,54,21,36,9,-41,53,53}, + {85,-11,42,-51,-6,3,27,97}, + {10,-2,90,-76,-75,0,8,-37}, + {10,-64,47,-69,66,-50,89,-66} }; const double dA2[][8] = { - {80,42,3,-16,6,55,87,16}, - {-99,-14,21,-1,-94,-56,91,10}, - {-47,-55,-59,62,12,-53,87,-65}, - {-60,94,-67,23,-62,33,-63,-72}, - {12,-75,16,21,22,-37,1,16}, - {-100,-99,82,-66,2,64,-13,44}, - {59,-100,-90,8,36,-24,18,88}, - {73,-58,75,-100,-19,-29,85,-19} + {-54,-87,87,69,52,-21,-86,55}, + {19,-75,-61,-50,-55,-23,66,-92}, + {-73,-67,-36,19,84,-11,24,46}, + {-98,62,-76,57,-100,6,-23,-51}, + {62,46,1,-64,42,-9,85,-12}, + {35,-59,-17,-47,78,86,-50,74}, + {-15,45,33,-59,-9,-81,49,96}, + {-57,22,-43,7,-30,-45,-5,13} }; const int *Ap[3] = {(int*) A0,(int*) A1,(int*) A2}; const int *Bp[3] = {(int*) B0,(int*) B1,(int*) B2}; diff --git a/buch/papers/multiplikation/code/c_meas_4096.pdf b/buch/papers/multiplikation/code/c_meas_4096.pdf index 547d794..304015a 100644 Binary files a/buch/papers/multiplikation/code/c_meas_4096.pdf and b/buch/papers/multiplikation/code/c_meas_4096.pdf differ diff --git a/buch/papers/multiplikation/code/meas/MM.txt b/buch/papers/multiplikation/code/meas/MM.txt index 1a0cd5d..13b6312 100644 --- a/buch/papers/multiplikation/code/meas/MM.txt +++ b/buch/papers/multiplikation/code/meas/MM.txt @@ -1,12 +1,12 @@ 0.000000,2 0.000000,4 -0.000002,8 -0.000011,16 -0.000080,32 -0.000653,64 -0.005397,128 -0.045147,256 -0.487710,512 -3.964180,1024 -128.863544,2048 -996.370209,4096 +0.000001,8 +0.000010,16 +0.000081,32 +0.000654,64 +0.005556,128 +0.054253,256 +0.487317,512 +4.162845,1024 +125.909034,2048 +1111.312696,4096 diff --git a/buch/papers/multiplikation/code/meas/MM_dc.txt b/buch/papers/multiplikation/code/meas/MM_dc.txt index 0d5580a..f6be928 100644 --- a/buch/papers/multiplikation/code/meas/MM_dc.txt +++ b/buch/papers/multiplikation/code/meas/MM_dc.txt @@ -1,12 +1,12 @@ -0.000006,2 -0.000007,4 -0.000035,8 -0.000228,16 -0.001310,32 -0.007204,64 -0.034338,128 -0.267511,256 -2.131212,512 -17.177403,1024 -146.112874,2048 -1156.777565,4096 +0.000003,2 +0.000002,4 +0.000010,8 +0.000068,16 +0.000594,32 +0.004264,64 +0.036289,128 +0.324645,256 +2.612010,512 +19.928951,1024 +159.333884,2048 +1147.106865,4096 diff --git a/buch/papers/multiplikation/code/meas/blas.txt b/buch/papers/multiplikation/code/meas/blas.txt index 6b7cd0b..c3ec7ec 100644 --- a/buch/papers/multiplikation/code/meas/blas.txt +++ b/buch/papers/multiplikation/code/meas/blas.txt @@ -2,11 +2,11 @@ 0.000000,4 0.000001,8 0.000003,16 -0.000021,32 -0.000164,64 -0.001240,128 -0.009657,256 -0.072523,512 -0.735149,1024 -6.895747,2048 -56.812183,4096 +0.000022,32 +0.000179,64 +0.001278,128 +0.010165,256 +0.074739,512 +0.704748,1024 +6.845095,2048 +55.845038,4096 diff --git a/buch/papers/multiplikation/code/meas/strassen.txt b/buch/papers/multiplikation/code/meas/strassen.txt index 89cf41a..69ea472 100644 --- a/buch/papers/multiplikation/code/meas/strassen.txt +++ b/buch/papers/multiplikation/code/meas/strassen.txt @@ -1,12 +1,12 @@ 0.000000,2 0.000003,4 0.000010,8 -0.000086,16 -0.000476,32 -0.003366,64 -0.025547,128 -0.184593,256 -1.248713,512 -9.007700,1024 -61.079879,2048 -424.493037,4096 +0.000066,16 +0.000470,32 +0.003368,64 +0.024232,128 +0.172000,256 +1.209262,512 +8.457472,1024 +59.267256,2048 +414.648901,4096 diff --git a/buch/papers/multiplikation/code/meas/winograd.txt b/buch/papers/multiplikation/code/meas/winograd.txt index 3a4d88b..6e6208a 100644 --- a/buch/papers/multiplikation/code/meas/winograd.txt +++ b/buch/papers/multiplikation/code/meas/winograd.txt @@ -2,10 +2,11 @@ 0.000001,4 0.000002,8 0.000011,16 -0.000091,32 -0.000663,64 -0.005182,128 -0.046038,256 -0.533429,512 -4.257458,1024 -130.378038,2048 +0.000100,32 +0.000654,64 +0.005229,128 +0.057440,256 +0.517850,512 +4.539413,1024 +130.627663,2048 +1179.261048,4096 diff --git a/buch/papers/multiplikation/code/meas_1024.pdf b/buch/papers/multiplikation/code/meas_1024.pdf index 7b7a133..70c7ec1 100644 Binary files a/buch/papers/multiplikation/code/meas_1024.pdf and b/buch/papers/multiplikation/code/meas_1024.pdf differ diff --git a/buch/papers/multiplikation/code/meas_256.pdf b/buch/papers/multiplikation/code/meas_256.pdf index 4ca7102..2eb177b 100644 Binary files a/buch/papers/multiplikation/code/meas_256.pdf and b/buch/papers/multiplikation/code/meas_256.pdf differ diff --git a/buch/papers/multiplikation/code/meas_256.txt b/buch/papers/multiplikation/code/meas_256.txt index 2ca4447..62e77cb 100644 --- a/buch/papers/multiplikation/code/meas_256.txt +++ b/buch/papers/multiplikation/code/meas_256.txt @@ -1,6 +1,6 @@ 2.000000000000000000e+00 4.000000000000000000e+00 8.000000000000000000e+00 1.600000000000000000e+01 3.200000000000000000e+01 6.400000000000000000e+01 1.280000000000000000e+02 2.560000000000000000e+02 -1.096725463867187500e-05 5.531311035156250000e-05 3.712177276611328125e-04 2.662897109985351562e-03 2.111244201660156250e-02 1.660463809967041016e-01 1.280746459960937500e+00 1.149287748336791992e+01 -5.483627319335937500e-06 5.745887756347656250e-05 4.055500030517578125e-04 3.203868865966796875e-03 2.503871917724609375e-02 2.148163318634033203e-01 1.655935287475585938e+00 1.472915720939636230e+01 -1.335144042968750000e-05 1.153945922851562500e-04 6.134510040283203125e-04 3.850460052490234375e-03 2.817606925964355469e-02 1.827111244201660156e-01 1.277473211288452148e+00 9.337273359298706055e+00 -1.907348632812500000e-05 9.274482727050781250e-05 3.526210784912109375e-04 2.403974533081054688e-03 1.725149154663085938e-02 1.314754486083984375e-01 1.121860027313232422e+00 8.884316682815551758e+00 -3.147125244140625000e-05 6.675720214843750000e-06 4.768371582031250000e-06 7.867813110351562500e-06 2.574920654296875000e-05 5.888938903808593750e-05 2.071857452392578125e-04 6.518363952636718750e-04 +1.144409179687500000e-05 5.507469177246093750e-05 3.774166107177734375e-04 3.177404403686523438e-03 2.508044242858886719e-02 2.120554447174072266e-01 1.431464910507202148e+00 1.076412820816040039e+01 +5.722045898437500000e-06 5.745887756347656250e-05 4.494190216064453125e-04 3.611087799072265625e-03 3.317713737487792969e-02 2.292332649230957031e-01 2.090558290481567383e+00 1.306217479705810547e+01 +1.788139343261718750e-05 1.168251037597656250e-04 5.981922149658203125e-04 4.416465759277343750e-03 3.002405166625976562e-02 2.104022502899169922e-01 1.488269329071044922e+00 9.164114713668823242e+00 +1.955032348632812500e-05 7.224082946777343750e-05 3.829002380371093750e-04 2.558946609497070312e-03 2.043128013610839844e-02 1.361320018768310547e-01 1.089214324951171875e+00 8.553364753723144531e+00 +2.384185791015625000e-05 5.245208740234375000e-06 6.437301635742187500e-06 2.455711364746093750e-05 4.148483276367187500e-05 8.702278137207031250e-05 3.793239593505859375e-04 6.709098815917968750e-04 diff --git a/buch/papers/multiplikation/images/c_meas_4096.pdf b/buch/papers/multiplikation/images/c_meas_4096.pdf new file mode 100644 index 0000000..547d794 Binary files /dev/null and b/buch/papers/multiplikation/images/c_meas_4096.pdf differ diff --git a/buch/papers/multiplikation/images/meas_1024.pdf b/buch/papers/multiplikation/images/meas_1024.pdf new file mode 100644 index 0000000..70c7ec1 Binary files /dev/null and b/buch/papers/multiplikation/images/meas_1024.pdf differ diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index b25462a..8a95dd5 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -362,6 +362,22 @@ Folgende Algorithmen wurden jweiles in \texttt{C} und \texttt{Python} implementi \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python} \end{itemize} + +\begin{figure} + \center + \includegraphics[width=\linewidth]{papers/multiplikation/images/c_meas_4096} + \caption{Messresultate mit der Programmiersprache \texttt{C}} + \label{multiplikation:fig:c_meas_4096} +\end{figure} + + +\begin{figure} + \center + \includegraphics[width=\linewidth]{papers/multiplikation/images/meas_1024} + \caption{Messresultate mit der Programmiersprache \texttt{Python}} + \label{multiplikation:fig:c_meas_4096} +\end{figure} + \section{Fazit} \rhead{Fazit} -- cgit v1.2.1 From 6c9796cdf6fccfca8935f769781d94bfc4017dda Mon Sep 17 00:00:00 2001 From: Alain Date: Tue, 3 Aug 2021 17:08:02 +0200 Subject: corrections --- .../ifs/images/farnnotweight-eps-converted-to.pdf | Bin 0 -> 6124632 bytes buch/papers/ifs/teil1.tex | 6 ++--- buch/papers/ifs/teil2.tex | 30 ++++++++++----------- buch/papers/ifs/teil3.tex | 15 ++++++----- 4 files changed, 26 insertions(+), 25 deletions(-) create mode 100644 buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf (limited to 'buch') diff --git a/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf b/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf new file mode 100644 index 0000000..ee73d4d Binary files /dev/null and b/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf differ diff --git a/buch/papers/ifs/teil1.tex b/buch/papers/ifs/teil1.tex index 7ce546a..6c03f3b 100644 --- a/buch/papers/ifs/teil1.tex +++ b/buch/papers/ifs/teil1.tex @@ -15,7 +15,7 @@ Von einem Fraktal $F$ können wir folgende Eigenschaften erwarten: \item $F$ kann nicht mit der klassischen Geometrie beschrieben werden. \item Oftmals hat $F$ eine Form von Selbstähnlichkeit. Man spricht von einer selbstähnlichen Menge, wenn sich diese Menge überdecken lässt mit echten Teilmengen, die zur ganzen Menge ähnlich sind. - \item Die `fraktale Dimension´ ist grösser als die topologische Dimension + \item Die `fraktale Dimension' ist grösser als die topologische Dimension. \item Viele Fraktale lassen sich auf eine simple Art definieren. Es genügen zum Beispiel nur wenige Funktionen, welche rekursiv ausgeführt werden, um ein Fraktal zu definieren. \end{enumerate} \subsection{Koch Kurve @@ -64,7 +64,7 @@ berechnen. In jedem Schritt wird die Länge um den Faktor $\frac{4}{3}$ verlängert. Daraus resultiert, dass die Länge gegen $\infty$ divergiert. -Die Fläche der Kurve lässt sich folgendermassen berechnen +Die Fläche zwischen der Strecke von $O$ nach $(1,0)$ und der Kurve lässt sich folgendermassen berechnen \begin{align*} A_0 &= 0 \\ A_1 &= \left( \frac{a}{3}\right)^2 \frac{\sqrt{3}}{4} = a^2 \frac{\sqrt{3}}{36}\\ @@ -100,7 +100,7 @@ Ihre Ähnlichkeits-Dimension ist somit \begin{align*} D = - \frac{\log N }{\log \epsilon } = - \frac{\log 4 }{\log 1/3 } \approx 1.2619. \end{align*} -Wie wir nun sehen besitzt die Koch-Kurve alle oben beschriebenen Eigenschaften von Fraktalen. +Wie wir nun sehen, besitzt die Koch-Kurve alle oben beschriebenen Eigenschaften von Fraktalen. Dies muss jedoch nicht bei allen Fraktalen der Fall sein. Sonst wäre die Frage nach einer 'richtigen' Definition einfach zu beantworten. \begin{figure} \centering diff --git a/buch/papers/ifs/teil2.tex b/buch/papers/ifs/teil2.tex index 49c1cf3..c468b73 100644 --- a/buch/papers/ifs/teil2.tex +++ b/buch/papers/ifs/teil2.tex @@ -8,7 +8,7 @@ \rhead{Teil 2} Wollen wir nun eine bestimmte Art anschauen, wie man Fraktale erzeugen kann. Im Beispiel auf Seite \pageref{ifs:trinagle} haben wir ein Dreieck aus 4 skalierten Kopien zusammengefügt. -Lässt man die Kopie im Zentrum des Dreiecks weg, entsteht die Grundlage des sogenannten Sierpinski-Dreieck, Abbildung \ref{ifs:sierpinski10}. +Lässt man die Kopie im Zentrum des Dreiecks weg, entsteht die Grundlage des sogenannten Sierpinski-Dreieck in Abbildung \ref{ifs:sierpinski10}. \begin{figure} \centering \includegraphics[width=0.5\textwidth]{papers/ifs/images/sierpinski} @@ -93,22 +93,22 @@ Man kann sogar noch einen Schritt weiter gehen, und sagen: Wenn wir die Funktion \label{ifs:sierpconst} \end{figure} Im Beispiel der Abbildung \ref{ifs:sierpconst} sehen wir, wie das Bild nach jeder Iteration dem Sierpinski-Dreieck ähnlicher wird. -Der `Abstand´ zum Original wird immer kleiner, und konvergiert gegen null. +Der `Abstand' zum Original wird immer kleiner, und konvergiert gegen null. \subsection{Iterierte Funktionensysteme \label{ifs:subsection:IteratedFunktionensysteme}} In diesem Abschnitt wollen wir die Erkenntnis, wie wir aus einer beliebigen Menge ein Sierpinski-Dreieck generieren können, verallgemeinern. -$S_1,\dots,S_n$ sind Kontraktionen auf der Menge $D \subset \mathbb{R}^n$. Es gilt +$S_1,\dots,S_n$ sind Kontraktionen auf einer Menge $D \subset \mathbb{R}^n$. Es gilt \begin{align} |S_i(x) - S_i(y)| \leq c_i|x - y| \end{align} für jedes i mit einem $c_i < 1$. -Der Banachsche Fixpunktsatz besagt, dass für solche Kontraktionen ein Eindeutiges $A$ existiert, für das $S_i(A) = A$ gilt. +Man kann zeigen, dass für solche Kontraktionen ein eindeutiges $A$ existiert, für das $S_i(A) = A$ gilt. Den Beweis kann man in \cite{ifs:Rousseau2012} nachlesen. -Hat man nicht nur eine sondern mehrere Kontraktionen, dann existiert eine eindeutige kompakte Menge $F$ für die gilt +Hat man nicht nur eine sondern mehrere Kontraktionen, dann existiert eine eindeutige kompakte Menge $F$, für die gilt \begin{equation} F = \bigcup\limits_{i = 1}^{m} S_i(F). \end{equation} @@ -117,12 +117,12 @@ Weiter definieren wir die Transformation S auf kompakte Mengen $E$ ohne die leer S(E) = \bigcup\limits_{i = 1}^m S_i(E). \label{ifs:transformation} \end{equation} -Wird diese Transformation Iterativ ausgeführt, das heisst $S^0(E) = E, S^k(E) = S(S^{k-1}(E))$, gilt +Wird diese Transformation iterativ ausgeführt, das heisst $S^0(E) = E, S^k(E) = S(S^{k-1}(E))$, gilt \begin{equation} F = \bigcap\limits_{k = 1}^{\infty} S^k(E). \label{ifs:ifsForm} \end{equation} -In Worte gefasst bedeutet das, dass jede Gruppe von Kontraktionen iterativ ausgeführt, gegen eine eindeutige Menge konvergiert. +In Worte gefasst bedeutet das, dass jede Gruppe von Kontraktionen iterativ ausgeführt gegen eine eindeutige Menge konvergiert. Diese Menge ist auch als Attraktor eines IFS bekannt. Der Beweis für die Existenz eines eindeutigen Attraktors ist in \cite{ifs:fractal-geometry} beschrieben. @@ -155,7 +155,7 @@ Die vier affinen Transformationen \begin{pmatrix} 0 \\ 1.6 - \end{pmatrix}\\ + \end{pmatrix},\\ & {S_3(x,y)} = \begin{pmatrix} @@ -188,7 +188,7 @@ Die vier affinen Transformationen \end{pmatrix},\\ \label{ifs:farnFormel} \end{align} -, welche für die Konstruktion des Farns benötigt werden sind in der Abbildung \ref{ifs:farncolor} farblich dargestellt. +welche für die Konstruktion des Farns benötigt werden, sind in der Abbildung \ref{ifs:farncolor} farblich dargestellt. Das gesamte Farnblatt ist in der schwarzen Box. Auf diese werden die Transformationen angewendet. $S_1$ erstellt den Stiel des Farnblattes (rot). @@ -198,12 +198,12 @@ Sie verkleinert und dreht das gesamte Bild und stellt es auf das Ende des Stiels $S_3$ bildet das gesamte Blatt auf das blaue Teilblatt unten links ab. $S_4$ spiegelt das Blatt und bildet es auf das magentafarbene Teilblatt ab. \subsection{Erzeugung eines Bildes zu einem IFS} -Es gibt zwei verschiedene Methoden um das Bild zu einem IFS zu erzeugen. +Es gibt zwei verschiedene Methoden, um das Bild zu einem IFS zu erzeugen. Die erste Methode ist wahrscheinlich die intuitivste. -Wir beginnen mit einem Startbild, zum Beispiel ein Schwarzes Quadrat, und bilden dieses mit den affinen Transformationen des IFS ab. -Das neue Bild, dass entsteht, ist die nächste Iterierte. +Wir beginnen mit einem Startbild, zum Beispiel ein schwarzes Quadrat, und bilden dieses mit den affinen Transformationen des IFS ab. +Das neue Bild, das entsteht, ist die nächste Iterierte. Dieses wird wieder mit den Transformationen abgebildet. -Wir wiederholen den letzten schritt, bis wir zufrieden mit der neusten Iterierten sind. +Wir wiederholen den letzten Schritt, bis wir zufrieden mit der neusten Iterierten sind. Diesen Vorgang haben wir beim Sierpinski-Dreieck in Abbildung \ref{ifs:sierpconst} gebraucht. In Abbildung \ref{ifs:sierpinski10} ist die zehnte Iterierte zu sehen. @@ -219,8 +219,8 @@ Es wird bei jedem Iterationsschritt nur eine Transformation $S_i$, welche zufäl Da, wie wir beim Barnsley-Farn gut sehen, nicht jede Transformation gleich viel des Bildes ausmacht, werden diese beim Chaosspiel gewichtet. Je mehr eine Transformation kontrahiert, desto weniger Punkte braucht es, um die resultierende Teilabbildung darzustellen. -Im Fall des Barnsley-Fern wird $S_1$ in $1\%$, $S_2$ in $85\%$ und $S_3$ und $S_4$ in $7\%$ der Iterationen ausgeführt. -Wir sehen auch in Abbildung \ref{ifs:farncolor} gut, dass der rote Stiel, $S_1$, einiges weniger Punkte braucht als der grüne Hauptteil des Blattes, $S_2$. +Im Fall des Barnsley-Farns wird $S_1$ in $1\%$, $S_2$ in $85\%$ und $S_3$ und $S_4$ in $7\%$ der Iterationen ausgeführt. +Wir sehen auch in Abbildung \ref{ifs:farncolor} gut, dass der rote Stiel, $S_1$, viel weniger Punkte braucht als der grüne Hauptteil des Blattes, $S_2$. In Abbildung \ref{ifs:farnNoWeight} wurden die vier gleich stark gewichtet. Man sieht, dass trotzt gleich vieler Iterationen wie in Abbildung \ref{ifs:farn}, der Farn nicht so gut abgebildet wird. diff --git a/buch/papers/ifs/teil3.tex b/buch/papers/ifs/teil3.tex index 1d39c6f..01a3ee2 100644 --- a/buch/papers/ifs/teil3.tex +++ b/buch/papers/ifs/teil3.tex @@ -8,12 +8,13 @@ \rhead{Fraktale Bildkomprimierung} Mit dem Prinzip dieser IFS ist es auch möglich, Bilder zu komprimieren. Diese Idee hatte der Mathematiker Michael Barnsley, welcher mit seinem Buch {\em Fractals Everywhere} einen wichtigen Beitrag zum Verständnis von Fraktalen geliefert hat. -Das Ziel ist es ein IFS zu finden, welches das Bild als Attraktor hat. +Das Ziel ist, ein IFS zu finden, welches das Bild als Attraktor hat. In diesem Unterkapitel wollen wir eine Methode dafür anschauen, wie sie in \cite{ifs:Rousseau2012} beschrieben ist. Es ist wohl nicht falsch zu sagen, dass Ähnlichkeiten zur gesamten Menge, wie wir sie zum Beispiel beim Barnsley Farn gesehen haben, bei Bilder aus dem Alltag eher selten anzutreffen sind. Ein IFS, wie wir es in \ref{ifs:subsection:IteratedFunktionensysteme} definiert haben, wird uns also nicht weiter helfen. -Anders sieht es mit Partitionierten IFS (PIFS) \cite{ifs:pifs} aus. +Anders sieht es mit partitionierten IFS (PIFS) \cite{ifs:pifs} aus. + In \ref{ifs:transformation} wurde definiert, dass die Kontraktionen $S_i$ bei IFS auf die gesamte Menge $E$ angewendet werden. Bei einem PIFS wird der Attraktor in disjunkte Teilmengen aufgeteilt. Für jede dieser Teilmengen $R_i$ braucht es dann eine grössere Teilmenge, welche mit einer affinen Transformation eine zu $R_i$ ähnliche Menge bildet. @@ -55,7 +56,7 @@ Zuerst brauchen wir die Transformation g_i \end{pmatrix} \end{align*} -um ein Element aus $D$ auf ein Element von $R$ Abzubilden. +um ein Element aus $D$ auf ein Element von $R$ abzubilden. Das bestimmen der besten Transformation kann man in drei Schritte aufteilen. \textbf{Schritt 1: }Wenn wir die Grauwerte ausser acht lassen, haben wir die affine Abbildung @@ -83,7 +84,7 @@ Wir sind auf folgende acht Abbildungen beschränkt: \item Drehung um 90, 180 oder 270 Grad. \item Spiegelung an der vertikalen, horizontalen und den Diagonalachsen. \end{itemize} -Da wir ein $2b \times 2b$ Feld auf ein $b \times b$ Feld abbilden möchten, müssen wir zuerst $G_j$ um $1/2$ skalieren. +Da wir ein $2b \times 2b$ Feld auf ein $b \times b$ Feld abbilden möchten, müssen wir zuerst $D_j$ um $1/2$ skalieren. Dies erreichen wir, indem wir alle disjunkten $2 \times 2$ Pixel Blöcke mit einem Pixel des Grautones deren Mittelwertes ersetzen. \textbf{Schritt 2: }Es muss nicht nur eine geometrische Abbildung, sondern auch eine Abbildung für die Grautöne gewählt werden. Letztere lässt sich mit den Parametern $s_i$ und $g_i$ beschrieben. @@ -157,12 +158,12 @@ Wir verwenden dafür den oben beschriebenen Algorithmus, welcher uns für jeden Mit diesen lässt sich das Bild im Anschluss wieder Rekonstruieren. Die Range-Blöcke wurden $4\times4$ gewählt und die Domain dementsprechend $8\times8$. Um etwas Zeit bei der Komprimierung zu ersparen, wurden nur disjunkte Domain-Blöcke gebraucht. -Als erstes Beispiel wählen wir das 360$\times$360px Bild von Rapperswil in Abbildung \ref{ifs:original}. -Das Startbild ist ein mittelgraues 360$\times$360px Bild, Abbildung \ref{ifs:bild0}. +Als erstes Beispiel wählen wir das 360$\times$360 Pixel Bild von Rapperswil in Abbildung \ref{ifs:original}. +Das Startbild ist ein mittelgraues 360$\times$360 Pixel Bild, Abbildung \ref{ifs:bild0}. Es kann jedoch ein beliebiges Startbild sein. Nun lassen wir das PIFS laufen. Wie wir in Abbildung \ref{ifs:rappirecoa} sehen, ist schon nach der ersten Iteration das Bild schon erkennbar. -Nach der fünften Iteration , Abbildung \ref{ifs:rappirecoc} gibt es fast keinen Unterschied mehr zur letzten Iteration, wir können die Rekonstruktion beenden. +Nach der fünften Iteration, Abbildung \ref{ifs:rappirecoc} gibt es fast keinen Unterschied mehr zur letzten Iteration, wir können die Rekonstruktion beenden. \begin{figure} \centering \includegraphics[width=0.4\textwidth]{papers/ifs/images/original} -- cgit v1.2.1 From b15f2fc72a17bc489fe287bacc3d4d4a2450ece1 Mon Sep 17 00:00:00 2001 From: LordMcFungus Date: Tue, 3 Aug 2021 17:13:53 +0200 Subject: Update teil1.tex --- buch/papers/ifs/teil1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/ifs/teil1.tex b/buch/papers/ifs/teil1.tex index 6c03f3b..caba120 100644 --- a/buch/papers/ifs/teil1.tex +++ b/buch/papers/ifs/teil1.tex @@ -101,7 +101,7 @@ Ihre Ähnlichkeits-Dimension ist somit D = - \frac{\log N }{\log \epsilon } = - \frac{\log 4 }{\log 1/3 } \approx 1.2619. \end{align*} Wie wir nun sehen, besitzt die Koch-Kurve alle oben beschriebenen Eigenschaften von Fraktalen. -Dies muss jedoch nicht bei allen Fraktalen der Fall sein. Sonst wäre die Frage nach einer 'richtigen' Definition einfach zu beantworten. +Dies muss jedoch nicht bei allen Fraktalen der Fall sein. Sonst wäre die Frage nach einer `richtigen' Definition einfach zu beantworten. \begin{figure} \centering \begin{tikzpicture} -- cgit v1.2.1 From 98ac2080365000294d00804faab6e623e7f67570 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 3 Aug 2021 18:59:30 +0200 Subject: Fix typos and integrate suggestions, but minor TODOs left --- buch/papers/punktgruppen/crystals.tex | 22 ++++++------- buch/papers/punktgruppen/intro.tex | 29 ++++++----------- buch/papers/punktgruppen/piezo.tex | 58 ++++++++++++++++----------------- buch/papers/punktgruppen/references.bib | 4 +-- buch/papers/punktgruppen/symmetry.tex | 10 +++--- 5 files changed, 56 insertions(+), 67 deletions(-) (limited to 'buch') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 42008e1..45761f8 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -18,7 +18,7 @@ Glücklicherweise ist das Innere eines Kristalles relativ einfach definiert. Ein zweidimensionales Beispiel eines solchen Muster ist Abbildung \ref{fig:punktgruppen:lattice}. Für die Überschaubarkeit haben wir ein simples Motiv eines einzelnen grauen Punktes dargestellt und betrachten dies nur in zwei Dimensionen. Die eingezeichneten Vektoren \(\vec{a}_1\) und \(\vec{a}_2\) sind die kleinstmöglichen Schritte im Raum bis sich das Kristallgitter wiederholt. -Wird ein beliebiger grauer Gitterpunkt in \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. +Wird ein beliebiger grauer Gitterpunkt in Abbildung \ref{fig:punktgruppen:lattice} gewählt und um eine ganzzahlige Linearkombination von \(\vec{a}_1\) und \(\vec{a}_2\) verschoben, endet er zwangsweise auf einem Gitterpunkt, wenn nicht wieder am selben Ort. Im dreidimensionalen Raum können alle Gitterpunkte mit derselben Idee und einem zusätzlichen Vektor \(\vec{c}\) also \[ \vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 = \sum_i n_i \vec{a}_i @@ -39,7 +39,7 @@ können wir auch sagen, dass alle Verschiebungen um eine Linearkombination der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind. Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich grossen Kristallgittern besteht. -\subsection{Limitierte Kristallsymmetrien} \label{txt:punktgruppen:Translationssymmetrie} +\subsection{Einschränkungen durch Kristallsymmetrien} \label{sec:punktgruppen:Translationssymmetrie} Die Translationssymmetrie ist wohl keine grosse Überraschung, wenn man die Abbildung \ref{fig:punktgruppen:lattice} betrachtet. Was nicht direkt ersichtlich ist, ist dass bei beliebigen Grundvektoren nicht beliebige Symmetrien erstellt werden können. Dies weil die Translationssymmetrie eines Kristalles weitere Symmetrien deutlich einschränkt. @@ -53,7 +53,7 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g \label{fig:punktgruppen:rot-geometry} \end{figure} -\begin{satz} +\begin{satz} \label{thm:punktgruppen:crystal-restriction} Die Rotationssymmetrien eines Kristalls sind auf 2-fach, 3-fach, 4-fach und 6-fach beschränkt. Mit anderen Worten: Es sind nur Drehwinkel von 0\(^{\circ}\), @@ -87,7 +87,7 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\). Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes Vielfaches von \(\vec{Q}\) sein. - Demnach auch die Länge + Demnach ist auch die Länge \[ Q' = nQ = Q + 2x . \] @@ -95,12 +95,12 @@ Dabei sollte erwähnt werden, dass eine Translationssymmetrie nur in unendlich g \[ nQ = Q + 2Q\sin(\alpha - \pi/2) . \] - Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, + Wir können durch \(Q\), dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. - Zusätzlich können wir den Sinusterm vereinfachen. + Zusätzlich können wir den Sinusterm vereinfachen. Somit wird \[ - n = 1 - 2\cos\alpha \quad\iff\quad - \alpha = \cos^{-1}\left(\frac{1-n}{2}\right) + n = 1 - 2\cos\alpha \quad\text{oder}\quad + \alpha = \cos^{-1}\left(\frac{1-n}{2}\right). \] Dies schränkt die möglichen Rotationssymmetrien auf \( @@ -144,10 +144,10 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklas Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:kristallklassen} zu sehen sind. \begin{itemize} \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. - Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. - \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. + Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nach Satz \ref{thm:punktgruppen:crystal-restriction} nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. + \item Dank Abschintt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} keine mögliche Rotationssymmetrie eines Kristalles ist. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Satz \ref{thm:punktgruppen:crystal-restriction} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. Für die folgenden Betrachtungen müssen wir uns Abbildung \ref{fig:punktgruppen:kristallklassen} genauer ansehen. Dabei ist mit horizontal flach auf dem Papier gemeint. diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 1293234..e369cf5 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,26 +1,17 @@ \section{Einleitung} + Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, -hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. +Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. -Zu Beginn werden wir zeigen was eine Symmetrie ausmacht und -dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. -Die vorgestellten Symmetrien sind äusserst gut geeignet, -um die Grundeigenschaften eines Kristalles zu beschreiben. -Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, -was in der Welt der Kristallographie alles möglich ist oder nicht. -Einschränkungen in Kristallsymmetrien sind durchaus willkommen, -da dank ihnen sich die möglichen Kristallgitter in Grenzen halten -und sich kategorisieren lassen. -Kategorien sind nicht nur für einen besseren Überblick nützlich, -sondern kann man aus ihnen auch auf Physikalische Eigenschaften schliessen. +Zu Beginn werden wir zeigen, was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. +Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. +Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, was in der Welt der Kristallographie alles möglich ist oder nicht. +% TODO: die moglichen Kristallgitter in Grenzen etc ist (apparently) not okay +Einschränkungen in Kristallsymmetrien sind durchaus willkommen, da dank ihnen sich die möglichen Kristallgitter in Grenzen halten und sich kategorisieren lassen. +Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. -Piezoelektrizität ist kein weit verbreiteter Begriff, -jedoch beschreibt er ein Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. +Piezoelektrizität beschreibt einen Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. Wie zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. -Hiermit ist hoffentlich ein Funken Interesse geweckt -um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. - - +Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. %% vim:linebreak breakindent showbreak=.. spell spelllang=de: diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 6ed7ee9..ff9f1e2 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -10,13 +10,13 @@ Die Piezoelektrizität ist die spannende Eigenschaft, dass gewisse Kristalle ein \end{figure} \subsection{Polarisierung} + Piezoelektrizität basiert darauf, dass zwischen den Oberflächen des Kristalles ein Ladungsungleichgewicht entsteht (siehe Abbildung\ref{fig:punktgruppen:basicPiezo}). -Dieses Ungleichgewicht resultiert, -weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positive Ionen näher an die Oberfläche gelangen, -wärend auf der gegenüberliegenden Seite dasselbe mit negativen Ionen passiert. -Es besitzt jedoch nicht jeder Kristall eine atomare Struktur welche sich unter Druck genau so verformt. +Dieses Ungleichgewicht resultiert, weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positive Ionen näher an die Oberfläche gelangen, wärend auf der gegenüberliegenden Seite dasselbe mit negativen Ionen passiert. +Es besitzt jedoch nicht jeder Kristall eine atomare Struktur, welche sich unter Druck genau so verformt. Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für die Entstehung dieses Effektes. + \begin{figure} \centering \begin{tabular}{c |c} @@ -35,46 +35,44 @@ Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für \end{figure} \subsection{Atomarer Aufbau} + Die Polarisation entsteht an der Oberfläche eines Kristalles, die Erklärung dazu finden wir jedoch im atomaren Aufbau. Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. -In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise positive Ionen und blaue negative Ionen repräsentieren. -Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. -Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. +In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise positive Ionen und blaue negative Ionen repräsentieren. +Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. +Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil die Ladungsträger ganz links und rechts weiter auseinander gedrückt werden. -Als Hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, -dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. -\par +Als Hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. + + Die Struktur \subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unter Druck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. -Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, -scheint es als würden rechts mehr positive Ionen in die Platte gedrückt werden und links umgekehrt. +Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, scheint es, als würden rechts mehr positive Ionen in die Platte gedrückt werden und links umgekehrt. Dies ist aber nicht mehr der Fall, wenn sich die Struktur nach oben und unten periodisch wiederholt. -\par -Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. -Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, -ist, dass die entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, -im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. -Daraus kann man schliessen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von \(90^\circ\) besitzen kann, -weil die Eigenschaften der Struktur sich bei einer \(90^\circ\) Drehung ändern. -Das Fehlen dieser Rotationssymmetrie bestätigt sich auch wenn \subref{fig:punktgruppen:atoms-piezo} als Hexagon betrachtet wird. + + +Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. +Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, dass die entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. +Daraus kann man schliessen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von \(90^\circ\) besitzen kann, weil die Eigenschaften der Struktur sich bei einer \(90^\circ\) Drehung ändern. +Das Fehlen dieser Rotationssymmetrie bestätigt sich auch wenn \subref{fig:punktgruppen:atoms-piezo} als Hexagon betrachtet wird. + \subsection{Punktsymmetrie} + Piezoelektrische Kristalle können nicht punktsymmetrisch sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. -Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht punktsymmetrischer Kristall -mit einem punktsymmetrischen \subref{fig:punktgruppen:atoms-grid} verglichen worden. -Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles wie \subref{fig:punktgruppen:atoms-piezo} vor Augen führen, -welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. -Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so würden die negativen Ionen auf den positiven auf der anderen Seite landen, -was der Definition einer Symmetrie deutlich widerspricht. +Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht punktsymmetrischer Kristall mit einem punktsymmetrischen \subref{fig:punktgruppen:atoms-grid} verglichen worden. +Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles wie \subref{fig:punktgruppen:atoms-piezo} vor Augen führen, welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. +Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so würden die negativen Ionen auf den positiven auf der anderen Seite landen, was der Definition einer Symmetrie deutlich widerspricht. + \subsection{Vom Kristall zum Feuer} + Piezoelektrizität hat durchaus Nutzen im Alltag. -Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, -sonder ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. +Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, sondern ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer konfigurierten Spannung. -Wird vom Nutzenden fester zugedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, -welcher auf das Piezoelement aufschlägt. +%% TODO: replace with (?): Drückt der Nutzende stärker +Wird vom Nutzenden fester zugedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. diff --git a/buch/papers/punktgruppen/references.bib b/buch/papers/punktgruppen/references.bib index 05c803f..7928b22 100644 --- a/buch/papers/punktgruppen/references.bib +++ b/buch/papers/punktgruppen/references.bib @@ -26,7 +26,7 @@ @book{punktgruppen:lang-elt2, title = {Elektrotechnik 2}, - author = {Prof. Hans-Dieter Lang Ph.D}, + author = {Hans-Dieter Lang Ph.D}, publisher = {Fachhochschule Ostschweiz Rapperswil}, year = {2020}, month = {2}, @@ -45,7 +45,7 @@ @online{punktgruppen:restriction, title = {Structure of Materials: Allowed Rotational Symmetry in Crystals}, - author = {Prof. Silvija Gradecak-Garaj{,} Massachusetts Institute of Technology (MIT)}, + author = {Silvija Gradecak-Garaj{,} Massachusetts Institute of Technology (MIT)}, year = {2020}, month = {4}, day = {9}, diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 2067663..51620a4 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -35,7 +35,7 @@ Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. -Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die intuitiv rückgängig macht, was \(g\) getan hat. % intuitiv weglassen oder anstelle sinnbildlich +Weiterhin muss in einer Gruppe für jede Operation \(g\) auch eine inverse Operation \(g^{-1}\) vorkommen, die rückgängig macht, was \(g\) getan hat. Somit ist \(\mathds{1}\) auch äquivalent dazu, eine Operation und dann ihre Inverse anzuwenden. Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. @@ -52,7 +52,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Das bedeutet, dass \(G\) die Elemente \(a, aa, aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales Element \(\mathds{1} = aa^{-1}\) enthält. \end{beispiel} \begin{beispiel} - Als anschaulicheres Beispiel, können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren. + Als anschaulicheres Beispiel können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren. Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ @@ -69,7 +69,7 @@ komplexere Strukturen aufbauen. %@Naoki Are you ok with my grammar fixes I'm not 101% shore how to use the word Erzeugendensystem? \begin{definition}[Erzeugendensystem] - Jede disktrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. + Jede diskrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. @@ -87,7 +87,7 @@ komplexere Strukturen aufbauen. &= \left\{ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} \right\}. - \end{align*} + \end{align*} \qedhere \end{beispiel} Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. @@ -110,7 +110,7 @@ Um es formaler zu beschreiben, werden wir einige Begriffe einführen. Man sagt, dass der Homomorphismus \(f\) \(G\) in \(H\) transformiert. \end{definition} \begin{beispiel} - Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht perfekt dem komplexen Einheitskreis. + Die Rotationssymmetrie des Kreises \(C_\infty\), mit einem unendlichen Kontinuum von Werten \(\alpha \in \mathbb{R}\), entspricht genau dem komplexen Einheitskreis. Der Homomorphismus \(\phi: C_\infty \to \mathbb{C}\) ist durch die Eulersche Formel \(\phi(r) = e^{i\alpha}\) gegeben. \end{beispiel} -- cgit v1.2.1 From e5da5157fb61cdb006f3f50a2b3bd3b922644f1f Mon Sep 17 00:00:00 2001 From: Nunigan Date: Tue, 3 Aug 2021 22:08:02 +0200 Subject: update --- buch/papers/multiplikation/code/MM.py | 53 +++++++++------- buch/papers/multiplikation/code/meas_1024.pdf | Bin 18813 -> 18813 bytes buch/papers/multiplikation/code/meas_4096.pdf | Bin 0 -> 12952 bytes buch/papers/multiplikation/code/meas_4096.txt | 0 buch/papers/multiplikation/images/c_meas_4096.pdf | Bin 15865 -> 17400 bytes buch/papers/multiplikation/loesungsmethoden.tex | 73 +++++++++++++++++++++- 6 files changed, 101 insertions(+), 25 deletions(-) create mode 100644 buch/papers/multiplikation/code/meas_4096.pdf create mode 100644 buch/papers/multiplikation/code/meas_4096.txt (limited to 'buch') diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py index ee6f598..47bd6ab 100644 --- a/buch/papers/multiplikation/code/MM.py +++ b/buch/papers/multiplikation/code/MM.py @@ -132,6 +132,10 @@ def winograd2(A, B): return C def test_perfomance(n): + + import mkl + mkl.set_num_threads(1) + t_mm = [] t_mm_dc = [] t_mm_strassen = [] @@ -144,21 +148,21 @@ def test_perfomance(n): # A = np.random.randint(-100, 100,(i, i)) # B = np.random.randint(-100, 100,(i, i)) - start = time.time() - C3 = strassen(A, B) - t_mm_strassen.append(time.time() - start) + # start = time.time() + # C3 = strassen(A, B) + # t_mm_strassen.append(time.time() - start) - start = time.time() - C1 = MM(A, B) - t_mm.append(time.time() - start) + # start = time.time() + # C1 = MM(A, B) + # t_mm.append(time.time() - start) - start = time.time() - C2 = MM_dc(A, B) - t_mm_dc.append(time.time() - start) + # start = time.time() + # C2 = MM_dc(A, B) + # t_mm_dc.append(time.time() - start) - start = time.time() - C4 = winograd2(A, B) - t_wino.append(time.time() - start) + # start = time.time() + # C4 = winograd2(A, B) + # t_wino.append(time.time() - start) start = time.time() C = A@B @@ -169,10 +173,10 @@ def test_perfomance(n): plt.rc('axes', labelsize=23) plt.rc('xtick', labelsize=23) plt.rc('ytick', labelsize=23) - plt.plot(n, t_mm, label='Standard', lw=5) - plt.plot(n, t_mm_dc, label='Divide and conquer', lw=5) - plt.plot(n, t_mm_strassen, label='Strassen', lw=5) - plt.plot(n, t_wino, label='Winograd', lw=5) + # plt.plot(n, t_mm, label='Standard', lw=5) + # plt.plot(n, t_mm_dc, label='Divide and conquer', lw=5) + # plt.plot(n, t_mm_strassen, label='Strassen', lw=5) + # plt.plot(n, t_wino, label='Winograd', lw=5) plt.plot(n, t_np, label='NumPy A@B', lw=5) # plt.xscale('log', base=2) plt.legend() @@ -182,10 +186,10 @@ def test_perfomance(n): plt.tight_layout() # plt.yscale('log') plt.legend(fontsize=19) - plt.savefig('meas_' + str(max(n))+ '.pdf') - arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np]) - np.savetxt('meas_' + str(max(n))+ '.txt',arr) - return arr + # plt.savefig('meas_' + str(max(n))+ '.pdf') + # arr = np.array([n, t_mm, t_mm_dc, t_mm_strassen, t_wino, t_np]) + # np.savetxt('meas_' + str(max(n))+ '.txt',arr) + return t_np def plot(num): @@ -213,6 +217,7 @@ def plot(num): return arr def plot_c_res(ave, num): + MM = np.loadtxt("meas/MM.txt", delimiter=',') winograd = np.loadtxt("meas/winograd.txt", delimiter=',') blas = np.loadtxt("meas/blas.txt", delimiter=',') @@ -277,11 +282,11 @@ def plot_c_res(ave, num): # test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if __name__ == '__main__': - plot_c_res(1, 4096) + # plot_c_res(1, 4096) - # plot(1024) - # n = np.logspace(1,10,10,base=2,dtype=(np.int)) + # arr = plot(1024) + n = np.logspace(1,12,12,base=2,dtype=(np.int)) # n = np.arange(1,50,2) # A = np.random.randint(-10, 6, (5,3)) # B = np.random.randint(-10, 6, (3,5)) @@ -292,7 +297,7 @@ if __name__ == '__main__': # print(C_test) # print(np.equal(C, C_test)) - # t_np = test_perfomance(n) + t_np = test_perfomance(n) # C = strassen(A, B) # C_test = A@B diff --git a/buch/papers/multiplikation/code/meas_1024.pdf b/buch/papers/multiplikation/code/meas_1024.pdf index 70c7ec1..3312420 100644 Binary files a/buch/papers/multiplikation/code/meas_1024.pdf and b/buch/papers/multiplikation/code/meas_1024.pdf differ diff --git a/buch/papers/multiplikation/code/meas_4096.pdf b/buch/papers/multiplikation/code/meas_4096.pdf new file mode 100644 index 0000000..e889d17 Binary files /dev/null and b/buch/papers/multiplikation/code/meas_4096.pdf differ diff --git a/buch/papers/multiplikation/code/meas_4096.txt b/buch/papers/multiplikation/code/meas_4096.txt new file mode 100644 index 0000000..e69de29 diff --git a/buch/papers/multiplikation/images/c_meas_4096.pdf b/buch/papers/multiplikation/images/c_meas_4096.pdf index 547d794..304015a 100644 Binary files a/buch/papers/multiplikation/images/c_meas_4096.pdf and b/buch/papers/multiplikation/images/c_meas_4096.pdf differ diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 8a95dd5..780cbf3 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -358,10 +358,81 @@ Folgende Algorithmen wurden jweiles in \texttt{C} und \texttt{Python} implementi \item \textit{Devide and Conquer} Matrizenmultiplikation \item Strassen's Matrizenmultiplikation \item Winograd's Matrizenmultiplikation - \item \texttt{CBLAS} Matrizenmultiplikation in \texttt{C} + \item \texttt{BLAS} Matrizenmultiplikation in \texttt{C} \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python} \end{itemize} +Der Code kann im dazugeh\"orgien \textit{GitHub} Repository gefunden werden. + +\begin{table} + \begin{center} + \begin{tabular}{l l l l l l} + \hline + \hline + \textbf{n} & \textbf{MM (\textit{s})} & \textbf{MM DC (\textit{s})} & \textbf{Strassen (\textit{s})} & \textbf{Winograd (\textit{s})} & \textbf{BLAS (\textit{s})} \\ + \hline + \multicolumn{6}{c}{} \\ + \textbf{32} & 0.000081 &0.000594 & 0.00047& 0.00010 & 0.000022 \\ + \textbf{64} & 0.00065 & 0.0042& 0.0033& 0.00065& 0.00017 \\ + \textbf{128} & 0.0055 & 0.036& 0.024& 0.0052 & 0.0012 \\ + \textbf{256} & 0.054 & 0.32 & 0.17 & 0.057& 0.010 \\ + \textbf{512} & 0.48 & 2.61 & 1.20 & 0.51 & 0.074\\ + \textbf{1024} & 4.16 & 19.92& 8.45 & 4.53 & 0.704 \\ + \textbf{2048} & 125.90 & 159.33& 59.26 & 130.62 & 6.84 \\ + \textbf{4096} & 1111.31 & 1147.10& 414.64 & 1179.26 & 55.84\\ + \multicolumn{6}{c}{} \\ + \hline + \hline + \end{tabular} + \end{center} + \caption{Messresultate \texttt{C}} + \label{multiplikation:tab:messung_C} + \end{table} + + + + \begin{table} + \begin{center} + \begin{tabular}{l l l l l l} + \hline + \hline + \textbf{n} & \textbf{MM (\textit{s})} & \textbf{MM DC (\textit{s})} & \textbf{Strassen (\textit{s})} & \textbf{Winograd (\textit{s})} & \textbf{\texttt{NumPy}(\textit{s})} \\ + \hline + \multicolumn{6}{c}{} \\ + \textbf{32} & 0.0240 &0.0271 & 0.04852& 0.01871 & 4.26e-05 \\ + \textbf{64} & 0.186 & 0.265& 0.2204& 0.1530& 0.000118 \\ + \textbf{128} & 1.563 & 1.777& 1.447& 1.1947 & 0.000244 \\ + \textbf{256} & 11.006 & 13.27 & 9.938 & 8.298& 0.000695 \\ + \textbf{512} & 85.476 & 105.397 & 63.961 & 68.36 & 0.00221\\ + \textbf{1024} & 750.757 & 847.321& 461.494 & 537.374 & 0.0188 \\ + \textbf{4096} & - & - & - & - & 1.633 \\ + \multicolumn{6}{c}{} \\ + \hline + \hline + \end{tabular} + \end{center} + \caption{Messresultate \texttt{Python}} + \label{multiplikation:tab:messung_Python} + \end{table} + + \begin{table} + \begin{center} + \begin{tabular}{c c c c} + \hline + \hline + \textbf{CPU} & \textbf{OS} & \textbf{GPU } & \textbf{Memory } \\ + \hline + \multicolumn{4}{c}{} \\ + Intel® Core™ i7-4770K CPU & Ubuntu 20.04.2 LTS & Radeon RX 570 & 32 GB 1600 MHz \\ + @ 3.50GHz × 8 & 64-bit & & \\ + \multicolumn{4}{c}{} \\ + \hline + \hline + \end{tabular} + \end{center} + \caption{Messsystem} + \label{multiplikation:tab:pc_config} + \end{table} \begin{figure} \center -- cgit v1.2.1 From c059993bcc52aef36aee3a9c5d0b43777db9b061 Mon Sep 17 00:00:00 2001 From: JODBaer Date: Wed, 4 Aug 2021 10:10:17 +0200 Subject: dtf ausgeschrieben --- buch/papers/reedsolomon/dtf.tex | 153 +++++++++++++++++++++++++--------------- 1 file changed, 95 insertions(+), 58 deletions(-) (limited to 'buch') diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex index 3e16d81..362f4eb 100644 --- a/buch/papers/reedsolomon/dtf.tex +++ b/buch/papers/reedsolomon/dtf.tex @@ -1,85 +1,122 @@ % % dtf.tex -- Idee mit DFT % -\section{Übertragung mit Hilfe der Diskrten Fourientransformation +\section{Übertragung mit Hilfe der Diskrten Fourier-Transformation \label{reedsolomon:section:dtf}} \rhead{Umwandlung mit DTF} -Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourietransformation. -Dies wird weder eine Erklärung der Forientransorfmation, noch ein genauer gebrauch für den Reed-Solomon-Code. -Dieser Abschnitt zeigt nur wie die Fourietransformation auf Fehler reagiert. -Das ganze zeigen wir mit einem Beispiel einer Übertragung von Zahlen mit Hilfe der Fourietransformation. +Die Grundidee eines fehlerkorrigierenden Code ist, dass Informationen eines Datenpunkt, +durch die Codierung, auf viele übertragene Werte verteilt werden. +Die Decodierung ist in der Lage, den ursprünglichen Datenwert zu rekonstruieren, +sogar wenn einzelne wenige übertragene Werte beschädigt worden sind. +\par +Die Fourier-Transformation transformiert einen einzelnen Wert, +eine Dirac-Funktion, auf ein Spektrum, welches sich über die ganze Frequenzachse erstreckt. +Aus der Filtertheorie ist bekannt, dass der ursprüngliche Impuls mehr oder weniger rekonstruierbar ist. +Forausgestzt, es gehen nicht zu viele Frequenzen bei der Übertragung verloren. +\par +Es liegt daher nahe zu versuchen, die Fourier-Transformation +für Codierung und Decodierung zu verwenden. -\subsection{Diskrete Fourietransformation Zusamenhang -\label{reedsolomon:subsection:dtfzusamenhang}} -Mit hilfe der Fourietransformation werden die \textcolor{blue}{blauen Datenpunkte} transformiert, +\subsection{Beispiel mit Fehlerkorrektur mit Fourier-Transformation +\label{reedsolomon:subsection:sendbsp}} + +Das folgende Beispiel soll zeigen, wie Fehlerkorrektur möglich ist. +Dieses auf eine Art, die der Funktionsweise des Reed-Solomon-Codes, +der später erklärt wird, analog ist. +\par +Der Auftrag ist nun 64 Daten zu übertragen, 32 Fehler erkennen und 16 Fehler rekonstruieren. +Mit hilfe der Fourier-Transformation werden die \textcolor{blue}{blauen Datenpunkte} transformiert, zu den \textcolor{darkgreen}{grünen Übertragungspunkten}. Durch eine Rücktransformation könnnen die \textcolor{blue}{blauen Datenpunkte} wieder rekonstruiert werden. - -\subsubsection{Beispiel einer Übertragung -\label{reedsolomon:subsection:Übertragungsabfolge}} -Der Auftrag ist nun 64 Daten zu übertragen und nach 32 Fehler abzusicheren, -16 Fehler erkennen und rekonstruieren. - -Dieser Auftrag soll mittels Fouriertransformation bewerkstelligt werden. -In der Abbildung \ref{reedsolomon:subsection:Übertragungsabfolge} sieht man dies Schritt für Schritt, -und hier werden die einzelne Schritte erklärt: -\begin{enumerate}[(1)] - \item Das Signal hat 64 die Daten $k$, hier zufällige Zahlen, welche übertragen werden sollen. - Zusätzlich soll nach 16 Fehler $t$, die rekonstruierbar sind abgesichert werden. - Das macht dann insgesamt $k + 2t = - 64 +2 \cdot 16= 96$ Übertragungszahlen. - (siehe Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:Fehlerkorrekturstellen}) - Die 32 Fehlerkorrekturstellen werden als Nullzahlen Übertragen. - \item Nun werden mittels der diskreten Fourietransformation diese 96 codiert, transformiert. - Das heisst alle Informationen ist in alle Zahlenvorhanden, auch die Fehlerkorrekturstellen Nullzahlen. - \item Nun kommen drei Fehler dazu an den Übertragungsstellen 7, 21 und 75. - Die Fehler können auf den ganzen 96 Übertragungswerten liegen, wie die 75 zeigt. -Zu Beachten ist auch noch, dass der Fehler um das 20- bis 150-Fache kleiner ist.Die Fehlerskala ist rechts. - \item Dieses wird nun Empfangen, man kann keine Fehler erkennen, da diese soviel kleiner sind. - Für das Decodieren wird die Inverse Fourietransformation angewendet, und alle Fehler werden mittransformiert. - \item Nun sieht man die Fehler im decodierten Signal in den Übertragungszahlen. - Von den Übertragungsstellen 64 bis 96 erkennt man, das diese nicht mehr Null sind. - \item Diese Fehlerkorrekturstellen 64 bis 96, dies definieren wir als Syndrom. - In diesem Syndrom ist die Fehlerinformation gespeichert und muss nur noch transformiert werden. - \item Hier sieht man genau wo die Fehler stattgefunden haben. - Leider nicht mehr mit der Qualtiätt der ursprünglichen Fehler, sie sind nur noch 0.6 oder 0.4 gross. - Obwohl der Fehler um das 20Fache kleiner ist erkennt man im Locator die Fehlerstellen wieder. - \end{enumerate} - Nun haben wir mit Hilfe der Fourietransformation die 3 Fehlerstellen durch das Syndrom lokalisiert, - jetzt gilt es nur noch diese zu korrigieren und wir haben unser originales Signal wieder. +\par \begin{figure} \centering - \resizebox{1.1\textwidth}{!}{ + \resizebox{\textwidth}{!}{ \includegraphics[width=\textwidth]{papers/reedsolomon/figures/plotfft} %\input{papers/reedsolomon/tikz/plotfftraw.tex} } - \caption{Übertragungsabfolge \ref{reedsolomon:subsection:Übertragungsabfolge}} + \caption{Übertragungsabfolge \ref{reedsolomon:subsection:sendbsp}} \label{fig:sendorder} \end{figure} +In der Abbildung \ref{fig:sendorder} wird eine Übertragung Schritt für Schritt illustriert. +In der folgenden Aufzählung werden diese einzelne Schritte erklärt und erläutert: +\begin{enumerate}[(1)] + \item Das Signal ist mit 64 zufälligrn, ganzzahligen Datenwerten, zwischen 0 und 10. + Für die Rekonstruktion werden zusäzlich Datenwert benötigt, wir fügen deshalb 32 Werte hinzu. + Diese setzen wir willkürlich auf Null und nennen sie Fehlerkorrekturstellen + \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:Fehlerkorrekturstellen}. + Wir erhalten so einen erweiterten Signalvektor der länge $N =96$. + \item Mit der Fourier-Transformation wird der ganze Signalvektor codiert. + Dadurch wird jede Informationseinheit auf alle Punkte des Spektrums verteilt. + \item Wir dürfen annehmen, dass bei der Übertragung, nur einzelne übertragene Werte durch Fehler, + verändert werden. + \par + Im Beispiel sind dies die Werte an den Stellen 7, 21 und 75(\textcolor{red}{rote Kurve}), + die um einen Betrag verändert werden. + Dieser ist bis zu 150-mal kleiner, als die ursprünglichen codierte Werte. + Der Empfänger kennt daher im allgemeinen nicht, ob und wo Übertragungsfehler aufgetreten sind. + \item Ohne Übertragungsfehler kann der Signalvektor durch Inverse Fourier-Transformation vollständig + wiederhergestellt werden. + Dazu gehören auch die Nullen an den Fehlerkorrekturstellen 64 - 96. + \par + Sind Übertragungsfehler aufgetreten, werden an diesen Stellen, Werte abweichend von Null, auftreten. + Somit haben wir bereits Fehler erkannt. + \item Die Werte an den Fehlerkorrekturstellen 64 - 96, die nicht mehr Null sind, nennenwir das Syndrom. + Im Syndrom steckt nur Information über die Fehler, sie werden durch die Inverse Fourier-Transformation erzeugt. + \item Um die Fehler zu rekonstruieren, ann man versuchen, die Information im Syndrom mit Fourier-Transformation zu transformieren. + Da das Syndrom nur ein Teil der Fehlerinformation ist, liefert die Fourier-Transformation eine Approximation der Fehler. + Diese Approximation der Fehler ist genau genug, um die Fehlerstellen zu localisieren. +\end{enumerate} +Im Beispiel haben wir mit dem Syndrom nur etwa ein Drittel der Fehlerinformation, es ist daher zu erwarten, +dass die Fehlerwerte auch nur ein drittel so gross sind. +\par +Damit können die Fehler korrigiert und die Orginaldaten wiederhergestellt werden. +Der Rekonstruktionsauftrag ist damit erfolgreich ausgeführt. -Nun zur Definition der Diskrete Fourietransformation, diese ist definiert als +\subsection{Fourier-Transformation und Polynome\label{reedsolomon:subsection:ftandpolynom}} +Im Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:polynomansatz} +wurden Werte eines Polynoms zur Codierung verwendet. +Die 7 Übertragungspunkte könnten ein Polynom +\begin{equation} + \textcolor{darkgreen}{p(x)} + = + \textcolor{blue}{a_0} + \textcolor{blue}{a_1}x + \textcolor{blue}{a_2}x^2 + + \textcolor{gray}{a_3}x^3 + \textcolor{gray}{a_4}x^4 + \textcolor{gray}{a_5}x^5 + + \textcolor{gray}{a_6}x^6 +\label{reedsolomon:equationpoly} +\end{equation} +sechsten Grades bestimmen. +Durch die Wahl von $\textcolor{gray}{a_3=0}$, $\textcolor{gray}{a_4=0}$, $\textcolor{gray}{a_5=0}$, $\textcolor{gray}{a_6=0}$ +erzeugen wir die, für die Fehlerkorrektur, +nötige Redundanz, ganz analog zum Schritt (1) im Beispiel. +\par +Die Analogie geht aber noch weiter. + Schreibt man + \( w = + e^{-\frac{2\pi j}{N} k}\) + \label{reedsolomon:DFT_summand}, damit wird aus der Formel \begin{equation} \hat{c}_{k} = \frac{1}{N} \sum_{n=0}^{N-1} - {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn}. + {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn} ,\label{reedsolomon:DFT} \end{equation} - Wenn man nun + für die Diskrte-Fourier-Transformation das Polynom \begin{equation} - w = - e^{-\frac{2\pi j}{N} k} - \label{reedsolomon:DFT_summand} + q(w)= + \frac{{f}_0}{N} + \frac{{f}_1}{N} w^1 + \frac{{f}_2}{N} w^2 + \dots + \frac{{f}_{N-1}}{N} w^{N-1} + \label{reedsolomon:DFT_polynom} \end{equation} - ersetzte, und $N$ konstantbleibt, erhält man + Im Beispiel werden aber Werte des des Polynoms $q(w)$ für verschieden + \( w = e^{-\frac{2\pi j}{N} k}, k=1, \dots , k=N-1\) übermittelt. \begin{equation} - \hat{c}_{k}= - \frac{1}{N}( {f}_0 w^0 + {f}_1 w^1 + {f}_2 w^2 + \dots + {f}_{N-1} w^N) - \label{reedsolomon:DFT_polynom} + \textcolor{darkgreen}{q(w)}= + \frac{\textcolor{blue}{{f}_0}}{N} + \frac{\textcolor{blue}{{f}_1}}{N} w^1 + \frac{\textcolor{blue}{{f}_2}}{N} w^2 + \dots + + \frac{\textcolor{blue}{{f}_63}}{N} w^{63} + \frac{\textcolor{gray}{{f}_64}}{N} w^{64} + \textcolor{gray}{\dots} + \frac{\textcolor{gray}{{f}_{N-1}}}{N} w^{N-1} + \label{reedsolomon:DFT_polynom2} \end{equation} - was überaust ähnlich zu unserem Polynomidee ist. -Die Polynominterpolation und die Fourietransformation rechnen beide mit reelen Zahlen. -Wenn die Fehlerabweichung sehr sehr klein ist, erkennt man diese irgendwann nicht mehr. -Zusätzlich muss mann immer Grenzen bestimmen auf wieviel Stellen gerechnet wird und wie die Fehler erkannt werden im Locator. -Deshalb haben Mathematiker einen neuen Körper gesucht und ihn in der Endlichkeit gefunden, +Die Polynominterpolation und die Fourier-Transformation rechnen beide mit reelen Zahlen. +Wenn die Approximation nicht mehr genügend gut ist im die Fehler zu erkennen und rekonstruieren. +Deshalb haben die Mathematiker einen neuen Körper gesucht und ihn in der Endlichkeit gefunden, dies wird nun im nächsten Abschnitt genauer erklärt. -- cgit v1.2.1 From 24a24cb7f6cb0a85bc136bbdb11ad52b7d7917f0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marc=20K=C3=BChne?= Date: Wed, 4 Aug 2021 10:27:27 +0200 Subject: neue version --- buch/papers/munkres/teil1.tex | 29 ++++++++++++++++++++++------- buch/papers/munkres/teil3.tex | 4 ++-- 2 files changed, 24 insertions(+), 9 deletions(-) (limited to 'buch') diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index 363dc06..07489e3 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -35,30 +35,45 @@ In einem Zuordnungsproblem sind alle Angebots- und Bedarfsmengen gleich 1 a_{i}=b_{j}=1 \end{equation} Das Ziel ist es die Gesamtkosten zu minimieren. Mit Hilfe einer $n\times n$ Matrix $\mathbb{A}$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann der Faktor Kosten mit in die Rechnung eingebracht werden. -In der Zelle dieser Matrix sind $a_{i,j}$ die Wege dargestellt, die entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet. +In der Zelle dieser Matrix sind $a_{i,j}$ Zahlen dargestellt, welche den Weg in z.B. Kilometer beschreiben. +Sie entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet. \begin{figure} -\centering -\includegraphics[width=5cm]{papers/munkres/figures/MatrixA.png} +\[ +A += +\begin{pmatrix} +a_{11}&a_{12}&\dots &a_{1m}\\ +a_{21}&a_{22}&\dots &a_{2m}\\ +\vdots&\vdots&\ddots&\vdots\\ +a_{n1}&a_{n2}&\dots &a_{nm} +\end{pmatrix} +\] \caption{Darstellung einer Matrix $A$} -\label{munkres:Vr2} \end{figure} - +Eine Matrix, wie hier in Abbildung 21.2 ersichtlich, ist ein rechteckiges Schema, dessen Elemente üblicherweise Zahlen, aber auch andere mathematische Elemente wie Variablen oder Funktionen sein können. Sie besteht aus $n$ Zeilen und $m$ Spalten. D.h. die Elemente einer Matrix vom Typ $(n,m)$ mit Namen $A$ sind $a_{ij}$ wobei $i$ = 1,..., $m$ ist und $j$ = 1,...,$n$. $a_{ij}$ ist der Eintrag in der $i$-ten Zeile und $j$-ten Spalte der Matrix . Zum Beispiel ist a21 das Element der 2. Zeile und 1. Spalte. $i$ wird auch der Zeilenindex, $j$ der Spaltenindex genannt. \subsection{Alternative Darstellungen des Zuordnungsproblems \label{munkres:subsection:bonorum}} \begin{equation} Netzwerk \end{equation} +Ein (Fluss- oder Transport-) Netzwerk (engl. network) ist ein zusammenhängender Graph, bei dem jede Kante einen Fluss aufnehmen kann und jede Kante eine Kapazität für den Fluss hat. Die Menge des Flusses auf einer Kante kann die Kapazität der Kante nicht überschreiten. Ein Fluss muss die Einschränkung erfüllen, dass die Menge des Flusses in einen Knoten gleich der Menge des Flusses aus ihm heraus ist. Ein Fluss-Netzwerk (engl. flow network) ist ein Netzwerk, dessen Kanten zusätzlich Kosten pro Mengeneinheit des Flusses zugeordnet sind. Typischerweise will man einen Fluss durch die Kanten bestimmen, der den Einschränkungen des Netzwerks genügt und dessen Gesamtkosten minimal sind. Im Bild 21.3 dargestellt sind in den eckigen Klammern links die externen Flüsse $[1]$ für jeden Arbeiter und in den eckigen Klammern rechts eine $[-1]$ für jede Tätigkeit. Die Kosten sind entlang der Kanten als Zahlen in Klammern dargestellt. \begin{equation} Matrix \end{equation} +Im Bild 21.4 ist eine typische $4\times 4$ Matrix dargestellt. Die Zeilen A1 bis A4 betreffen z.B. vier bestehende Maschinenlager eines Unternehmers. In den Spalten B1 bis B4 sind vier neue Baustellenorte zugewiesen. Die Zahlen in der Matrix bedeuten z.B. die Distanz in Kilometer von dem jeweiligen Lager zur jeweiligen Baustelle. \begin{equation} Bitpartiter Graph \end{equation} Ein bipartiter Graph ist ein mathematisches Modell für Beziehungen -zwischen den Elementen zweier Mengen. -Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen. +zwischen den Elementen zweier Mengen. Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen. Zwischen zwei Gruppen von Objekten wird hierbei eine eindeutige Zuordnung hergestellt. +\begin{itemize} +\item 3 = Anzahl der Knoten aus Menge A. +\item 3 = Anzahl der Knoten aus Menge B. +\end{itemize} + + \begin{figure} \centering \includegraphics[width=5cm]{papers/munkres/figures/Netzwerkdarstellung} diff --git a/buch/papers/munkres/teil3.tex b/buch/papers/munkres/teil3.tex index 0d2c86e..d2e8174 100644 --- a/buch/papers/munkres/teil3.tex +++ b/buch/papers/munkres/teil3.tex @@ -45,9 +45,9 @@ Die ungarische Methode kann in einem einfachen händischen Beispiel erläutert w \begin{enumerate} \item Pro Zeile eruiert man die kleinste Zahl. Diese kleinste Zahl wird bei -allen anderen Ziffern in der jeweiligen Zeile subtrahiert. Mit dieser Subtraktion zieht man die unvermeidbaren Kosten ab. +allen anderen Ziffern in der jeweiligen Zeile subtrahiert. Mit dieser Subtraktion zieht man die unvermeidbaren Kosten ab, die man hat, um eine Baustelle zu erreichen. -\item Auch in diesem Schritt werden die unvermeidbaren Kosten abgezogen. Man zieht die kleinste Zahl in jeder Spalte von allen Zahlen in der Spalte ab. +\item Auch in diesem Schritt werden die unvermeidbaren Weg-Kosten abgezogen. Man zieht die kleinste Zahl in jeder Spalte von allen Zahlen in der Spalte ab. \item Bei den nachfolgenden Schritten bleiben dann nur noch die Kosten übrig, die man hat, wenn man eine andere Zuordnung wählt. Hierbei sollen möglichst viele Nullen markiert werden, welche freistehend sind. (Freistehend bedeutet, sowohl in der jeweiligen Zeile und Spalte nur -- cgit v1.2.1 From 4215ac353f9234914d5564f82f85045debb40d0b Mon Sep 17 00:00:00 2001 From: JODBaer Date: Wed, 4 Aug 2021 11:22:14 +0200 Subject: save changes --- buch/papers/reedsolomon/dtf.tex | 7 ++++-- buch/papers/reedsolomon/tikz/plotfft.tex | 39 ++++++++++++++++++++------------ 2 files changed, 29 insertions(+), 17 deletions(-) (limited to 'buch') diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex index 362f4eb..a975da8 100644 --- a/buch/papers/reedsolomon/dtf.tex +++ b/buch/papers/reedsolomon/dtf.tex @@ -112,11 +112,14 @@ Die Analogie geht aber noch weiter. \begin{equation} \textcolor{darkgreen}{q(w)}= \frac{\textcolor{blue}{{f}_0}}{N} + \frac{\textcolor{blue}{{f}_1}}{N} w^1 + \frac{\textcolor{blue}{{f}_2}}{N} w^2 + \dots + - \frac{\textcolor{blue}{{f}_63}}{N} w^{63} + \frac{\textcolor{gray}{{f}_64}}{N} w^{64} + \textcolor{gray}{\dots} + \frac{\textcolor{gray}{{f}_{N-1}}}{N} w^{N-1} + \frac{\textcolor{blue}{{f}_{63}}}{N} w^{63} + \frac{\textcolor{gray}{{f}_{64}}}{N} w^{64} + \textcolor{gray}{\dots} + \frac{\textcolor{gray}{{f}_{N-1}}}{N} w^{N-1} \label{reedsolomon:DFT_polynom2} \end{equation} +Das syndrom entstand durch die Wahl ${f_{64}}=0$ bis ${f}_{N-1}=0$.(graue koeffizenten) +\par Die Polynominterpolation und die Fourier-Transformation rechnen beide mit reelen Zahlen. -Wenn die Approximation nicht mehr genügend gut ist im die Fehler zu erkennen und rekonstruieren. +Wenn die Approximation nicht mehr genügend gut ist um die Fehler zu erkennen und rekonstruieren, +dann müssen wir von den Reelen-Zahlen weg und zum endlichen Körpern, oder auch Galios-Körper genannt. Deshalb haben die Mathematiker einen neuen Körper gesucht und ihn in der Endlichkeit gefunden, dies wird nun im nächsten Abschnitt genauer erklärt. diff --git a/buch/papers/reedsolomon/tikz/plotfft.tex b/buch/papers/reedsolomon/tikz/plotfft.tex index 3b0c421..77c4dc3 100644 --- a/buch/papers/reedsolomon/tikz/plotfft.tex +++ b/buch/papers/reedsolomon/tikz/plotfft.tex @@ -8,7 +8,7 @@ \usepackage{pgfplotstable} \usepackage{csvsimple} \usepackage{filecontents} -\definecolor{darkgreen}{RGB}{0,0.6,0} + \begin{document} @@ -29,12 +29,13 @@ \node(codiert) [] { \begin{tikzpicture}[] - \begin{axis}[ title = {\Large {Codiert \space + \space Fehler}}, - xtick={0,40,60,100}, axis y line*=left] - \addplot[darkgreen] table[col sep=comma] {tikz/codiert.txt}; + % Beschriftung Rechts + \begin{axis}[axis x line= none, axis y line*=right,ytick={0}] + \addplot[color=white] {0}; \end{axis} - \begin{axis}[xtick={7,21,75}, axis y line*=right] - \addplot[red] table[col sep=comma] {tikz/fehler.txt}; + + \begin{axis}[ title = {\Large {Codiert}}, axis y line*=left] + \addplot[color=black!60!green] table[col sep=comma] {tikz/codiert.txt}; \end{axis} \end{tikzpicture}}; \\ @@ -47,8 +48,12 @@ \node(empfangen) [] { \begin{tikzpicture} - \begin{axis}[title = {\Large {Empfangen}}] - \addplot[darkgreen] table[col sep=comma] {tikz/empfangen.txt}; + \begin{axis}[title = {\Large {Empfangen \space + \space Fehler}}, + xtick={0,40,60,100}, axis y line*=left] + \addplot[color=black!60!green] table[col sep=comma] {tikz/empfangen.txt}; + \end{axis} + \begin{axis}[xtick={7,21,75}, axis y line*=right] + \addplot[red] table[col sep=comma] {tikz/fehler.txt}; \end{axis} \end{tikzpicture}};\\ @@ -61,7 +66,12 @@ \node(locator) [] { \begin{tikzpicture} - \begin{axis}[title = {\Large {Locator}}] + % Beschriftung Rechts + \begin{axis}[axis x line= none, axis y line*=right, ytick={0.3}]; + \addplot[color=black!60] {0.3}; + \end{axis} + + \begin{axis}[title = {\Large {Locator}},axis y line*=left] \addplot[gray] table[col sep=comma] {tikz/locator.txt}; \end{axis} \end{tikzpicture}};\\ @@ -75,7 +85,6 @@ \node(FFT) [scale=0.9, above of=IFFT] {FFT}; \draw[-stealth](FFT.north west)--(FFT.north east); - \draw[thick, ->,] (codiert)++(-1,0) +(0.05,0.5) -- +(-0.1,-0.1) -- +(0.1,0.1) -- +(0,-0.5); %Arrows \draw[thick, ->] (signal.east) to (codiert.west); \draw[thick, ->] (codiert.south) to (empfangen.north); @@ -86,10 +95,10 @@ %item \node[circle, draw, fill =lightgray] at (signal.north west) {1}; - \node[circle, draw, fill =lightgray] at (codiert.north west) {2+3}; - \node[circle, draw, fill =lightgray] at (empfangen.north west) {4}; - \node[circle, draw, fill =lightgray] at (decodiert.north west) {5}; - \node[circle, draw, fill =lightgray] at (syndrom.north west) {6}; - \node[circle, draw, fill =lightgray] at (locator.north west) {7}; + \node[circle, draw, fill =lightgray] at (codiert.north west) {2}; + \node[circle, draw, fill =lightgray] at (empfangen.north west) {3}; + \node[circle, draw, fill =lightgray] at (decodiert.north west) {4}; + \node[circle, draw, fill =lightgray] at (syndrom.north west) {5}; + \node[circle, draw, fill =lightgray] at (locator.north west) {6}; \end{tikzpicture} \end{document} \ No newline at end of file -- cgit v1.2.1 From 960fdcf227a9de8bf5919c56b88e05a0abd0ec0a Mon Sep 17 00:00:00 2001 From: Pascal Schmid <81317360+paschost@users.noreply.github.com> Date: Wed, 4 Aug 2021 13:51:52 +0200 Subject: Klammern vereinheitlicht --- buch/papers/verkehr/section1.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex index 6ac86ad..075649e 100644 --- a/buch/papers/verkehr/section1.tex +++ b/buch/papers/verkehr/section1.tex @@ -54,13 +54,13 @@ Der Floyd-Warshall-Algorithmus sucht kürzeste Wege innerhalb eines Graphen. Er \subsection{Anwendung Floyd-Warshall-Algorithmus} %THEORIE... -In einem ersten Schritt wird eine Gewichtsmatrix $W$ mit den Matrixeinträgen $W[i, j]$ erstellt. +In einem ersten Schritt wird eine Gewichtsmatrix $W$ mit den Matrixeinträgen $W(i, j)$ erstellt. Der Algorithmus berechnet danach in einer Hauptschleife alle Knoten $k$ von 1 bis $n$. Dabei versucht er in jeder Iteration alle Wege von $i$ nach $j$ durch die Wege $(i, k)$ und $(k, j)$ zu verbessern. Falls dieser mögliche Umweg zu einer Verbesserung führt, wird der entsprechende Eintrag aktualisiert. Die aktuelle Gewichtung der Pfade wird mit -\begin{equation}d[i, j]=\min[d[i,j], d[i,k] + d[k,i]]\end{equation} +\begin{equation}d(i, j)=\min\{d(i,j), d(i,k) + d(k,i)\}\end{equation} ermittelt. -- cgit v1.2.1 From 420405209148acf4bf074369f516d5e73c2b13b1 Mon Sep 17 00:00:00 2001 From: Pascal Schmid <81317360+paschost@users.noreply.github.com> Date: Wed, 4 Aug 2021 13:56:09 +0200 Subject: =?UTF-8?q?Zeilenumbr=C3=BCche?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/verkehr/section1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex index 6ac86ad..813b28a 100644 --- a/buch/papers/verkehr/section1.tex +++ b/buch/papers/verkehr/section1.tex @@ -68,7 +68,7 @@ ermittelt. \section{PageRank-Algorithmus} Der PageRank-Algorithmus wurde von den Gründern von Google, Larry Page und Sergey Brin im Jahr 1996 entwickelt und zum Patent angemeldet. Zwei Jahre später gründeten sie ihr Unternehmen Google Inc. Beim PageRank-Algorithmus handelt es sich nicht um einen Suchalgorithmus, stattdessen werden Knoten aufgrund der Vernetzung des vorliegenden Graphen bewertet. -Verwendet wird er beispielsweise um die Verlinkungsstruktur verschiedener Websites des World Wide Web anhand ihrer Struktur zu bewerten und relevante Suchergebnisse zu ermittteln. Der PageRank wird umso höher, je mehr hochwertige Links auf eine Webseite verweisen und je höher die Gewichtung einer Webseite ist, desto grösser ist der Effekt.\\ +Verwendet wird er beispielsweise um die Verlinkungsstruktur verschiedener Websites des World Wide Web anhand ihrer Struktur zu bewerten und relevante Suchergebnisse zu ermittteln. Der PageRank wird umso höher, je mehr hochwertige Links auf eine Webseite verweisen und je höher die Gewichtung einer Webseite ist, desto grösser ist der Effekt. Dabei handelt es sich um einen iterativen Prozess. Ausgegangen wird von der Adjazenz-Matrix $A$, für welche folgendes gilt: \begin{equation} -- cgit v1.2.1 From 062f9b9a2984a3e8cec05adaf5cc9cf83da131e0 Mon Sep 17 00:00:00 2001 From: Pascal Schmid <81317360+paschost@users.noreply.github.com> Date: Wed, 4 Aug 2021 13:59:52 +0200 Subject: =?UTF-8?q?Formel=20mit=20"cases"=20einger=C3=BCckt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/verkehr/section1.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch') diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex index 6ac86ad..4991950 100644 --- a/buch/papers/verkehr/section1.tex +++ b/buch/papers/verkehr/section1.tex @@ -72,10 +72,10 @@ Verwendet wird er beispielsweise um die Verlinkungsstruktur verschiedener Websit Dabei handelt es sich um einen iterativen Prozess. Ausgegangen wird von der Adjazenz-Matrix $A$, für welche folgendes gilt: \begin{equation} -A_{i,j}=\left\{ \begin{matrix} -1 & \text{Kante von $j$ nach $i$} \\ 0 & \text{keine Kante von $j$ nach $i$} -\end{matrix} - \right. +A_{i,j} = \begin{cases} +1&\quad\text{Kante von $j$ nach $i$}\\ +0&\quad\text{keine Kante von $j$ nach $i$} +\end{cases} \label{verkehr:Adja} \end{equation} -- cgit v1.2.1 From 87779c4a725f04e31ba27e88dbfd8f639d51bed8 Mon Sep 17 00:00:00 2001 From: Pascal Schmid <81317360+paschost@users.noreply.github.com> Date: Wed, 4 Aug 2021 14:24:55 +0200 Subject: Anpassung Formel - Korrektur Formel-Syntax - Integration in Satz --- buch/papers/verkehr/section1.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch') diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex index 6ac86ad..6c5817d 100644 --- a/buch/papers/verkehr/section1.tex +++ b/buch/papers/verkehr/section1.tex @@ -86,8 +86,8 @@ Grundsätzlich setzt sich der PageRank Algorithmus mit der Fragestellung auseina Für ungerichtete Graphen mit $n$ Knoten gilt \begin{equation}A_{i,j}=A_{j,i}\end{equation} und weiter \begin{equation}A_{i,i}=0\quad\forall i\in \left\{1\dots n\right\}\end{equation} Beim PageRank-Algorithmus wird eine abgewandelte Form der Adjazenz-Matrix verwendet. -Dabei werden die Matrix-Einträge spaltenweise durch die jeweilige Spaltensumme geteilt: -\( P_{i,j}=\frac{A_{i,j}}{\sum_{i=1}^{n}A_{i,j}} \) +Dabei werden die Matrix-Einträge spaltenweise durch die jeweilige Spaltensumme geteilt, so entsteht die Link-Matrix +\[ P_{i,j}=\frac{A_{i,j}}{\sum_{k=1}^{n}A_{k,j}} \] Anschliessend multipliziert man diese Matrix $P$ mit einem Spaltenvektor $\Vec{r_0}$ mit $n$ Einträgen, für welchen gilt: \( \Vec{r_0}(i) = \frac{1}{n} \quad\forall i\in \left\{1\dots n\right\} \) Dieser Vektor stellt ein neutrales Ranking dar. Alle Knoten werden gleich gewichtet. -- cgit v1.2.1 From 1663dd03e22b2ee65a8050f5eb5433c7580028b5 Mon Sep 17 00:00:00 2001 From: Nunigan Date: Wed, 4 Aug 2021 16:14:15 +0200 Subject: update multiplikation --- buch/papers/multiplikation/einlteung.tex | 2 +- buch/papers/multiplikation/loesungsmethoden.tex | 50 +++++++++++++------------ buch/papers/multiplikation/problemstellung.tex | 11 +++--- 3 files changed, 34 insertions(+), 29 deletions(-) (limited to 'buch') diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex index ea71d91..2d0583d 100755 --- a/buch/papers/multiplikation/einlteung.tex +++ b/buch/papers/multiplikation/einlteung.tex @@ -7,7 +7,7 @@ \rhead{Einleitung} Die Multiplikation zweier Matrizen ist eine wichtige Operation die in verschiedensten Teilen der Mathematik Anwendung findet. -Die Beschreibung der Multiplikation aus der Definition 2.10 (\textcolor{blue} {Kein Hyperlink zu einer Definition?)}: +Die Beschreibung der Multiplikation aus der Definition 2.10: Eine $m\times n$-Matrix $\mathbf{A}\in M_{m\times n}(\Bbbk)$ und eine $n\times p$-Matrix $\mathbf{B}\in M_{n\times l}(\Bbbk)$ haben als Produkt diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 780cbf3..6f1486c 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -7,7 +7,7 @@ \section{Algorithmen} \rhead{Algorithmen} -In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Libraries zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt. +In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Bibliotheken zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt. \subsection{Standard Algorithmus} @@ -15,7 +15,7 @@ Die Standardmethode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen w Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert. Die \texttt{for i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{for j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{for k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten. -\begin{algorithm}\caption{Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Matrix Multiplication} \label{multiplikation:alg:smm} \setlength{\lineskip}{7pt} \begin{algorithmic}[1] @@ -76,7 +76,7 @@ ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, f\"ur die Multiplik Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz, Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen. Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ durchgef\"uhrt. -\begin{algorithm}\caption{Divide and Conquer Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Divide and Conquer Matrix Multiplication} \setlength{\lineskip}{7pt} \label{multiplikation:alg:devide_mm} \begin{algorithmic} @@ -106,7 +106,7 @@ Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ \end{algorithm} Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} \cite{multiplikation:master_theorem} berechnet werden. Das \textit{Master Theorem} bestimmt die Zeitkomplexit\"at von rekursiven Algortihmen. -Ohne auf dieses vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit. +Ohne auf dieses vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe $\mathcal{T} $ der Funktion die Laufzeit. In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt \begin{equation} \label{multiplikation:eq:laufzeitdac} \mathcal{T}(n) = 8 \cdot \mathcal{T}\left (\frac{n}{2}\right ) + n^2 = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}\left (n^{3} \right ) @@ -141,7 +141,7 @@ aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Bl\"ocke \end{split} \end{equation} der Matrix $\mathbf{C}$ gebraucht. -\begin{algorithm}\caption{Strassen Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Strassen Matrix Multiplication} \label{multiplikation:alg:strassen} \setlength{\lineskip}{7pt} \begin{algorithmic} @@ -205,6 +205,7 @@ Dies f\"uhrt zu einer Laufzeit von 7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 = \mathcal{O}\left(n^{\log_2 7}\right ) = \mathcal{O}\left(n^{2.8074} \right ) \end{equation} und ist somit schneller als die Standardmethode. +Man beachte, dass die Anzahl von Additionen und Subtraktionen gr\"osser und die Anzahl der Multiplikationen kleiner wurde. \subsection{Winograd's Algorithmus} @@ -244,7 +245,7 @@ Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\fr Was im Vergleich zu den $mpn$ Multiplikation der Standardmethode nur die H\"alfte ist. Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen werden. -\begin{algorithm}\caption{Winograd Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Winograd Matrix Multiplication} \setlength{\lineskip}{7pt} \label{multiplikation:alg:winograd} \begin{algorithmic} @@ -297,7 +298,7 @@ Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen \subsection{Basic Linear Algebra Subprograms (BLAS)} -die gebr\"uchlichen Methode f\"ur die Anwendung einer optimierten Matrizenmultiplikation ist die Verwendung einer Subrutine aus den \textit{Basic Linear Algebra Subprograms (BLAS)} \cite{multiplikation:BLAS}. +die gebräuchliche Methode f\"ur die Anwendung einer optimierten Matrizenmultiplikation ist die Verwendung einer Subroutine aus den \textit{Basic Linear Algebra Subprograms (BLAS)} \cite{multiplikation:BLAS}. Die meisten Numerischen Bibliotheken von High-Level Skriptsprachen wie \texttt{Matlab}, \texttt{NumPy (Python)}, \texttt{GNU Octave} oder \texttt{Mathematica} ben\"utzen eine Form von \textit{BLAS}. \textit{BLAS} sind dabei in drei unterschiedliche Levels aufgeteilt. @@ -320,12 +321,12 @@ Die meisten Numerischen Bibliotheken von High-Level Skriptsprachen wie \texttt{M \end{itemize} \end{itemize} -Die \textit{BLAS} sind auf die modernen Computer Prozessoren optimiert und k\"onnen dank einer ausgek\"ugelter Verwedung der Speicher Architektur zur erheblichen Leistungoprimierung f\"uhren. +Die \textit{BLAS} sind auf die modernen Computer Prozessoren optimiert und k\"onnen dank einer ausgeklügelter Verwendung der Speicherarchitektur zu erheblichen Leistungsoptimierungen f\"uhren. \subsubsection{General Matrix Multiplication (GEMM)} -Die \textit{Double-GEMM} ist in \cite{multiplikation:DGEMM} definiert als: +Die \textit{Double-GEMM} \cite{multiplikation:DGEMM} ist definiert als: \textit{DGEMM performs one of the matrix-matrix operations} $$ @@ -339,20 +340,19 @@ $$ an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. } -Die Implementaion von $\alpha\mathbf{A}\mathbf{B} + \beta \mathbf{C} = \mathbf{C}$, wobei $\alpha = 1.0$ und $\beta = 0.0$ in der \texttt{C}-Version von \textit{BLAS}, ist als -\begin{lstlisting}[style=multiplikationC] -cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, - m, n, k, 1, A, m , B, k, 0, C, m); -\end{lstlisting} -definiert. +%Die Implementation von $\alpha\mathbf{A}\mathbf{B} + \beta \mathbf{C} = \mathbf{C}$, wobei $\alpha = 1.0$ und $\beta = 0.0$ in der \texttt{C}-Version von \textit{BLAS}, ist als +%\begin{lstlisting}[style=multiplikationC] +%cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, +% m, n, k, 1, A, m , B, k, 0, C, m); +%\end{lstlisting} +%definiert. -\section{Implementation} +\section{Implementation}\label{multiplikation:section:Implementation} \rhead{Implementation} -\textcolor{red}{TODO: messresultate} -Folgende Algorithmen wurden jweiles in \texttt{C} und \texttt{Python} implementiert. +Folgende Algorithmen wurden jeweils in \texttt{C} und \texttt{Python} implementiert. \begin{itemize} \item Standard Matrizenmultiplikation \item \textit{Devide and Conquer} Matrizenmultiplikation @@ -362,7 +362,11 @@ Folgende Algorithmen wurden jweiles in \texttt{C} und \texttt{Python} implementi \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python} \end{itemize} -Der Code kann im dazugeh\"orgien \textit{GitHub} Repository gefunden werden. +Der Code kann im dazugehörigen \textit{GitHub} Repository gefunden werden. +Anzumerken ist, dass die Matrizenmultiplikation von \texttt{NumPy} als einzige Implementation Multiprocessing und Multithreading verwendet, dies f\"uhrt zu den tiefen Messzeiten. +In Abbildung \ref{multiplikation:fig:python} und Abbildung \ref{multiplikation:fig:c_meas_4096} sind de Messresultate grafisch dargestellt. Die selben Messresultate sind tabellarisch in Tabelle \ref{multiplikation:tab:messung_Python} und Tabelle \ref{multiplikation:tab:messung_C} ersichtlich. +Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{multiplikation:tab:pc_config} aufgelistet. + \begin{table} \begin{center} @@ -446,16 +450,16 @@ Der Code kann im dazugeh\"orgien \textit{GitHub} Repository gefunden werden. \center \includegraphics[width=\linewidth]{papers/multiplikation/images/meas_1024} \caption{Messresultate mit der Programmiersprache \texttt{Python}} - \label{multiplikation:fig:c_meas_4096} + \label{multiplikation:fig:python} \end{figure} \section{Fazit} \rhead{Fazit} -Wie man in \textcolor{red}{hyperlink Messresultate} gesehen haben, sind die geziegten Algorithmen, trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen. +Wie man im Abschnitt\ref{multiplikation:section:Implementation} sehen kann, sind die gezeigten Algorithmen, trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen. Einen optimierten Speicherzugriff hat einen weitaus grösseren Einfluss auf die Laufzeit als die Zeitkomplexität des Algorithmus. Doch haben Entdeckungen wie jene von Strassen und Winograd ihre Daseinsberechtigung. Nicht auf jeden Computersystemen können die \textit{BLAS} angewandt werden. -Denke man an sehr keleine Mikrocontroller ohne Floatingpoint Recheneinhieten oder auch an \textit{Field Programmable Gate Arrays (FPGA's)}. -Sobland sehr grosse Matrizen multipliziert werden müssen und eine Addition in weniger Taktzyklen als eine Multiplikation durcheführt werden kann, können die gezeigten Algorithmen von Vorteil sein. +Denke man an sehr kleine Mikrocontroller ohne Floatingpoint Recheneinheiten oder auch an \textit{Field Programmable Gate Arrays (FPGA's)}. +Sobald sehr grosse Matrizen multipliziert werden müssen und eine Addition in weniger Taktzyklen als eine Multiplikation durchführt werden kann, können die gezeigten Algorithmen von Vorteil sein. diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex index 2688f27..cd5aaaa 100755 --- a/buch/papers/multiplikation/problemstellung.tex +++ b/buch/papers/multiplikation/problemstellung.tex @@ -34,12 +34,12 @@ In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufze \subsubsection{Beispiel Algorithmen} -Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden kann. +Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden k\"onnen. \paragraph{Beschr\"ankter Algorithmus} Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen einfluss auf die Laufzeit. -\begin{algorithm}\caption{} +\begin{algorithm}\footnotesize\caption{} \label{multiplikation:alg:b1} \setlength{\lineskip}{7pt} \begin{algorithmic} @@ -51,7 +51,8 @@ Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmu Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$. -\begin{algorithm}\caption{} + +\begin{algorithm}\footnotesize\caption{} \label{multiplikation:alg:b2} \setlength{\lineskip}{7pt} \begin{algorithmic} @@ -68,7 +69,7 @@ Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\ Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares Verhalten. Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$. -\begin{algorithm}\caption{} +\begin{algorithm}\footnotesize\caption{} \setlength{\lineskip}{7pt} \begin{algorithmic} \label{multiplikation:alg:l1} @@ -90,7 +91,7 @@ Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalte Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchglaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. -\begin{algorithm}[H]\caption{} +\begin{algorithm}[H]\footnotesize\caption{} \label{multiplikation:alg:q1} \setlength{\lineskip}{7pt} \begin{algorithmic} -- cgit v1.2.1 From b705856321c6bc362027ac7a5770fb7b6a3c56c3 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 4 Aug 2021 17:42:36 +0200 Subject: Fix last two sentences --- buch/papers/punktgruppen/intro.tex | 3 +-- buch/papers/punktgruppen/piezo.tex | 4 +--- 2 files changed, 2 insertions(+), 5 deletions(-) (limited to 'buch') diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index e369cf5..0a0cc86 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -6,8 +6,7 @@ In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. Zu Beginn werden wir zeigen, was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. Mit etwas kniffligen geometrischen Überlegungen kann man zeigen, was in der Welt der Kristallographie alles möglich ist oder nicht. -% TODO: die moglichen Kristallgitter in Grenzen etc ist (apparently) not okay -Einschränkungen in Kristallsymmetrien sind durchaus willkommen, da dank ihnen sich die möglichen Kristallgitter in Grenzen halten und sich kategorisieren lassen. +Diese erlauben alle möglichen Kristalle nach ihren Symmetrien in erstaunlich wenige Klassen zu kategorisieren. Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. Piezoelektrizität beschreibt einen Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index ff9f1e2..334e4e7 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -1,5 +1,4 @@ \section{Piezoelektrizität} -%% TODO: improve this paragraph Die Piezoelektrizität ist die spannende Eigenschaft, dass gewisse Kristalle eine elektrische Spannung erzeugen, wenn mechanischer Druck auf sie ausgeübt wird. \begin{figure} @@ -71,8 +70,7 @@ Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so Piezoelektrizität hat durchaus Nutzen im Alltag. Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, sondern ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer konfigurierten Spannung. -%% TODO: replace with (?): Drückt der Nutzende stärker -Wird vom Nutzenden fester zugedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. +Drückt der Nutzende stärker zu, entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. -- cgit v1.2.1 From 100898f1bdf1f00e3f8ba8ddb68703bcbed1e77e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 4 Aug 2021 20:24:32 +0200 Subject: add new image stuff --- buch/papers/clifford/3d/Makefile | 13 +++ buch/papers/clifford/3d/common.inc | 206 +++++++++++++++++++++++++++++++++++++ buch/papers/clifford/3d/dq.pov | 25 +++++ 3 files changed, 244 insertions(+) create mode 100644 buch/papers/clifford/3d/Makefile create mode 100644 buch/papers/clifford/3d/common.inc create mode 100644 buch/papers/clifford/3d/dq.pov (limited to 'buch') diff --git a/buch/papers/clifford/3d/Makefile b/buch/papers/clifford/3d/Makefile new file mode 100644 index 0000000..e6a9be3 --- /dev/null +++ b/buch/papers/clifford/3d/Makefile @@ -0,0 +1,13 @@ +# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +all: dq.jpg + +dq.png: dq.pov common.inc + povray +A0.1 +W1920 +H1080 -Odq.png dq.pov + +dq.jpg: dq.png + convert dq.png -density 300 -units PixelsPerInch dq.jpg + diff --git a/buch/papers/clifford/3d/common.inc b/buch/papers/clifford/3d/common.inc new file mode 100644 index 0000000..4bc2e7d --- /dev/null +++ b/buch/papers/clifford/3d/common.inc @@ -0,0 +1,206 @@ +// +// common.inc +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#version 3.7; +#include "colors.inc" + +global_settings { + assumed_gamma 1 +} + +#declare imagescale = 0.14; +#declare r = 0.04; + +camera { + location <40, 10, 15> + look_at <0, 0, 0> + right 16/9 * x * imagescale + up y * imagescale +} + +light_source { + <40, 20, 20> color White + area_light <1,0,0> <0,0,1>, 10, 10 + adaptive 1 + jitter +} + +sky_sphere { + pigment { + color rgb<1,1,1> + } +} + +// +// draw an arrow from to with thickness with +// color +// +#macro arrow(from, to, arrowthickness, c) +#declare arrowdirection = vnormalize(to - from); +#declare arrowlength = vlength(to - from); +union { + sphere { + from, 1.1 * arrowthickness + } + cylinder { + from, + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + arrowthickness + } + cone { + from + (arrowlength - 5 * arrowthickness) * arrowdirection, + 2 * arrowthickness, + to, + 0 + } + pigment { + color c + } + finish { + specular 0.9 + metallic + } +} +#end + + +arrow(< -3, 0, 0 >, < 3, 0, 0 >, r, White) +arrow(< 0, -3, 0 >, < 0, 3, 0 >, r, White) +arrow(< 0, 0, -3 >, < 0, 0, 3 >, r, White) + +#macro circlearrow0(e1, e2, e3, r1, r2) + +mesh { + #declare N = 100; + #declare phi = 0; + #declare phimax = 1.8 * pi; + #declare phistep = (phimax - phi) / N; + #while (phi < phimax - phistep/2) + triangle { + center + r1 * (cos(phi ) * e1 + sin(phi ) * e2) - h * e3, + center + r2 * (cos(phi ) * e1 + sin(phi ) * e2) - h * e3, + center + r1 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) - h * e3 + } + triangle { + center + r1 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) - h * e3, + center + r2 * (cos(phi ) * e1 + sin(phi ) * e2) - h * e3, + center + r2 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) - h * e3 + } + triangle { + center + r1 * (cos(phi ) * e1 + sin(phi ) * e2) + h * e3, + center + r2 * (cos(phi ) * e1 + sin(phi ) * e2) + h * e3, + center + r1 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + h * e3 + } + triangle { + center + r1 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + h * e3, + center + r2 * (cos(phi ) * e1 + sin(phi ) * e2) + h * e3, + center + r2 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + h * e3 + } + triangle { + center + r1 * (cos(phi ) * e1 + sin(phi ) * e2) - h * e3, + center + r1 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) - h * e3, + center + r1 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + h * e3 + } + triangle { + center + r1 * (cos(phi ) * e1 + sin(phi ) * e2) - h * e3, + center + r1 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + h * e3, + center + r1 * (cos(phi ) * e1 + sin(phi ) * e2) + h * e3 + } + triangle { + center + r2 * (cos(phi ) * e1 + sin(phi ) * e2) - h * e3, + center + r2 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) - h * e3, + center + r2 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + h * e3 + } + triangle { + center + r2 * (cos(phi ) * e1 + sin(phi ) * e2) - h * e3, + center + r2 * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + h * e3, + center + r2 * (cos(phi ) * e1 + sin(phi ) * e2) + h * e3 + } + #declare phi = phi + phistep; + #end + + triangle { + center + r1 * e1 - h * e3, + center + r1 * e1 + h * e3, + center + r2 * e1 + h * e3 + } + triangle { + center + r2 * e1 - h * e3, + center + r2 * e1 + h * e3, + center + r1 * e1 - h * e3 + } + triangle { + center + r1 * cos(phi) * e1 + r1 * sin(phi) * e2 - h * e3, + center + r2 * cos(phi) * e1 + r2 * sin(phi) * e2 - h * e3, + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) - h * e3 + } + triangle { + center + r1 * cos(phi) * e1 + r1 * sin(phi) * e2 + h * e3, + center + r2 * cos(phi) * e1 + r2 * sin(phi) * e2 + h * e3, + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) + h * e3 + } + triangle { + center + r1 * cos(phi) * e1 + r1 * sin(phi) * e2 - h * e3, + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) - h * e3 + center + r1 * cos(phi) * e1 + r1 * sin(phi) * e2 + h * e3 + } + triangle { + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) - h * e3 + center + r1 * cos(phi) * e1 + r1 * sin(phi) * e2 + h * e3, + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) + h * e3 + } + triangle { + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) - h * e3, + center + r2 * cos(phi) * e1 + r2 * sin(phi) * e2 - h * e3, + center + r2 * cos(phi) * e1 + r2 * sin(phi) * e2 + h * e3 + } + triangle { + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) - h * e3, + center + r2 * cos(phi) * e1 + r2 * sin(phi) * e2 + h * e3, + center + 0.5*(r1+r2) * (cos(phi + pi/12) * e1 + sin(phi + pi/12) * e2) + h * e3 + } + + pigment { + color rgb<1, 0.4, 0.4> + } +} + +#end + + +#macro circlearrow(fromdirection, axis, center, r, h) + +#declare e1 = vnormalize(fromdirection); +#declare e2 = -vnormalize(vcross(axis, fromdirection)); +#declare e3 = vnormalize(axis); + +#declare r1 = 0.4 * r; +#declare r2 = r; + +circlearrow0(e1, e2, e3, r1, r2) + +box { + center - r * (e1 + e2) - 0.021 * e3, center + r * (e1 + e2) + 0.021 * e3 + pigment { + color rgb<0.6,0.6,1> + } +} + +cone { + center + 0.02101 * e3, r, center + 2 * r * e3, 0 + pigment { + color rgbt<0.6,0.6,1,0.8> + } +} + +cylinder { + center, center + 2 * r * e3, 0.04*0.2 + pigment { + color rgb<1.0,0.6,0.6> + } +} + +#end + diff --git a/buch/papers/clifford/3d/dq.pov b/buch/papers/clifford/3d/dq.pov new file mode 100644 index 0000000..92b702a --- /dev/null +++ b/buch/papers/clifford/3d/dq.pov @@ -0,0 +1,25 @@ +// +// dq.pov -- Drehung und Quaternion +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +arrow(<0,0,0>, <1, sqrt(2), 2>, r, Red) + +#declare r = 0.2 * r; + +circlearrow(<1,0,0>, <0,0,1>, <1, sqrt(2), 0>, 1, 0.022) +circlearrow(<1,0,0>, <0,1,0>, <1, 0, 2>, sqrt(2)/2, 0.022) +circlearrow(<0,0,1>, <1,0,0>, <0, sqrt(2), 2>, 0.5, 0.022) + +#declare l = 2.8; +#declare h = 0.0001; +union { + box { <-l,-l,-h>, } + box { <-l,-h,-l>, } + box { <-h,-l,-l>, <-h,l,l> } + pigment { + color rgbt<0.6,0.6,0.6,0.0> + } +} -- cgit v1.2.1 From f06e1476cec724c47306967946f9dcb6d8be971e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Marc=20K=C3=BChne?= Date: Thu, 5 Aug 2021 10:59:29 +0200 Subject: neue version --- buch/papers/munkres/teil1.tex | 43 ++++++++++++++++++------------------------- buch/papers/munkres/teil3.tex | 37 ++++++++++++++++++------------------- 2 files changed, 36 insertions(+), 44 deletions(-) (limited to 'buch') diff --git a/buch/papers/munkres/teil1.tex b/buch/papers/munkres/teil1.tex index 07489e3..3bec61d 100644 --- a/buch/papers/munkres/teil1.tex +++ b/buch/papers/munkres/teil1.tex @@ -13,10 +13,10 @@ Um dieses Problem in einer einfachen, händischen Art und Weise zu lösen wurde \subsection{Zuordnungsproblem an einem konkreten Beispiel \label{munkres:subsection:bonorum}} -Man hat den Fall, wo ein Bauunternehmer einen Bauingenieur beauftragt, eine optimale Transportroute für die Umplatzierung seiner Kräne zu eruieren. Das heisst, die Transportstrecke für die Umplatzierung seine Kräne +Als Beispiel betrachten wir den Fall, wo ein Bauunternehmer einen Bauingenieur beauftragt, eine optimale Transportroute für die Umplatzierung seiner Kräne zu eruieren. Das heisst, die Transportstrecke für die Umplatzierung seine Kräne soll möglichst klein werden. Die Frage lautet, wie sind die Kräne umzusetzen, damit deren Transportstrecke minimal wird? Bei der normalen Optimierung dürfen normalerweise beliebige reelle Werte $\mathbb{R}$ angenommen werden. -Beim Beispiel mit den Kräne gibt es aber ein Problem. Bei der Suche nach der optimalen Lösung darf nur die Methode der ganzzahligen Optimierung gewählt werden. Materialien kann man aufteilen, jedoch Maschinen nicht. Die Bauarbeiter auf der neuen Baustelle benötigen einen ganzen Kran und nicht nur einen halben Kran. Es muss immer ein ganzer Kran von A nach B oder gar kein Kran verschoben werden. Also 1 oder 0. +Beim Beispiel mit den Kräne gibt es aber ein Problem. Bei der Suche nach der optimalen Lösung darf nur die Methode der ganzzahligen Optimierung gewählt werden. Materialien kann man aufteilen, jedoch Maschinen nicht. Die Bauarbeiter auf der neuen Baustelle benötigen einen ganzen Kran und nicht nur einen halben Kran. Es muss immer ein ganzer Kran (Anzahl 1) von A nach B oder gar kein Kran (Anzahl 0) verschoben werden. Für solche Optimierungsprobleme für reelle Variablen sind verschiedene Verfahren entwickelt worden, die im Allgemeinen auch sehr effizient sind. Das reelle Problem ist also in einer einfachen Art und Weise lösbar. Doch das Problem bleibt, wie in der Illustration oben ersichtlich. Es kann mit ganzzahligen Punkten kein Optimum erzielt werden. Das Ziel ist es an das Optimum so nah wie möglich heranzukommen und dies ist eine vergleichsweise träge und langsame Angelegenheit. \begin{figure} @@ -34,40 +34,33 @@ In einem Zuordnungsproblem sind alle Angebots- und Bedarfsmengen gleich 1 \begin{equation} a_{i}=b_{j}=1 \end{equation} -Das Ziel ist es die Gesamtkosten zu minimieren. Mit Hilfe einer $n\times n$ Matrix $\mathbb{A}$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann der Faktor Kosten mit in die Rechnung eingebracht werden. -In der Zelle dieser Matrix sind $a_{i,j}$ Zahlen dargestellt, welche den Weg in z.B. Kilometer beschreiben. -Sie entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet. - -\begin{figure} +Das Ziel ist es die Gesamtkosten zu minimieren. Mit Hilfe einer $n\times n$ Matrix \[ A = \begin{pmatrix} -a_{11}&a_{12}&\dots &a_{1m}\\ -a_{21}&a_{22}&\dots &a_{2m}\\ +a_{11}&a_{12}&\dots &a_{1n}\\ +a_{21}&a_{22}&\dots &a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ -a_{n1}&a_{n2}&\dots &a_{nm} +a_{n1}&a_{n2}&\dots &a_{nn} \end{pmatrix} \] -\caption{Darstellung einer Matrix $A$} -\end{figure} -Eine Matrix, wie hier in Abbildung 21.2 ersichtlich, ist ein rechteckiges Schema, dessen Elemente üblicherweise Zahlen, aber auch andere mathematische Elemente wie Variablen oder Funktionen sein können. Sie besteht aus $n$ Zeilen und $m$ Spalten. D.h. die Elemente einer Matrix vom Typ $(n,m)$ mit Namen $A$ sind $a_{ij}$ wobei $i$ = 1,..., $m$ ist und $j$ = 1,...,$n$. $a_{ij}$ ist der Eintrag in der $i$-ten Zeile und $j$-ten Spalte der Matrix . Zum Beispiel ist a21 das Element der 2. Zeile und 1. Spalte. $i$ wird auch der Zeilenindex, $j$ der Spaltenindex genannt. + +$A$ $\mathbb{\in}$ $\mathbb{R}^{n,n}$ kann der Faktor Kosten mit in die Rechnung eingebracht werden. +In der Zelle dieser Matrix sind $a_{i,j}$ Zahlen dargestellt, welche den Weg in z.B. Kilometer beschreiben. +Sie entstehen, wenn man z.B. einem Kran $i$ den Einsatzort $j$ zuordnet. + +Die oben ersichtliche Matrix $A$ besitzt Matrix-Elemente. Die Elemente einer Matrix vom Typ $(n,n)$ mit Namen $A$ sind $a_{ij}$ wobei $i$ = 1,..., $n$ ist und $j$ = 1,...,$n$. $a_{ij}$ ist der Eintrag in der $i$-ten Zeile und $j$-ten Spalte der Matrix . Zum Beispiel ist a21 das Element der 2. Zeile und 1. Spalte. $i$ wird auch der Zeilenindex, $j$ der Spaltenindex genannt. \subsection{Alternative Darstellungen des Zuordnungsproblems \label{munkres:subsection:bonorum}} -\begin{equation} -Netzwerk -\end{equation} -Ein (Fluss- oder Transport-) Netzwerk (engl. network) ist ein zusammenhängender Graph, bei dem jede Kante einen Fluss aufnehmen kann und jede Kante eine Kapazität für den Fluss hat. Die Menge des Flusses auf einer Kante kann die Kapazität der Kante nicht überschreiten. Ein Fluss muss die Einschränkung erfüllen, dass die Menge des Flusses in einen Knoten gleich der Menge des Flusses aus ihm heraus ist. Ein Fluss-Netzwerk (engl. flow network) ist ein Netzwerk, dessen Kanten zusätzlich Kosten pro Mengeneinheit des Flusses zugeordnet sind. Typischerweise will man einen Fluss durch die Kanten bestimmen, der den Einschränkungen des Netzwerks genügt und dessen Gesamtkosten minimal sind. Im Bild 21.3 dargestellt sind in den eckigen Klammern links die externen Flüsse $[1]$ für jeden Arbeiter und in den eckigen Klammern rechts eine $[-1]$ für jede Tätigkeit. Die Kosten sind entlang der Kanten als Zahlen in Klammern dargestellt. -\begin{equation} -Matrix -\end{equation} -Im Bild 21.4 ist eine typische $4\times 4$ Matrix dargestellt. Die Zeilen A1 bis A4 betreffen z.B. vier bestehende Maschinenlager eines Unternehmers. In den Spalten B1 bis B4 sind vier neue Baustellenorte zugewiesen. Die Zahlen in der Matrix bedeuten z.B. die Distanz in Kilometer von dem jeweiligen Lager zur jeweiligen Baustelle. -\begin{equation} -Bitpartiter Graph -\end{equation} +\subsubsection{Netzwerk} +Ein (Fluss- oder Transport-) Netzwerk (engl. network) ist ein zusammenhängender Graph, bei dem jede Kante einen Fluss aufnehmen kann und jede Kante eine Kapazität für den Fluss hat. Die Menge des Flusses auf einer Kante kann die Kapazität der Kante nicht überschreiten. Ein Fluss muss die Einschränkung erfüllen, dass die Menge des Flusses in einen Knoten gleich der Menge des Flusses aus ihm heraus ist. Ein Fluss-Netzwerk (engl. flow network) ist ein Netzwerk, dessen Kanten zusätzlich Kosten pro Mengeneinheit des Flusses zugeordnet sind. Typischerweise will man einen Fluss durch die Kanten bestimmen, der den Einschränkungen des Netzwerks genügt und dessen Gesamtkosten minimal sind. Im Bild 21.2 dargestellt sind in den eckigen Klammern links die externen Flüsse $[1]$ für jeden Arbeiter und in den eckigen Klammern rechts eine $[-1]$ für jede Tätigkeit. Die Kosten sind entlang der Kanten als Zahlen in Klammern dargestellt. +\subsubsection{Matrix} +Im Bild 21.3 ist eine typische $4\times 4$ Matrix dargestellt. Die Zeilen A1 bis A4 betreffen z.B. vier bestehende Maschinenlager eines Unternehmers. In den Spalten B1 bis B4 sind vier neue Baustellenorte zugewiesen. Die Zahlen in der Matrix bedeuten z.B. die Distanz in Kilometer von dem jeweiligen Lager zur jeweiligen Baustelle. +\subsubsection{Bitpartiter Graph} Ein bipartiter Graph ist ein mathematisches Modell für Beziehungen -zwischen den Elementen zweier Mengen. Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen. Zwischen zwei Gruppen von Objekten wird hierbei eine eindeutige Zuordnung hergestellt. +zwischen den Elementen zweier Mengen. Es eignet sich sehr gut zur Untersuchung von Zuordnungsproblemen. Zwischen zwei Gruppen von Objekten wird hierbei eine eindeutige Zuordnung hergestellt. Der Graph ist in Abbildung 21.4 ersichtlich. \begin{itemize} \item 3 = Anzahl der Knoten aus Menge A. \item 3 = Anzahl der Knoten aus Menge B. diff --git a/buch/papers/munkres/teil3.tex b/buch/papers/munkres/teil3.tex index d2e8174..964444c 100644 --- a/buch/papers/munkres/teil3.tex +++ b/buch/papers/munkres/teil3.tex @@ -53,37 +53,36 @@ allen anderen Ziffern in der jeweiligen Zeile subtrahiert. Mit dieser Subtraktio (Freistehend bedeutet, sowohl in der jeweiligen Zeile und Spalte nur eine markierte Null zu haben) -\item Weiter werden die jeweiligen Zeilen eruiert, bei welchen keine markierte Null vorhanden sind. Diese kennzeichnet man. +\item Weiter werden die jeweiligen Zeilen eruiert, bei welchen keine markierte Null vorhanden sind. Diese kennzeichnet man mit einer blauen Fläche. -\item In der vorherigen Zeile die 0 eruieren und die Spalte ebenfalls -kennzeichnen (*2) +\item In der vorherigen, mit blauer Fläche markierten Zeile die 0 eruieren und dann die dazugehörige Spalte ebenfalls +blau markieren. -\item Im der selben Spalte die Markierte Null eruieren und die dazugehörige -Zeile kennzeichnen (*3) +\item Im der selben Spalte die markierte Null eruieren und die dazugehörige +Zeile ebenfalls blau kennzeichnen. -\item Alle Zeilen durchstreichen, welche KEINE Kennzeichnungen (*) haben +\item Alle Zeilen mit einem gelben Balken durchstreichen, welche KEINE blauen Markierungen haben. -\item Alle Spalten durchstreichen, welche EINE Kennzeichnung besitzt! (hier, *2) +\item Alle Spalten durchstreichen, welche eine Blaue Markierung besitzt! -\item Kleinste Ziffer auswählen, welche nicht schon durchgestrichen sind. -(Im Beispiel ist es die Zahl 1. (Egal welche 1) +\item In den übrigen Zahlen soll nun die kleinste Ziffer ausgewählt werden, welche nicht schon durchgestrichen sind. +(Im Beispiel ist es die Zahl 1 in rot markiert. (Bei diesem Schritt ist es egal, welche 1 man wählt) \item Die eruierte kleinste Ziffer, wird von den nicht durchgestrichenen Ziffern -subtrahiert. Danach muss die Matrix wieder komplettiert werden. (inkl. Unterstreichen) +subtrahiert. Danach muss die Matrix wieder komplettiert werden. (inkl. Unterstreichen der Nullen) -\item Jeweilige Zahlen eruieren, welche vorgängig doppelt durchgestrichen wurden. +\item Jeweilige Zahlen eruieren, welche vorgängig doppelt mit einer gelben Fläche durchgestrichen wurden. -\item Kleinste eruierte Ziffer von vorhin auf die zwei markierten Ziffern addieren. +\item Kleinste eruierte Ziffer aus Schritt 9, soll nun auf die zwei in rot markierten Ziffern aus Schritt 11 dazu addiert werden. -\item Es sollen wiederum von neuem möglichst viele Nullen markiert werden, -welche freistehend sind. In diesem Schritt werden nur die markierten Nullen betrachtet. +\item In diesem Schritt sollen wiederum von neuem möglichst viele Nullen markiert werden, +welche freistehend sind. Es werden nur die markierten Nullen betrachtet. -\item Aus allen markierten Nullen in eine eins umwandeln. +\item Alle markierten Nullen werden jetzt in eine 1 umgewandelt. -\item Die restlichen Ziffern, durch eine Null ersetzen. +\item Die restlichen Ziffern in der Matrix, exklusiv die einsen, sollen jetzt ignoriert und durch eine Null ersetzt werden. -\item Zu guter letzt soll überall wo eine 1 steht, in der Ausgangsmatrix die -dazugehörige Ziffer ausgewählt werden. Nach Einsetzen und Eruieren der Zahlen ergeben sich nach Summieren der Zahlen der minimalste Transportweg. Im erwähnten Beispiel sind es total 13 Kilometer. +\item Zu guter Letzt werden überall wo eine 1 steht, die Zahlen aus der Ausgangsmatrix eingefügt. Nach Einsetzen der Zahlen können die in rot markierten Zahlen aufsummiert werden. Es ergibt der minimalste Transportweg. Im erwähnten Beispiel sind es total 13 Kilometer. \end{enumerate} \begin{figure} @@ -108,4 +107,4 @@ dazugehörige Ziffer ausgewählt werden. Nach Einsetzen und Eruieren der Zahlen \includegraphics[width=3cm]{papers/munkres/figures/Ungarische_Methode_Beispiel_Zuw.png} \caption{Händisches Beispiel des Munkres Algorithmus, Zuweisung der Kräne } \label{munkres:Vr2} -\end{figure} Somit konnte danke der Ungarischen Methode sowohl der minimalste Transportweg als auch die optimalste Zuweisung der Kräne auf die neuen Standorte ermittelt werden. \ No newline at end of file +\end{figure} Wie in Abbildung 21.6 ersichtlich, kann somit dank der Ungarischen Methode sowohl der minimalste Transportweg als auch die optimalste Zuweisung der Kräne auf die neuen Standorte ermittelt werden. \ No newline at end of file -- cgit v1.2.1 From a8138ae8cf5b0bda133b5c5fb077021ac3d59761 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 5 Aug 2021 12:59:37 +0200 Subject: add images for clifford article --- buch/papers/clifford/3d/Makefile | 23 ++++++- buch/papers/clifford/3d/common.inc | 59 +++++++++++++++--- buch/papers/clifford/3d/dq.pov | 6 +- buch/papers/clifford/3d/drehung.pov | 120 ++++++++++++++++++++++++++++++++++++ buch/papers/clifford/3d/q23.pov | 12 ++++ buch/papers/clifford/3d/q31.pov | 12 ++++ 6 files changed, 217 insertions(+), 15 deletions(-) create mode 100644 buch/papers/clifford/3d/drehung.pov create mode 100644 buch/papers/clifford/3d/q23.pov create mode 100644 buch/papers/clifford/3d/q31.pov (limited to 'buch') diff --git a/buch/papers/clifford/3d/Makefile b/buch/papers/clifford/3d/Makefile index e6a9be3..70dffe3 100644 --- a/buch/papers/clifford/3d/Makefile +++ b/buch/papers/clifford/3d/Makefile @@ -3,11 +3,28 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: dq.jpg +all: dq.jpg q23.jpg q31.jpg drehung.jpg -dq.png: dq.pov common.inc - povray +A0.1 +W1920 +H1080 -Odq.png dq.pov +size="+W1920 +H1080" +size="+W3840 +H2160" +dq.png: dq.pov common.inc + povray +A0.1 $(size) -Odq.png dq.pov dq.jpg: dq.png convert dq.png -density 300 -units PixelsPerInch dq.jpg +q23.png: q23.pov common.inc + povray +A0.1 $(size) -Oq23.png q23.pov +q23.jpg: q23.png + convert q23.png -density 300 -units PixelsPerInch q23.jpg + +q31.png: q31.pov common.inc + povray +A0.1 $(size) -Oq31.png q31.pov +q31.jpg: q31.png + convert q31.png -density 300 -units PixelsPerInch q31.jpg + +drehung.png: drehung.pov common.inc + povray +A0.1 $(size) -Odrehung.png drehung.pov +drehung.jpg: drehung.png + convert drehung.png -density 300 -units PixelsPerInch drehung.jpg + diff --git a/buch/papers/clifford/3d/common.inc b/buch/papers/clifford/3d/common.inc index 4bc2e7d..54aa7fe 100644 --- a/buch/papers/clifford/3d/common.inc +++ b/buch/papers/clifford/3d/common.inc @@ -11,10 +11,11 @@ global_settings { } #declare imagescale = 0.14; -#declare r = 0.04; +#declare r = 0.02; +#declare thick = 0.040; camera { - location <40, 10, 15> + location <40, 12, 15> look_at <0, 0, 0> right 16/9 * x * imagescale up y * imagescale @@ -70,12 +71,12 @@ arrow(< -3, 0, 0 >, < 3, 0, 0 >, r, White) arrow(< 0, -3, 0 >, < 0, 3, 0 >, r, White) arrow(< 0, 0, -3 >, < 0, 0, 3 >, r, White) -#macro circlearrow0(e1, e2, e3, r1, r2) +#macro circlearrow0(e1, e2, e3, r1, r2, h, winkel) mesh { #declare N = 100; #declare phi = 0; - #declare phimax = 1.8 * pi; + #declare phimax = winkel - pi / 12; #declare phistep = (phimax - phi) / N; #while (phi < phimax - phistep/2) triangle { @@ -170,7 +171,7 @@ mesh { #end -#macro circlearrow(fromdirection, axis, center, r, h) +#macro circlearrow(fromdirection, axis, center, r, h, winkel, anzahl) #declare e1 = vnormalize(fromdirection); #declare e2 = -vnormalize(vcross(axis, fromdirection)); @@ -179,27 +180,67 @@ mesh { #declare r1 = 0.4 * r; #declare r2 = r; -circlearrow0(e1, e2, e3, r1, r2) +#declare w = 0; +#while (w < anzahl) + #declare a = 2 * w * pi / anzahl; + circlearrow0(e1 * cos(a) - e2 * sin(a), e1 * sin(a) + e2 * cos(a), e3, r1, r2, 1.2 * h, winkel) + #declare w = w + 1; +#end + +mesh { + #declare vlu = center - r * e1 - r * e2 - h * e3; + #declare vlo = center - r * e1 - r * e2 + h * e3; + #declare vru = center - r * e1 + r * e2 - h * e3; + #declare vro = center - r * e1 + r * e2 + h * e3; + #declare hlu = center + r * e1 - r * e2 - h * e3; + #declare hlo = center + r * e1 - r * e2 + h * e3; + #declare hru = center + r * e1 + r * e2 - h * e3; + #declare hro = center + r * e1 + r * e2 + h * e3; + triangle { vlu, vru, vro } + triangle { vlu, vro, vlo } + + triangle { vru, hru, hro } + triangle { vru, hro, vro } + + triangle { hru, hlu, hlo } + triangle { hru, hlo, hro } + + triangle { hlu, vlu, vlo } + triangle { hlu, vlo, hlo } + + triangle { vlu, vru, hru } + triangle { vlu, hru, hlu } + + triangle { vlo, vro, hro } + triangle { vlo, hro, hlo } -box { - center - r * (e1 + e2) - 0.021 * e3, center + r * (e1 + e2) + 0.021 * e3 pigment { color rgb<0.6,0.6,1> } + finish { + specular 0.96 + metallic + } } +#if (vlength(axis) > 0.1) cone { - center + 0.02101 * e3, r, center + 2 * r * e3, 0 + center + 1.19 * h * e3, r, center + 2 * r * e3, 0 pigment { color rgbt<0.6,0.6,1,0.8> } } +#end cylinder { center, center + 2 * r * e3, 0.04*0.2 pigment { color rgb<1.0,0.6,0.6> } + finish { + specular 0.96 + metallic + } } #end diff --git a/buch/papers/clifford/3d/dq.pov b/buch/papers/clifford/3d/dq.pov index 92b702a..8002129 100644 --- a/buch/papers/clifford/3d/dq.pov +++ b/buch/papers/clifford/3d/dq.pov @@ -9,9 +9,9 @@ arrow(<0,0,0>, <1, sqrt(2), 2>, r, Red) #declare r = 0.2 * r; -circlearrow(<1,0,0>, <0,0,1>, <1, sqrt(2), 0>, 1, 0.022) -circlearrow(<1,0,0>, <0,1,0>, <1, 0, 2>, sqrt(2)/2, 0.022) -circlearrow(<0,0,1>, <1,0,0>, <0, sqrt(2), 2>, 0.5, 0.022) +circlearrow(<1,0,0>, <0,0,1>, <1, sqrt(2), 0>, 1, thick, 1.8*pi/3, 3) +circlearrow(<1,0,0>, <0,1,0>, <1, 0, 2>, sqrt(2)/2, thick, 1.8*pi/3, 3) +circlearrow(<0,0,1>, <1,0,0>, <0, sqrt(2), 2>, 0.5, thick, 1.8*pi/3, 3) #declare l = 2.8; #declare h = 0.0001; diff --git a/buch/papers/clifford/3d/drehung.pov b/buch/papers/clifford/3d/drehung.pov new file mode 100644 index 0000000..54b5a2e --- /dev/null +++ b/buch/papers/clifford/3d/drehung.pov @@ -0,0 +1,120 @@ +// +// drehung.pov -- Drehung um (1,1,1) +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +#declare n = vnormalize(<1,1,1>); +#declare V = <0,2.6,0>; +#declare W = <0,0,2.6>; + +#declare Vparallel = vdot(n, V) * n; +#declare Vperp = V - Vparallel; +#declare Wparallel = vdot(n, W) * n; +#declare Wperp = W - Wparallel; + +arrow(<0,0,0>, 2*n, thick, Red) + +arrow(<0,0,0>, V, thick, rgb<0.0,1.0,1.0>) +arrow(<0,0,0>, W, thick, rgb<0.0,1.0,1.0>) + +circlearrow(vnormalize(vcross(<-1,0,1>,n)), -0.01 * <1,1,1>, <0,0,0>, 1, 0.8*thick, 1.98*pi/3, 3) + +arrow(<0,0,0>, Vperp, 0.99*thick, Blue) +arrow(<0,0,0>, Wperp, 0.99*thick, Blue) + +arrow(Vperp, V, thick, Green) +arrow(Wperp, W, thick, Green) + +#declare l = 2.4; +intersection { + box { <-l,-l,-l>, } + //cylinder { -n, n, 3 } + plane { n, 0.01 } + plane { -n, 0.01 } + pigment { + color rgbt<0.6,0.6,1.0,0.8> + } +} + +#declare e1 = vnormalize(Vperp); +#declare e3 = n; +#declare e2 = vnormalize(vcross(e3, e1)); +#declare r = vlength(Vperp); + +mesh { + #declare phi = 0; + #declare phimax = 2*pi/3; + #declare phistep = (phimax - phi) / N; + #while (phi < phimax - phistep/2) + triangle { + <0,0,0>, + r * (cos(phi ) * e1 + sin(phi ) * e2), + r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + } + #declare phi = phi + phistep; + #end + pigment { + color rgbt<0.2,0.2,1.0,0.4> + } +} + +union { + #declare phi = 0; + #declare phimax = 2*pi/3; + #declare phistep = (phimax - phi) / N; + #while (phi < phimax - phistep/2) + cylinder { + r * (cos(phi ) * e1 + sin(phi ) * e2), + r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2), + 0.01 + } + sphere { r * (cos(phi ) * e1 + sin(phi ) * e2), 0.01 } + #declare phi = phi + phistep; + #end + pigment { + color Blue + } +} + +mesh { + #declare phi = 0; + #declare phimax = 2*pi/3; + #declare phistep = (phimax - phi) / N; + #while (phi < phimax - phistep/2) + triangle { + r * (cos(phi ) * e1 + sin(phi ) * e2), + r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2), + r * (cos(phi ) * e1 + sin(phi ) * e2) + Vparallel + } + triangle { + r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2), + r * (cos(phi ) * e1 + sin(phi ) * e2) + Vparallel, + r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + Vparallel + } + #declare phi = phi + phistep; + #end + pigment { + color rgbt<0.2,1,0.2,0.4> + } +} + +union { + #declare phi = 0; + #declare phimax = 2*pi/3; + #declare phistep = (phimax - phi) / N; + #while (phi < phimax - phistep/2) + cylinder { + r * (cos(phi ) * e1 + sin(phi ) * e2) + Vparallel, + r * (cos(phi+phistep) * e1 + sin(phi+phistep) * e2) + Vparallel, + 0.01 + } + sphere { r * (cos(phi ) * e1 + sin(phi ) * e2) + Vparallel, 0.01 } + #declare phi = phi + phistep; + #end + pigment { + color Green + } +} + diff --git a/buch/papers/clifford/3d/q23.pov b/buch/papers/clifford/3d/q23.pov new file mode 100644 index 0000000..e3e5d49 --- /dev/null +++ b/buch/papers/clifford/3d/q23.pov @@ -0,0 +1,12 @@ +// +// q23.pov -- Drehung und Quaternion +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +circlearrow(<1,0,0>, 0.01*<0,0,-1>, <0, 0, 0>, 1.0, thick, 0.98*pi/2, 4) + +arrow( <0,0,0>, <-2.0,0,0>, 0.99*thick, Blue) +arrow( <0,0,0>, <0,2.0,0>, 0.99*thick, Blue) +arrow( <0,0,0>, <0,0,2.0>, 0.99*thick, Red) diff --git a/buch/papers/clifford/3d/q31.pov b/buch/papers/clifford/3d/q31.pov new file mode 100644 index 0000000..901f838 --- /dev/null +++ b/buch/papers/clifford/3d/q31.pov @@ -0,0 +1,12 @@ +// +// q31.pov -- Drehung und Quaternion +// +// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +// +#include "common.inc" + +circlearrow(<1,0,0>, 0.01*<0,-1,0>, <0, 0, 0>, 1.0, thick, 0.98*pi/2, 4) + +arrow( <0,0,0>, <-2.0,0,0>, 0.99*thick, Blue) +arrow( <0,0,0>, <0,2.0,0>, 0.99*thick, Red) +arrow( <0,0,0>, <0,0,2.0>, 0.99*thick, Blue) -- cgit v1.2.1 From 2bab34711e7654ec4b4bb69e324df57ccc4e4665 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 5 Aug 2021 13:12:55 +0200 Subject: Changes to IFS image problem --- buch/papers/ifs/images/Makefile | 9 +++++ buch/papers/ifs/images/chaosspiel.tex | 37 +++++++++++++++++++++ .../ifs/images/farnnotweight-eps-converted-to.pdf | Bin 166218 -> 6074235 bytes .../ifs/images/farnrightwight-eps-converted-to.pdf | Bin 59191 -> 6450743 bytes buch/papers/ifs/teil2.tex | 13 ++++---- buch/papers/ifs/teil3.tex | 2 +- 6 files changed, 54 insertions(+), 7 deletions(-) create mode 100644 buch/papers/ifs/images/Makefile create mode 100644 buch/papers/ifs/images/chaosspiel.tex (limited to 'buch') diff --git a/buch/papers/ifs/images/Makefile b/buch/papers/ifs/images/Makefile new file mode 100644 index 0000000..c6d3fb5 --- /dev/null +++ b/buch/papers/ifs/images/Makefile @@ -0,0 +1,9 @@ +# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +chaosspiel.pdf: chaosspiel.tex \ + farnnotweight-eps-converted-to.pdf \ + farnrightwight-eps-converted-to.pdf + pdflatex chaosspiel.tex diff --git a/buch/papers/ifs/images/chaosspiel.tex b/buch/papers/ifs/images/chaosspiel.tex new file mode 100644 index 0000000..7c69ad3 --- /dev/null +++ b/buch/papers/ifs/images/chaosspiel.tex @@ -0,0 +1,37 @@ +% +% tikztemplate.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +% add image content here + +\begin{scope}[xshift=-3.6cm] +%\clip (-3.3,-3) rectangle (3.3,3); +\node at (0,0) { +\includegraphics[width=6.8cm]{farnnotweight-eps-converted-to.pdf} +}; +\node at (0.2,-5.7) {(a)}; +\end{scope} + +\begin{scope}[xshift=3.6cm] +%\clip (-3.3,-3) rectangle (3.3,3); +\node at (0,0) { +\includegraphics[width=6.8cm]{farnrightwight-eps-converted-to.pdf} +}; +\node at (0.2,-5.7) {(b)}; +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf b/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf index 35bff32..f5e4093 100644 Binary files a/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf and b/buch/papers/ifs/images/farnnotweight-eps-converted-to.pdf differ diff --git a/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf b/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf index 3652e8f..fa69d77 100644 Binary files a/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf and b/buch/papers/ifs/images/farnrightwight-eps-converted-to.pdf differ diff --git a/buch/papers/ifs/teil2.tex b/buch/papers/ifs/teil2.tex index c468b73..d0110ed 100644 --- a/buch/papers/ifs/teil2.tex +++ b/buch/papers/ifs/teil2.tex @@ -248,12 +248,13 @@ In jeder Kopie des ganzen Farns fehlen die Punkte für dieses rechte untere Teil \begin{figure} \centering - \subfigure[]{ - \label{ifs:farnNoWeight} - \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnnotweight}} - \subfigure[]{ - \label{ifs:farnrightWeight} - \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnrightwight}} + \includegraphics{papers/ifs/images/chaosspiel.pdf} + %\subfigure[]{ + % \label{ifs:farnNoWeight} + % \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnnotweight}} + %\subfigure[]{ + % \label{ifs:farnrightWeight} + % \includegraphics[width=0.45\textwidth]{papers/ifs/images/farnrightwight}} \caption{(a) Chaosspiel ohne Gewichtung (b) $S_4$ zu wenig gewichtet} \label{ifs:farnweight} \end{figure} diff --git a/buch/papers/ifs/teil3.tex b/buch/papers/ifs/teil3.tex index 01a3ee2..cebb664 100644 --- a/buch/papers/ifs/teil3.tex +++ b/buch/papers/ifs/teil3.tex @@ -137,7 +137,7 @@ Am Ende des Algorithmus haben wir für jeden Range-Block den zugehörigen Domain Mit den gefundenen Abbildungen lässt sich das Bild generieren. Wir beginnen wie schon im letzten Kapitel mit einer beliebigen Startmenge. In unserem Fall ist dieses ein Bild $f_0$ derselben Grösse. -Nun ersetzen wir jedes $R_i$ mit der Transformierten des zugehörigen Domain-Blocks $T(G_j)$. +Nun ersetzen wir jedes $R_i$ mit der Transformierten des zugehörigen Domain-Blocks $T(D_j)$. Dies wird verkürzt als Operator $W$ geschrieben. So erhalten wir ein neues Bild $f_1 = W(f_0)$. Dieses Vorgehen führen wir iteriert aus bis wir von $f_n = W(f_{n-1})$ zu $f_{n-1}$ kaum mehr einen Unterschied feststellen. Die Iteration hat nun ihren Attraktor, das Bild, erreicht. -- cgit v1.2.1 From e948351c11835cb6a19abe394ffb61219884b96a Mon Sep 17 00:00:00 2001 From: Nunigan Date: Thu, 5 Aug 2021 18:04:32 +0200 Subject: update paper --- buch/papers/multiplikation/einlteung.tex | 6 +- buch/papers/multiplikation/loesungsmethoden.tex | 72 ++++++++----- buch/papers/multiplikation/problemstellung.tex | 135 +++++++++++++----------- 3 files changed, 122 insertions(+), 91 deletions(-) (limited to 'buch') diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex index 2d0583d..9f1cb04 100755 --- a/buch/papers/multiplikation/einlteung.tex +++ b/buch/papers/multiplikation/einlteung.tex @@ -17,7 +17,7 @@ Koeffizienten c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}. \label{multiplikation:eq:MM} \end{equation} -Grafisch kann die Matrizenmultiplikation $\mathbf{AB}=\mathbf{C}$ wie in \ref{multiplikation:fig:mm_viz} visualisiert werden. +Grafisch kann die Matrizenmultiplikation $\mathbf{AB}=\mathbf{C}$ wie in Abbildung \ref{multiplikation:fig:mm_viz} visualisiert werden. Im Fall einer Matrizengr\"osse von $2\times 2$ kann die Matrixgleichung \begin{equation} \begin{bmatrix} @@ -34,7 +34,7 @@ C_{11} & C_{12}\\ C_{21} & C_{22} \end{bmatrix} \end{equation} -explizt als Gleichung +explizt als Gleichung \begin{equation} \label{multiplikation:eq:MM_exp} \begin{split} C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\ @@ -49,4 +49,4 @@ der einzelnen Terme geschrieben werden. \includegraphics[]{papers/multiplikation/images/mm_visualisation} \caption{Matrizen Multiplikation} \label{multiplikation:fig:mm_viz} -\end{figure} \ No newline at end of file +\end{figure} diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 6f1486c..43181d4 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -68,10 +68,10 @@ Das Matrizen produklt \end{bmatrix}, \end{equation} \begin{equation} -\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj} +\mathbf{C}_{ij} = \sum_{k=1}2n \mathbf{A}_{ik} \mathbf{B}_{kj} \label{multiplikation:eq:MM_block} \end{equation} -ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, f\"ur die Multiplikation wird die Matrizenmultiplikation verwendet. +ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, f\"ur die Multiplikation der Untermatrize $\mathbf{A}_{ik}$ und $\mathbf{B}_{kj}$ wird die Matrizenmultiplikation verwendet. Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz, Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen. @@ -116,10 +116,10 @@ Die Addition zweier Matrizen $\mathbf{A} + \mathbf{B} = \mathbf{C}$ hat eine Lau In diesem Fall hat der \textit{Divide and Conquer} Ansatz zu keiner Verbesserung gef\"uhrt. -\subsection{Strassen's Algorithmus} +\subsection{Strassens Algorithmus} -Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen von Blockmatrizen. -Die grundlegenden Terme +Strassens Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen von Blockmatrizen. +Die sieben grundlegenden Terme \begin{equation} \label{multiplikation:eq:strassen} \begin{split} \text{\textbf{P}} &= \left(\mathbf{A}_{11} + \mathbf{A}_{22}\right ) \cdot \left(\mathbf{B}_{11} + \mathbf{B}_{22}\right ) \\ @@ -188,7 +188,7 @@ der Matrix $\mathbf{C}$ gebraucht. \end{algorithm} Strassen's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ . -Die gr\"unen Felder auf der linken Seite, zeigen die addition welche f\"ur den dazugeh\"origen Term ben\"otigt wird. +Die gr\"unen Felder auf der linken Seite, zeigen die Addition, welche f\"ur den dazugeh\"origen Term ben\"otigt wird. Die sieben Spalten beschreiben die Matrizen $\mathbf{P,Q,R, \dotsb, V}$. Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition. \begin{figure} @@ -199,7 +199,7 @@ Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition. \end{figure} Die Funktion wird sieben mal rekursiv aufgerufen. -Dies f\"uhrt zu einer Laufzeit von +Dies f\"uhrt nach dem \textit{Master Theorem} zu einer Laufzeit von \begin{equation} \label{multiplikation:eq:laufzeitstrassen} \mathcal{T}(n) = 7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 = \mathcal{O}\left(n^{\log_2 7}\right ) = \mathcal{O}\left(n^{2.8074} \right ) @@ -210,31 +210,42 @@ Man beachte, dass die Anzahl von Additionen und Subtraktionen gr\"osser und die \subsection{Winograd's Algorithmus} Einen weiteren Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}. -Er beschrieb einen neuen Algorithmus f\"ur das -\begin{equation} - \langle x,y \rangle = \sum_{i=1}^{n}x_i y_i +Er beschrieb einen neuen Algorithmus f\"ur das Skalarprodukt +\begin{equation} \label{multiplikation:eq:skalar} + \langle x,y \rangle = \sum_{i=1}^{n}x_i y_i. \end{equation} -Skalarprodukt. F\"ur jeden Vektor berechne \begin{equation} \xi = \sum_{j=1}^{ \lfloor n/2 \rfloor} x_{2j-1} \cdot x_{2j} \end{equation} und \begin{equation} - \eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j}. + \eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j}, \end{equation} +die jeweils nur von $x$ und $y$ abhängen. +Dazu werden $2 \cdot \lfloor n/2 \rfloor \leq n$ Multiplikationen benötigt. Das Skalarprodukt ist nun geben mit \begin{equation} \langle x,y \rangle = \begin{cases} - \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{if $n$ is even}\\ - \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{if $n$ is odd}. + \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{wenn $n$ gerade}\\ + \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{wenn $n$ ungerade}. \end{cases} \end{equation} - +Das Skalarprodukt kann also mit $ \lfloor \frac{n+1}{2} \rfloor$ weiteren Multiplikationen brechnet werden. Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte. Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt. - +Für die Gleichung \eqref{multiplikation:eq:skalar} benötigt man $Tn$ Multiplikationen. +Im Vergleich mit der neuen Methode +\begin{equation} + \begin{split}\label{multiplikation:eq:eff} + N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor \leq Tn \\ + \approx \frac{Nn}{2} + \frac{Tn}{2} \leq Tn \\ + \frac{Nn}{2} \leq \frac{Tn}{2} \\ + N \leq T +\end{split} +\end{equation} +spart man etwas, falls $N\leq T$. Eine Matrizenmultiplikation mit $\mathbf{A}$ einer $m \times n$ und $\mathbf{B}$ einer $n \times p$ Matrix, entspricht $N=m+p$ Vektoren mit welchen man $T=mp$ Skalarprodukte berechnet. Dies f\"uhrt zu \begin{equation} @@ -243,8 +254,14 @@ Dies f\"uhrt zu Multiplikationen. Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt. Was im Vergleich zu den $mpn$ Multiplikation der Standardmethode nur die H\"alfte ist. +Mit dem glichen Ansatz wie in der Gleichung \ref{multiplikation:eq:eff} aber mit quadratischen Matrizen, muss +\begin{equation} + N=2n \ll T=n^2 +\end{equation} +damit man etwas einspart. Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen werden. - +Falls $m=n=p$ werden $\frac{n^3}/{2}$ Multiplikationen benötigt. Im Abschnitt \ref{muliplikation:sec:bigo} wurde bereits erläutert: falls $n \rightarrow \infty$ können Konstanten vernachlässigt werden und + somit entsteht für diesen Algorithmus wieder die Ursprüngliche Laufzeit von $\mathcal{O}\left(n^3 \right)$. \begin{algorithm}\footnotesize\caption{Winograd Matrix Multiplication} \setlength{\lineskip}{7pt} \label{multiplikation:alg:winograd} @@ -296,10 +313,11 @@ Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen \end{algorithmic} \end{algorithm} + \subsection{Basic Linear Algebra Subprograms (BLAS)} -die gebräuchliche Methode f\"ur die Anwendung einer optimierten Matrizenmultiplikation ist die Verwendung einer Subroutine aus den \textit{Basic Linear Algebra Subprograms (BLAS)} \cite{multiplikation:BLAS}. -Die meisten Numerischen Bibliotheken von High-Level Skriptsprachen wie \texttt{Matlab}, \texttt{NumPy (Python)}, \texttt{GNU Octave} oder \texttt{Mathematica} ben\"utzen eine Form von \textit{BLAS}. +Die gebräuchliche Methode f\"ur die Anwendung einer optimierten Matrizenmultiplikation ist die Verwendung einer Subroutine aus den \textit{Basic Linear Algebra Subprograms (BLAS)} \cite{multiplikation:BLAS}. +Die meisten Numerischen Bibliotheken von High-Level Skriptsprachen wie \texttt{Matlab}, \texttt{NumPy (Python)}, \texttt{GNU Octave} oder \texttt{Mathematica} ben\"utzen eine Form von \textit{BLAS}. \textit{BLAS} sind dabei in drei unterschiedliche Levels aufgeteilt. @@ -307,17 +325,17 @@ Die meisten Numerischen Bibliotheken von High-Level Skriptsprachen wie \texttt{M \item Level 1 \begin{itemize} \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{x}+\mathbf{y}$ - \item Dieses Level hat $\mathcal{O}(n)$ karakteristik + \item Dieses Level hat $\mathcal{O}(n)$ Charakteristik \end{itemize} \item Level 2 \begin{itemize} \item Operationen der Art: $\mathbf{y} \leftarrow \alpha \mathbf{A}\mathbf{x}+\beta \mathbf{y}$ - \item Dieses Level hat $\mathcal{O}\left(n^2\right)$ karakteristik + \item Dieses Level hat $\mathcal{O}\left(n^2\right)$ Charakteristik \end{itemize} \item Level 3 \begin{itemize} \item Operationen der Art: $\mathbf{C} \leftarrow \alpha \mathbf{A}\mathbf{B}+\beta\mathbf{C}$ - \item Dieses Level hat $\mathcal{O}\left(n^3\right)$ karakteristik + \item Dieses Level hat $\mathcal{O}\left(n^3\right)$ Charakteristik \end{itemize} \end{itemize} @@ -362,7 +380,7 @@ Folgende Algorithmen wurden jeweils in \texttt{C} und \texttt{Python} implementi \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python} \end{itemize} -Der Code kann im dazugehörigen \textit{GitHub} Repository gefunden werden. +Der Code kann im zum Buch gehörigem \textit{GitHub} \footnote{\url{https://github.com/AndreasFMueller/SeminarMatrizen.git}} Repository gefunden werden. Anzumerken ist, dass die Matrizenmultiplikation von \texttt{NumPy} als einzige Implementation Multiprocessing und Multithreading verwendet, dies f\"uhrt zu den tiefen Messzeiten. In Abbildung \ref{multiplikation:fig:python} und Abbildung \ref{multiplikation:fig:c_meas_4096} sind de Messresultate grafisch dargestellt. Die selben Messresultate sind tabellarisch in Tabelle \ref{multiplikation:tab:messung_Python} und Tabelle \ref{multiplikation:tab:messung_C} ersichtlich. Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{multiplikation:tab:pc_config} aufgelistet. @@ -392,8 +410,8 @@ Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{mul \caption{Messresultate \texttt{C}} \label{multiplikation:tab:messung_C} \end{table} - - + + \begin{table} \begin{center} @@ -456,8 +474,8 @@ Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{mul \section{Fazit} \rhead{Fazit} -Wie man im Abschnitt\ref{multiplikation:section:Implementation} sehen kann, sind die gezeigten Algorithmen, trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen. -Einen optimierten Speicherzugriff hat einen weitaus grösseren Einfluss auf die Laufzeit als die Zeitkomplexität des Algorithmus. +Wie man im Abschnit \ref{multiplikation:section:Implementation} sehen kann, sind die gezeigten Algorithmen trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen. +Ein optimierter Speicherzugriff hat einen weitaus grösseren Einfluss auf die Laufzeit als die Zeitkomplexität des Algorithmus. Doch haben Entdeckungen wie jene von Strassen und Winograd ihre Daseinsberechtigung. Nicht auf jeden Computersystemen können die \textit{BLAS} angewandt werden. diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex index cd5aaaa..c6fd10e 100755 --- a/buch/papers/multiplikation/problemstellung.tex +++ b/buch/papers/multiplikation/problemstellung.tex @@ -5,13 +5,15 @@ % \section{Problemstellung} \rhead{Problemstellung} -Dank der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung. +Wegen der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung. Das Ziel dieses Papers ist, verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen. -Gezielt werden auf Algorithmen, welche das Problem schneller als der Standard Algorithmus L\"osen eingegangen. +Gezielt wird auf Algorithmen eingegange, welche das Problem schneller als der Standard Algorithmus l\"osen. \subsection{Big $\mathcal{O}$ Notation} -Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus \cite{multiplikation:bigo}. +\label{muliplikation:sec:bigo} +Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus in Abhänigkeit zur Inputgrösse \cite{multiplikation:bigo}. $f(x) \in \mathcal{O}(g(x))$ besagt, dass die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$. +Als Beispiel: benötigt eine Funktion $g$, $\mathcal{O}\left(n+n^2 \right)$ Multiplikationen so wächst $f$ mit $\mathcal{O}\left(n^2 \right)$ nicht wesentlich schneller als $g$. Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet: \begin{itemize} \item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt @@ -23,7 +25,7 @@ Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet: \item usw. \end{itemize} -In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden. +In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden. \begin{figure} \center @@ -34,77 +36,88 @@ In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufze \subsubsection{Beispiel Algorithmen} -Folgend einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden k\"onnen. +Es folgen einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomplexit\"atsklasse zugeteilt werden k\"onnen. + +\begin{minipage}{0.4\textwidth} + \begin{algorithm}[H]\footnotesize\caption{} + \label{multiplikation:alg:b1} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \Function{B1}{$a, b$} + \State \textbf{return} $a+b$ + \EndFunction + \end{algorithmic} + \end{algorithm} + + \begin{algorithm}[H]\footnotesize\caption{} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \label{multiplikation:alg:linear} + \Function{L}{$\mathbf{a}, \mathbf{b}$,n} + \State $ sum \gets 0$ + \For{$i = 0,1,2 \dots,n$} + \State $ sum \gets sum + A[i] \cdot B[i] $ + \EndFor + + \State \textbf{return} $sum$ + + \EndFunction + \end{algorithmic} + \end{algorithm} +\end{minipage} +\hspace{2cm} +\begin{minipage}{0.4\textwidth} + + \begin{algorithm}[H]\footnotesize\caption{} + \label{multiplikation:alg:b2} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \Function{B2}{$a, b$} + \State $ x \gets a+b $ + \State $ y \gets a \cdot b $ + \State \textbf{return} $x+y$ + \EndFunction + \end{algorithmic} + \end{algorithm} + + + \begin{algorithm}[H]\footnotesize\caption{} + \label{multiplikation:alg:q1} + \setlength{\lineskip}{7pt} + \begin{algorithmic} + \Function{Q}{$\mathbf{A}, \mathbf{B}$,n} + \State $ sum \gets 0$ + \For{$i = 0,1,2 \dots,n$} + \For{$j = 0,1,2 \dots,n$} + \State $ sum \gets sum + A[i] \cdot B[j] $ + \EndFor + \EndFor + \State \textbf{return} $sum$ + \EndFunction + \end{algorithmic} + \end{algorithm} + +\end{minipage} + \paragraph{Beschr\"ankter Algorithmus} Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen einfluss auf die Laufzeit. -\begin{algorithm}\footnotesize\caption{} - \label{multiplikation:alg:b1} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \Function{B1}{$a, b$} - \State \textbf{return} $a+b$ - \EndFunction - \end{algorithmic} -\end{algorithm} + Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$. -\begin{algorithm}\footnotesize\caption{} - \label{multiplikation:alg:b2} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \Function{B2}{$a, b$} - \State $ x \gets a+b $ - \State $ y \gets a \cdot b $ - \State \textbf{return} $x+y$ - \EndFunction - \end{algorithmic} -\end{algorithm} + \paragraph{Linearer Algorithmus} -Folgender Algorithmus \ref{multiplikation:alg:l1} hat ein lineares Verhalten. +Der Algorithmus \ref{multiplikation:alg:linear} hat ein lineares Verhalten. Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$. -\begin{algorithm}\footnotesize\caption{} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \label{multiplikation:alg:l1} - \Function{L}{$\mathbf{a}, \mathbf{b}$,n} - \State $ sum \gets 0$ - \For{$i = 0,1,2 \dots,n$} - \State $ sum \gets sum + A[i] \cdot B[i] $ - \EndFor - - \State \textbf{return} $sum$ - - \EndFunction - \end{algorithmic} -\end{algorithm} + \paragraph{Quadratischer Algorithmus} -Folgender Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten. +Der Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten. Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchglaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. - - -\begin{algorithm}[H]\footnotesize\caption{} - \label{multiplikation:alg:q1} - \setlength{\lineskip}{7pt} - \begin{algorithmic} - \Function{Q}{$\mathbf{A}, \mathbf{B}$,n} - \State $ sum \gets 0$ - \For{$i = 0,1,2 \dots,n$} - \For{$j = 0,1,2 \dots,n$} - \State $ sum \gets sum + A[i] \cdot B[j] $ - \EndFor - \EndFor - \State \textbf{return} $sum$ - \EndFunction - \end{algorithmic} -\end{algorithm} - - -- cgit v1.2.1 From def3198eb5a2462d296aea81d14b6b982a722b8e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 5 Aug 2021 18:48:54 +0200 Subject: bild 1 --- buch/papers/clifford/3d/Makefile | 8 +++--- buch/papers/clifford/3d/dq.pdf | Bin 0 -> 156467 bytes buch/papers/clifford/3d/dq.pov | 11 ++++++--- buch/papers/clifford/3d/dq.tex | 51 +++++++++++++++++++++++++++++++++++++++ 4 files changed, 64 insertions(+), 6 deletions(-) create mode 100644 buch/papers/clifford/3d/dq.pdf create mode 100644 buch/papers/clifford/3d/dq.tex (limited to 'buch') diff --git a/buch/papers/clifford/3d/Makefile b/buch/papers/clifford/3d/Makefile index 70dffe3..87acb6d 100644 --- a/buch/papers/clifford/3d/Makefile +++ b/buch/papers/clifford/3d/Makefile @@ -3,15 +3,17 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: dq.jpg q23.jpg q31.jpg drehung.jpg +all: dq.jpg q23.jpg q31.jpg drehung.jpg dq.pdf size="+W1920 +H1080" size="+W3840 +H2160" dq.png: dq.pov common.inc povray +A0.1 $(size) -Odq.png dq.pov -dq.jpg: dq.png - convert dq.png -density 300 -units PixelsPerInch dq.jpg +dq.jpg: dq.png Makefile + convert -extract 1600x1400+1500+60 dq.png -density 300 -units PixelsPerInch dq.jpg +dq.pdf: dq.jpg dq.tex + pdflatex dq.tex q23.png: q23.pov common.inc povray +A0.1 $(size) -Oq23.png q23.pov diff --git a/buch/papers/clifford/3d/dq.pdf b/buch/papers/clifford/3d/dq.pdf new file mode 100644 index 0000000..1bcaf2c Binary files /dev/null and b/buch/papers/clifford/3d/dq.pdf differ diff --git a/buch/papers/clifford/3d/dq.pov b/buch/papers/clifford/3d/dq.pov index 8002129..762eee2 100644 --- a/buch/papers/clifford/3d/dq.pov +++ b/buch/papers/clifford/3d/dq.pov @@ -9,9 +9,14 @@ arrow(<0,0,0>, <1, sqrt(2), 2>, r, Red) #declare r = 0.2 * r; -circlearrow(<1,0,0>, <0,0,1>, <1, sqrt(2), 0>, 1, thick, 1.8*pi/3, 3) -circlearrow(<1,0,0>, <0,1,0>, <1, 0, 2>, sqrt(2)/2, thick, 1.8*pi/3, 3) -circlearrow(<0,0,1>, <1,0,0>, <0, sqrt(2), 2>, 0.5, thick, 1.8*pi/3, 3) +#declare drehwinkel = 0.95 * 2*pi/3 * 3; +#declare drehwinkel23 = drehwinkel; +#declare drehwinkel12 = drehwinkel / sqrt(2); +#declare drehwinkel13 = drehwinkel / 2; + +circlearrow(<1,0,0>, <0,0,1>, <1, sqrt(2), 0>, 1, thick, drehwinkel23, 1) +circlearrow(<1,0,0>, <0,1,0>, <1, 0, 2>, sqrt(2)/2, thick, drehwinkel12, 1) +circlearrow(<0,0,1>, <1,0,0>, <0, sqrt(2), 2>, 0.5, thick, drehwinkel13, 1) #declare l = 2.8; #declare h = 0.0001; diff --git a/buch/papers/clifford/3d/dq.tex b/buch/papers/clifford/3d/dq.tex new file mode 100644 index 0000000..6b28452 --- /dev/null +++ b/buch/papers/clifford/3d/dq.tex @@ -0,0 +1,51 @@ +% +% dq.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\definecolor{darkred}{rgb}{0.7,0,0} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{6} +\def\hoehe{6} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=12cm]{dq.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (-2.8,-2.7) {$O$}; +\node at (4.7,-3.4) {$a_1$}; +\node at (-2.6,5.2) {$a_2$}; +\fill[color=white,opacity=0.7] ({-5.7-0.25},{-4.8-0.15}) rectangle ({-5.7+0.25},{-4.8+0.2}); +\node at (-5.7,-4.8) {$a_3$}; + +\node[color=blue] at (-3.6,0.8) {$y\mathbf{e}_{23}$}; +\node[color=blue] at (2.1,0.9) {$x\mathbf{e}_{12}$}; +\node[color=blue] at (1.3,-3.7) {$z\mathbf{e}_{13}$}; + +\node[color=darkred] at (1.3,0.4) {$\vec{q}$}; + +\end{tikzpicture} + +\end{document} + -- cgit v1.2.1 From 001c12e5156f2e3b656bd42608768af5c3db4171 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 5 Aug 2021 19:14:44 +0200 Subject: Zwei Drehungen --- buch/papers/clifford/3d/Makefile | 16 +++++---- buch/papers/clifford/3d/dq.pdf | Bin 156467 -> 156467 bytes buch/papers/clifford/3d/qq.pdf | Bin 0 -> 170922 bytes buch/papers/clifford/3d/qq.tex | 68 +++++++++++++++++++++++++++++++++++++++ 4 files changed, 78 insertions(+), 6 deletions(-) create mode 100644 buch/papers/clifford/3d/qq.pdf create mode 100644 buch/papers/clifford/3d/qq.tex (limited to 'buch') diff --git a/buch/papers/clifford/3d/Makefile b/buch/papers/clifford/3d/Makefile index 87acb6d..823ad54 100644 --- a/buch/papers/clifford/3d/Makefile +++ b/buch/papers/clifford/3d/Makefile @@ -3,9 +3,8 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: dq.jpg q23.jpg q31.jpg drehung.jpg dq.pdf +all: dq.jpg q23.jpg q31.jpg drehung.jpg dq.pdf qq.pdf -size="+W1920 +H1080" size="+W3840 +H2160" dq.png: dq.pov common.inc @@ -15,15 +14,20 @@ dq.jpg: dq.png Makefile dq.pdf: dq.jpg dq.tex pdflatex dq.tex +extract="1200x1200+1450+350" + q23.png: q23.pov common.inc povray +A0.1 $(size) -Oq23.png q23.pov -q23.jpg: q23.png - convert q23.png -density 300 -units PixelsPerInch q23.jpg +q23.jpg: q23.png Makefile + convert -extract $(extract) q23.png -density 300 -units PixelsPerInch q23.jpg q31.png: q31.pov common.inc povray +A0.1 $(size) -Oq31.png q31.pov -q31.jpg: q31.png - convert q31.png -density 300 -units PixelsPerInch q31.jpg +q31.jpg: q31.png Makefile + convert -extract $(extract) q31.png -density 300 -units PixelsPerInch q31.jpg + +qq.pdf: qq.tex q31.jpg q23.jpg + pdflatex qq.tex drehung.png: drehung.pov common.inc povray +A0.1 $(size) -Odrehung.png drehung.pov diff --git a/buch/papers/clifford/3d/dq.pdf b/buch/papers/clifford/3d/dq.pdf index 1bcaf2c..59a1498 100644 Binary files a/buch/papers/clifford/3d/dq.pdf and b/buch/papers/clifford/3d/dq.pdf differ diff --git a/buch/papers/clifford/3d/qq.pdf b/buch/papers/clifford/3d/qq.pdf new file mode 100644 index 0000000..07a871c Binary files /dev/null and b/buch/papers/clifford/3d/qq.pdf differ diff --git a/buch/papers/clifford/3d/qq.tex b/buch/papers/clifford/3d/qq.tex new file mode 100644 index 0000000..c2ac1bc --- /dev/null +++ b/buch/papers/clifford/3d/qq.tex @@ -0,0 +1,68 @@ +% +% qq.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\definecolor{darkred}{rgb}{0.7,0,0} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{4} +\def\hoehe{4} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\begin{scope}[xshift=-3.3cm] +\node at (0,0) {\includegraphics[width=6.3cm]{q23.jpg}}; +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} +\fill[color=white,opacity=0.5] ({-0.6-0.3},{-0.2-0.2}) rectangle ({-0.6+0.3},{-0.2+0.2}); +\node[color=darkred] at (-0.6,-0.2) {$q_{23}$}; +\node[color=blue] at (-0.4,2.7) {$\mathbf{v}$}; +\node[color=blue] at (0.7,0.4) {$\mathbf{v}''_{23}$}; +\node at (3.1,-1.4) {$a_1$}; +\node at (-2.7,-2.4) {$a_3$}; +\node at (-0.7,3.4) {$a_2$}; +\end{scope} + +\setboolean{showgrid}{false} + +\begin{scope}[xshift=3.3cm] +\node at (0,0) {\includegraphics[width=6.3cm]{q31.jpg}}; +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} +\fill[color=white,opacity=0.5] ({-0.7-0.3},{-0.9-0.2}) rectangle ({-0.7+0.3},{-0.9+0.2}); +\node[color=darkred] at (-0.7,-0.9) {$q_{13}$}; +\node[color=blue] at (0.7,0.4) {$\mathbf{v}''_{23}$}; +\node[color=blue] at (2.7,-0.7) {$\mathbf{v}''$}; +\node at (3.1,-1.4) {$a_1$}; +\node at (-2.7,-2.4) {$a_3$}; +\node at (-0.7,3.4) {$a_2$}; +\end{scope} + + +\end{tikzpicture} + +\end{document} + -- cgit v1.2.1 From e5df99c1ee45a6897c4fe98b018088ef0289f7e5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 5 Aug 2021 19:35:13 +0200 Subject: add images for clifford --- buch/papers/clifford/3d/Makefile | 8 ++++-- buch/papers/clifford/3d/dq.jpg | Bin 0 -> 135038 bytes buch/papers/clifford/3d/dq.pdf | Bin 156467 -> 156467 bytes buch/papers/clifford/3d/drehung.jpg | Bin 0 -> 203814 bytes buch/papers/clifford/3d/drehung.pdf | Bin 0 -> 224521 bytes buch/papers/clifford/3d/drehung.tex | 56 ++++++++++++++++++++++++++++++++++++ buch/papers/clifford/3d/q23.jpg | Bin 0 -> 77888 bytes buch/papers/clifford/3d/q31.jpg | Bin 0 -> 75576 bytes buch/papers/clifford/3d/qq.pdf | Bin 170922 -> 170756 bytes buch/papers/clifford/3d/qq.tex | 12 ++++---- 10 files changed, 67 insertions(+), 9 deletions(-) create mode 100644 buch/papers/clifford/3d/dq.jpg create mode 100644 buch/papers/clifford/3d/drehung.jpg create mode 100644 buch/papers/clifford/3d/drehung.pdf create mode 100644 buch/papers/clifford/3d/drehung.tex create mode 100644 buch/papers/clifford/3d/q23.jpg create mode 100644 buch/papers/clifford/3d/q31.jpg (limited to 'buch') diff --git a/buch/papers/clifford/3d/Makefile b/buch/papers/clifford/3d/Makefile index 823ad54..147ca81 100644 --- a/buch/papers/clifford/3d/Makefile +++ b/buch/papers/clifford/3d/Makefile @@ -3,7 +3,7 @@ # # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -all: dq.jpg q23.jpg q31.jpg drehung.jpg dq.pdf qq.pdf +all: dq.jpg q23.jpg q31.jpg drehung.jpg dq.pdf qq.pdf drehung.pdf size="+W3840 +H2160" @@ -31,6 +31,8 @@ qq.pdf: qq.tex q31.jpg q23.jpg drehung.png: drehung.pov common.inc povray +A0.1 $(size) -Odrehung.png drehung.pov -drehung.jpg: drehung.png - convert drehung.png -density 300 -units PixelsPerInch drehung.jpg +drehung.jpg: drehung.png Makefile + convert -extract 1600x1450+1400+50 drehung.png -density 300 -units PixelsPerInch drehung.jpg +drehung.pdf: drehung.tex drehung.jpg + pdflatex drehung.tex diff --git a/buch/papers/clifford/3d/dq.jpg b/buch/papers/clifford/3d/dq.jpg new file mode 100644 index 0000000..bd44a65 Binary files /dev/null and b/buch/papers/clifford/3d/dq.jpg differ diff --git a/buch/papers/clifford/3d/dq.pdf b/buch/papers/clifford/3d/dq.pdf index 59a1498..71727d2 100644 Binary files a/buch/papers/clifford/3d/dq.pdf and b/buch/papers/clifford/3d/dq.pdf differ diff --git a/buch/papers/clifford/3d/drehung.jpg b/buch/papers/clifford/3d/drehung.jpg new file mode 100644 index 0000000..ad7cd47 Binary files /dev/null and b/buch/papers/clifford/3d/drehung.jpg differ diff --git a/buch/papers/clifford/3d/drehung.pdf b/buch/papers/clifford/3d/drehung.pdf new file mode 100644 index 0000000..de29085 Binary files /dev/null and b/buch/papers/clifford/3d/drehung.pdf differ diff --git a/buch/papers/clifford/3d/drehung.tex b/buch/papers/clifford/3d/drehung.tex new file mode 100644 index 0000000..2ed6789 --- /dev/null +++ b/buch/papers/clifford/3d/drehung.tex @@ -0,0 +1,56 @@ +% +% drehung.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{times} +\usepackage{amsmath} +\usepackage{txfonts} +\usepackage[utf8]{inputenc} +\usepackage{graphics} +\usetikzlibrary{arrows,intersections,math} +\usepackage{ifthen} +\begin{document} + +\definecolor{darkgreen}{rgb}{0,0.6,0} +\definecolor{darkred}{rgb}{0.6,0,0} + +\newboolean{showgrid} +\setboolean{showgrid}{false} +\def\breite{7} +\def\hoehe{6} + +\begin{tikzpicture}[>=latex,thick] + +% Povray Bild +\node at (0,0) {\includegraphics[width=13cm]{drehung.jpg}}; + +% Gitter +\ifthenelse{\boolean{showgrid}}{ +\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe); +\draw (-\breite,-\hoehe) grid (\breite, \hoehe); +\fill (0,0) circle[radius=0.05]; +}{} + +\node at (6.1,-3.3) {$a_1$}; +\node at (-2.0,5.7) {$a_2$}; +\node at (-5.7,-4.9) {$a_3$}; + +\node[color=white] at (-1.9,4.4) {$\boldsymbol{v}$}; +\node[color=white] at (4.5,-2.7) {$\boldsymbol{v}''$}; + +\node[color=darkgreen] at (-3.3,4.4) {$\boldsymbol{v}_{\perp}$}; +\node[color=darkgreen] at (4.2,-4.3) {$\boldsymbol{v}''_{\perp}$}; + +\node[color=blue] at (-3.7,1.5) {$\boldsymbol{v}_{\|}$}; +\node[color=blue] at (1.9,-4.7) {$\boldsymbol{v}''_{\|}$}; + +\node[color=darkred] at (-1.6,-4.2) {$2\alpha=120^\circ$}; +\node[color=darkred] at (-4.9,-0.6) {$\boldsymbol{q}$}; + +\end{tikzpicture} + +\end{document} + diff --git a/buch/papers/clifford/3d/q23.jpg b/buch/papers/clifford/3d/q23.jpg new file mode 100644 index 0000000..50ca028 Binary files /dev/null and b/buch/papers/clifford/3d/q23.jpg differ diff --git a/buch/papers/clifford/3d/q31.jpg b/buch/papers/clifford/3d/q31.jpg new file mode 100644 index 0000000..10313fa Binary files /dev/null and b/buch/papers/clifford/3d/q31.jpg differ diff --git a/buch/papers/clifford/3d/qq.pdf b/buch/papers/clifford/3d/qq.pdf index 07a871c..4c55d57 100644 Binary files a/buch/papers/clifford/3d/qq.pdf and b/buch/papers/clifford/3d/qq.pdf differ diff --git a/buch/papers/clifford/3d/qq.tex b/buch/papers/clifford/3d/qq.tex index c2ac1bc..9baa8bb 100644 --- a/buch/papers/clifford/3d/qq.tex +++ b/buch/papers/clifford/3d/qq.tex @@ -33,9 +33,9 @@ \fill (0,0) circle[radius=0.05]; }{} \fill[color=white,opacity=0.5] ({-0.6-0.3},{-0.2-0.2}) rectangle ({-0.6+0.3},{-0.2+0.2}); -\node[color=darkred] at (-0.6,-0.2) {$q_{23}$}; -\node[color=blue] at (-0.4,2.7) {$\mathbf{v}$}; -\node[color=blue] at (0.7,0.4) {$\mathbf{v}''_{23}$}; +\node[color=darkred] at (-0.6,-0.2) {$\boldsymbol{q}_{23}$}; +\node[color=blue] at (-0.4,2.7) {$\boldsymbol{v}$}; +\node[color=blue] at (0.7,0.4) {$\boldsymbol{v}''_{23}$}; \node at (3.1,-1.4) {$a_1$}; \node at (-2.7,-2.4) {$a_3$}; \node at (-0.7,3.4) {$a_2$}; @@ -53,9 +53,9 @@ \fill (0,0) circle[radius=0.05]; }{} \fill[color=white,opacity=0.5] ({-0.7-0.3},{-0.9-0.2}) rectangle ({-0.7+0.3},{-0.9+0.2}); -\node[color=darkred] at (-0.7,-0.9) {$q_{13}$}; -\node[color=blue] at (0.7,0.4) {$\mathbf{v}''_{23}$}; -\node[color=blue] at (2.7,-0.7) {$\mathbf{v}''$}; +\node[color=darkred] at (-0.7,-0.9) {$\boldsymbol{q}_{13}$}; +\node[color=blue] at (0.7,0.4) {$\boldsymbol{v}''_{23}$}; +\node[color=blue] at (2.7,-0.7) {$\boldsymbol{v}''$}; \node at (3.1,-1.4) {$a_1$}; \node at (-2.7,-2.4) {$a_3$}; \node at (-0.7,3.4) {$a_2$}; -- cgit v1.2.1 From 8f906697fbe2f35756537e95e034ae8f88f8f026 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 6 Aug 2021 13:38:46 +0200 Subject: Corrections from feedback --- buch/papers/punktgruppen/crystals.tex | 2 +- buch/papers/punktgruppen/intro.tex | 4 ++-- buch/papers/punktgruppen/piezo.tex | 2 +- buch/papers/punktgruppen/symmetry.tex | 27 ++++++++++++++------------- 4 files changed, 18 insertions(+), 17 deletions(-) (limited to 'buch') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 45761f8..4b93927 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -145,7 +145,7 @@ Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:kristallklas \begin{itemize} \item In Kristallen ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\) zu finden. Es gäbe auch die Ikosaedergruppe \(I\) und die Kugelgruppe \(K\), diese sind aber nach Satz \ref{thm:punktgruppen:crystal-restriction} nicht kompatibel mit der Translationssymmetrie eines Kristalles und daher in der Kristallographie nicht relevant. - \item Dank Abschintt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. + \item Dank Abschnitt \ref{sec:punktgruppen:Translationssymmetrie} wissen wir, wieso in Abbildung \ref{fig:punktgruppen:kristallklassen} auf \(C\) nur ganz bestimmte Subskripte folgen. Ist im Subskript eine Zahl \(n\) zu finden, steht dies für eine \(n\)-fache Symmetrie. Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:kristallklassen} nicht vorkommen, da \(360^\circ/5 = 72^\circ\) was nach Satz \ref{thm:punktgruppen:crystal-restriction} keine mögliche Rotationssymmetrie eines Kristalles ist. \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. diff --git a/buch/papers/punktgruppen/intro.tex b/buch/papers/punktgruppen/intro.tex index 0a0cc86..e3f0226 100644 --- a/buch/papers/punktgruppen/intro.tex +++ b/buch/papers/punktgruppen/intro.tex @@ -1,7 +1,7 @@ \section{Einleitung} Es gibt viele Möglichkeiten sich in Kristallen zu verlieren. -Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen sich mit Kristallen zu beschäftigen. +Auch wenn man nur die mathematischen Betrachtungsweisen berücksichtigt, hat man noch viel zu viele Optionen, sich mit Kristallen zu beschäftigen. In diesem Kapitel wird daher der Fokus ``nur'' auf die Symmetrie gelegt. Zu Beginn werden wir zeigen, was eine Symmetrie ausmacht und dass sie noch weit mehr in sich verbirgt als nur schön auszusehen. Die vorgestellten Symmetrien sind äusserst gut geeignet, um die Grundeigenschaften eines Kristalles zu beschreiben. @@ -10,7 +10,7 @@ Diese erlauben alle möglichen Kristalle nach ihren Symmetrien in erstaunlich we Kategorien sind nicht nur für einen besseren Überblick nützlich, sondern kann man aus ihnen auch auf physikalische Eigenschaften schliessen. Als spannendes Beispiel: Die Piezoelektrizität. Piezoelektrizität beschreibt einen Effekt, ohne welchen diverse Altagsgegenständen nicht besonders nützlich wären. -Wie zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. +Zum Beispiel sorgt er in den allermeisten Feuerzeugen für die Zündung. Hiermit ist hoffentlich ein Funken Interesse geweckt um sich mit dem scheinbar trivialen Thema der Symmetrie auseinander zu setzten. %% vim:linebreak breakindent showbreak=.. spell spelllang=de: diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 334e4e7..1cf9b98 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -73,5 +73,5 @@ Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu einer kon Drückt der Nutzende stärker zu, entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, welcher auf das Piezoelement aufschlägt. Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. -Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich am anderen zu versuchen. +Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass der eine eine Punktsymmetrie aufweist, empfiehlt es sich, sich mit dem anderen zu versuchen. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 51620a4..4a8d911 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -20,11 +20,11 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi \subsection{Geometrische Symmetrien} In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. -Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. +Zum Beispiel hat das Quadrat eine Gerade, an der es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Das letzte Beispiel auf der rechts ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. -Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. +Zum Beispiel kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] @@ -45,7 +45,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine \begin{definition}[Zyklische Untergruppe, Erzeuger] Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. - Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. + Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}\) wird mit spitzen Klammern bezeichnet. \end{definition} \begin{beispiel} Um die Syntax zu verstehen, betrachten wir eine durch \(a\) erzeugte Gruppe \(G = \langle a \rangle\). @@ -57,11 +57,11 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ C_n = \langle r \rangle - = \left\{\mathds{1}, r, r^2, \ldots, r^{n-1}\right\} + = \{\mathds{1}, r, r^2, \ldots, r^{n-1}\} \] der Drehungen eines \(n\)-Gons zu erzeugen. Das liegt daran, dass wir durch die mehrfache Verwendung von \(r\) jeden Winkel erzeugen k\"onnen, der die Rotationssymmetrie bewahrt. - In ähnlicher Weise, aber weniger interessant enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). + In ähnlicher Weise, aber weniger interessant, enthält die Reflexionssymmetriegruppe \(\langle\sigma\rangle\) nur \(\left\{\mathds{1}, \sigma\right\}\), weil \(\sigma^2 = \mathds{1}\). \end{beispiel} Wenn wir diese Idee nun erweitern, können wir mit einem Erzeugendensystem @@ -70,7 +70,7 @@ komplexere Strukturen aufbauen. %@Naoki Are you ok with my grammar fixes I'm not 101% shore how to use the word Erzeugendensystem? \begin{definition}[Erzeugendensystem] Jede diskrete Gruppe kann durch eines oder mehrere ihrer Elemente generiert werden. - Wir lassen \(g_1, g_2, \ldots, g_n\) erzeugenden Elemente einer Symmetriegruppe sein. + Wir lassen \(g_1, g_2, g_3, \ldots\) erzeugenden Elemente einer Symmetriegruppe sein. Da es mehrere Erzeuger gibt, müssen auch die sogenannten Definitionsgleichungen gegeben werden, die die Multiplikationstabelle vollständig definieren. Die Gleichungen sind ebenfalls in den Klammern angegeben. Die erzeugenden Elementen bauen zusammen mit den Definitionsgleichungen ein Erzeugendensystem. @@ -84,10 +84,10 @@ komplexere Strukturen aufbauen. Daraus ergibt sich die so genannte Diedergruppe \begin{align*} D_n &= \langle r, \sigma : r^n = \sigma^2 = (\sigma r)^2 = \mathds{1} \rangle \\ - &= \left\{ + &= \{ \mathds{1}, r, \ldots, r^{n-1}, \sigma, \sigma r, \ldots, \sigma r^{n-1} - \right\}. - \end{align*} \qedhere + \}. \qedhere + \end{align*} \end{beispiel} Die Symmetrieoperationen, die wir bis jetzt besprochen haben, haben immer mindestens einen Punkt gehabt, der wieder auf sich selbst abgebildet wird. @@ -115,11 +115,12 @@ Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \end{beispiel} \begin{definition}[Darstellung einer Gruppe] - Die Darstellung einer Gruppe ist ein Homomorphismus, der eine Symmetriegruppe auf eine Menge von Matrizen abbildet. + Die Darstellung einer Gruppe ist ein Homomorphismus \[ - \Phi: G \to \operatorname{GL}_n(\mathbb{R}). + \Phi: G \to \operatorname{GL}_n(\mathbb{R}), \] - Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man definiert \(\Phi : G \times V \to V\). + der eine Symmetriegruppe auf eine Menge von Matrizen abbildet. + Äquivalent kann man sagen, dass ein Element aus der Symmetriegruppe auf einen Vektorraum \(V\) wirkt, indem man \(\Phi : G \times V \to V\) definiert. \end{definition} \begin{beispiel} Die Elemente \(r^k \in C_n\), wobei \(0 < k < n\), stellen abstrakt eine Drehung von \(2\pi k/n\) um den Ursprung dar. -- cgit v1.2.1 From 872595e81de60c85b18408f8de5a49c535518edc Mon Sep 17 00:00:00 2001 From: Nunigan Date: Fri, 6 Aug 2021 17:37:58 +0200 Subject: update multiplikation --- buch/papers/multiplikation/code/MM.py | 46 +++---- buch/papers/multiplikation/code/c_meas_4096.pdf | Bin 17400 -> 17448 bytes buch/papers/multiplikation/code/meas/MM.txt | 4 +- buch/papers/multiplikation/code/meas/blas.txt | 2 +- buch/papers/multiplikation/code/meas/strassen.txt | 2 +- buch/papers/multiplikation/code/meas/winograd.txt | 2 +- buch/papers/multiplikation/code/meas_1024.pdf | Bin 18813 -> 18813 bytes buch/papers/multiplikation/images/bigo.pdf | Bin 27173 -> 28372 bytes buch/papers/multiplikation/images/bigo.tex | 24 ++-- buch/papers/multiplikation/images/meas_c.pdf | Bin 0 -> 23161 bytes buch/papers/multiplikation/images/meas_c.tex | 143 ++++++++++++++++++++++ buch/papers/multiplikation/images/meas_python.pdf | Bin 0 -> 21700 bytes buch/papers/multiplikation/images/meas_python.tex | 137 +++++++++++++++++++++ buch/papers/multiplikation/loesungsmethoden.tex | 44 ++++--- buch/papers/multiplikation/problemstellung.tex | 33 +++-- 15 files changed, 363 insertions(+), 74 deletions(-) create mode 100644 buch/papers/multiplikation/images/meas_c.pdf create mode 100644 buch/papers/multiplikation/images/meas_c.tex create mode 100644 buch/papers/multiplikation/images/meas_python.pdf create mode 100644 buch/papers/multiplikation/images/meas_python.tex (limited to 'buch') diff --git a/buch/papers/multiplikation/code/MM.py b/buch/papers/multiplikation/code/MM.py index 47bd6ab..7220ae1 100644 --- a/buch/papers/multiplikation/code/MM.py +++ b/buch/papers/multiplikation/code/MM.py @@ -226,28 +226,28 @@ def plot_c_res(ave, num): MM_t = MM[:,0] MM_n = MM[:,1] - MM_t = np.mean(MM_t.reshape(-1,ave),axis=1) - MM_n = np.mean(MM_n.reshape(-1,ave),axis=1) + # MM_t = np.mean(MM_t.reshape(-1,ave),axis=1) + # MM_n = np.mean(MM_n.reshape(-1,ave),axis=1) MM_dc_t = MM_dc[:,0] MM_dc_n = MM_dc[:,1] - MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1) - MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1) + # MM_dc_t = np.mean(MM_dc_t.reshape(-1,ave),axis=1) + # MM_dc_n = np.mean(MM_dc_n.reshape(-1,ave),axis=1) strassen_t = strassen[:,0] strassen_n = strassen[:,1] - strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1) - strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1) + # strassen_t = np.mean(strassen_t.reshape(-1,ave),axis=1) + # strassen_n = np.mean(strassen_n.reshape(-1,ave),axis=1) winograd_t = winograd[:,0] winograd_n = winograd[:,1] - winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1) - winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1) + # winograd_t = np.mean(winograd_t.reshape(-1,ave),axis=1) + # winograd_n = np.mean(winograd_n.reshape(-1,ave),axis=1) blas_t = blas[:,0] blas_n = blas[:,1] - blas_t = np.mean(blas_t.reshape(-1,ave),axis=1) - blas_n = np.mean(blas_n.reshape(-1,ave),axis=1) + # blas_t = np.mean(blas_t.reshape(-1,ave),axis=1) + # blas_n = np.mean(blas_n.reshape(-1,ave),axis=1) def func(x, a,b): return b*x**a @@ -261,14 +261,16 @@ def plot_c_res(ave, num): plt.rc('axes', labelsize=23) plt.rc('xtick', labelsize=23) plt.rc('ytick', labelsize=23) - plt.plot(MM_n, MM_t, label='3 For Loops', lw=5) - plt.plot(winograd_n, winograd_t, label='Winograd MM', lw=5) - plt.plot(blas_n, blas_t, label='Blas', lw=5) - plt.plot(strassen_n, strassen_t, label='Strassen', lw=5) - plt.plot(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5) + plt.loglog(MM_n, MM_t, label='3 For Loops', lw=5) + plt.loglog(winograd_n, winograd_t, label='Winograd MM', lw=5) + plt.loglog(blas_n, blas_t, label='Blas', lw=5) + plt.loglog(strassen_n, strassen_t, label='Strassen', lw=5) + plt.loglog(MM_dc_n, MM_dc_t, label='Divide and Conquer', lw=5) plt.xlabel("n") + # plt.yscale('log', base=10) + # plt.xscale('log', base=2) plt.ylabel("time (s)") - plt.grid(True) + plt.grid(True, which="both", ls="-") plt.tight_layout() plt.legend(fontsize=19) plt.savefig('c_meas_' + str(num)+ '.pdf') @@ -278,15 +280,17 @@ def plot_c_res(ave, num): # plt.plot(blas_n, func(blas_n, *popt2), 'r-', label='fit MM: a=%5.5f, b=%5.10f' % tuple(popt2)) plt.legend() - + # return [MM_n,winograd_n,blas_n,strassen_n,MM_dc_n] + return [MM_t,winograd_t,blas_t,strassen_t,MM_dc_t] + # test%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if __name__ == '__main__': - # plot_c_res(1, 4096) + # A = plot_c_res(1, 4096) - # arr = plot(1024) - n = np.logspace(1,12,12,base=2,dtype=(np.int)) + arr = plot(1024) + # n = np.logspace(1,12,12,base=2,dtype=(np.int)) # n = np.arange(1,50,2) # A = np.random.randint(-10, 6, (5,3)) # B = np.random.randint(-10, 6, (3,5)) @@ -297,7 +301,7 @@ if __name__ == '__main__': # print(C_test) # print(np.equal(C, C_test)) - t_np = test_perfomance(n) + # t_np = test_perfomance(n) # C = strassen(A, B) # C_test = A@B diff --git a/buch/papers/multiplikation/code/c_meas_4096.pdf b/buch/papers/multiplikation/code/c_meas_4096.pdf index 304015a..5236afb 100644 Binary files a/buch/papers/multiplikation/code/c_meas_4096.pdf and b/buch/papers/multiplikation/code/c_meas_4096.pdf differ diff --git a/buch/papers/multiplikation/code/meas/MM.txt b/buch/papers/multiplikation/code/meas/MM.txt index 13b6312..e296dd7 100644 --- a/buch/papers/multiplikation/code/meas/MM.txt +++ b/buch/papers/multiplikation/code/meas/MM.txt @@ -1,5 +1,5 @@ -0.000000,2 -0.000000,4 +0.000001,2 +0.000001,4 0.000001,8 0.000010,16 0.000081,32 diff --git a/buch/papers/multiplikation/code/meas/blas.txt b/buch/papers/multiplikation/code/meas/blas.txt index c3ec7ec..92a61b9 100644 --- a/buch/papers/multiplikation/code/meas/blas.txt +++ b/buch/papers/multiplikation/code/meas/blas.txt @@ -1,5 +1,5 @@ 0.000001,2 -0.000000,4 +0.000001,4 0.000001,8 0.000003,16 0.000022,32 diff --git a/buch/papers/multiplikation/code/meas/strassen.txt b/buch/papers/multiplikation/code/meas/strassen.txt index 69ea472..fdfbf2b 100644 --- a/buch/papers/multiplikation/code/meas/strassen.txt +++ b/buch/papers/multiplikation/code/meas/strassen.txt @@ -1,4 +1,4 @@ -0.000000,2 +0.000001,2 0.000003,4 0.000010,8 0.000066,16 diff --git a/buch/papers/multiplikation/code/meas/winograd.txt b/buch/papers/multiplikation/code/meas/winograd.txt index 6e6208a..d185906 100644 --- a/buch/papers/multiplikation/code/meas/winograd.txt +++ b/buch/papers/multiplikation/code/meas/winograd.txt @@ -1,4 +1,4 @@ -0.000000,2 +0.000001,2 0.000001,4 0.000002,8 0.000011,16 diff --git a/buch/papers/multiplikation/code/meas_1024.pdf b/buch/papers/multiplikation/code/meas_1024.pdf index 3312420..f489a7d 100644 Binary files a/buch/papers/multiplikation/code/meas_1024.pdf and b/buch/papers/multiplikation/code/meas_1024.pdf differ diff --git a/buch/papers/multiplikation/images/bigo.pdf b/buch/papers/multiplikation/images/bigo.pdf index c29a891..8a53398 100644 Binary files a/buch/papers/multiplikation/images/bigo.pdf and b/buch/papers/multiplikation/images/bigo.pdf differ diff --git a/buch/papers/multiplikation/images/bigo.tex b/buch/papers/multiplikation/images/bigo.tex index a415ccb..9ee3a68 100644 --- a/buch/papers/multiplikation/images/bigo.tex +++ b/buch/papers/multiplikation/images/bigo.tex @@ -42,56 +42,56 @@ \begin{axis}[ xmode=log, ymode=log, - xmin=1e-0, xmax=5e1, + xmin=1e-0, xmax=5000, ymin=10e-1, ymax=1e7, grid=both, major grid style={black!50}, - xlabel = $n$ (Data Input), - ylabel = {$t$ (time)}, - legend pos=north east, + xlabel = data input size, + ylabel = {time}, + legend pos=north west, very thick, yticklabels=\empty, xticklabels=\empty, scale only axis=true, - width=12cm, height=6cm, + width=12cm, height=8cm, ] \addplot [ - domain= 1:50, + domain= 1:5000, samples=100, color=red, ] {1}; \addlegendentry{$\mathcal{O}(1)$} \addplot [ - domain= 1:50, + domain= 1:5000, samples=100, color=green, ] {x}; \addlegendentry{$\mathcal{O}(n)$} \addplot [ - domain= 1:50, + domain= 1:50000, samples=100, color=blue, ] {x^2}; \addlegendentry{$\mathcal{O}\left(n^2\right)$} \addplot [ - domain= 1:50, + domain= 1:500, samples=100, color=purple, ] {x^3}; \addlegendentry{$\mathcal{O}\left(n^3\right)$} \addplot [ - domain= 1:50, + domain= 1:500, samples=100, color=black, ] {exp(x) - 1.7}; \addlegendentry{$\mathcal{O}\left(e^n\right)$} \addplot [ - domain= 1:50, + domain= 1:5000, samples=100, color=orange, ] @@ -99,7 +99,7 @@ \addlegendentry{$\mathcal{O}(\log n)$} \addplot [ - domain= 1:50, + domain= 1:5000, samples=100, color=gray, ] diff --git a/buch/papers/multiplikation/images/meas_c.pdf b/buch/papers/multiplikation/images/meas_c.pdf new file mode 100644 index 0000000..3a4cfd8 Binary files /dev/null and b/buch/papers/multiplikation/images/meas_c.pdf differ diff --git a/buch/papers/multiplikation/images/meas_c.tex b/buch/papers/multiplikation/images/meas_c.tex new file mode 100644 index 0000000..818a7e6 --- /dev/null +++ b/buch/papers/multiplikation/images/meas_c.tex @@ -0,0 +1,143 @@ + +\documentclass[border=10pt,varwidth]{standalone} +\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{times} +\usepackage{geometry} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{mathrsfs} +\usepackage{amsfonts} +\usepackage{amsthm} +\usepackage{lipsum} +\usepackage{amscd} +\usepackage{graphicx} +\usepackage{fancyhdr} +\usepackage{textcomp} +\usepackage{pgfplots} +\usepackage{txfonts} +\usepackage[all]{xy} +\usepackage{paralist} +\usepackage[colorlinks=true]{hyperref} +\usepackage{array} +\usepackage{tikz} +\usepackage{slashed} +\usepackage{pdfpages} +\usepackage{cite} +\usepackage{url} +\usepackage{amsmath,amsfonts,amssymb} +\usepackage{tikz} +\usepackage{pgfplotstable} +\usetikzlibrary{arrows,matrix,positioning} +\usetikzlibrary{overlay-beamer-styles} +\usetikzlibrary{matrix.skeleton} +\usetikzlibrary{automata,positioning} +\usetikzlibrary{decorations.text} +\usepackage{listings} +\usepackage{multirow} +\usepackage{color} + +\begin{document} + +\begin{tikzpicture} +\begin{axis}[ +xmode=log, ymode=log, +xmin=60, xmax=5000, +ymin=1e-4, ymax=2e3, +grid=both, +major grid style={black!50}, +xlabel = data Input ($n$), +ylabel = {time ($s$)}, +legend pos=north west, +very thick, +scale only axis=true, +width=12cm, height=8cm, + log basis x={10} +] +\addlegendentry{Winograd} +\addplot[ color=purple, +] coordinates { +% (2, 0.000001) +% (4, 0.000001) +% (8, 0.000002) +% (16, 0.000011) +% (32, 0.000100) +(64, 0.000654) +(128, 0.005229) +(256, 0.057440) +(512, 0.517850) +(1024,4.539413) +(2048,130.627663) +(4096,1179.261048) +}; +\addlegendentry{Strassen} +\addplot [ color=black, +]coordinates { + % (2,0.000001 ) + % (4,0.000003 ) + % (8,0.000010 ) + % (16,0.000066 ) + % (32,0.000470 ) + (64,0.003368 ) + (128,0.024232 ) + (256,0.172000 ) + (512,1.209262 ) +(1024,8.457472 ) +(2048,59.267256) +(4096,414.648901) +}; + +\addlegendentry{MM div and conq} +\addplot[ color=green, +] coordinates { + % (2,0.000003 ) + % (4,0.000002 ) + % (8,0.000010 ) + % (16,0.000068 ) + % (32,0.000594 ) + (64,0.004264 ) + (128,0.036289 ) + (256,0.324645 ) + (512,2.612010 ) +(1024,19.928951 ) +(2048,159.333884 ) +(4096,1147.106865) +}; + +\addlegendentry{MM} +\addplot [ color=red, +]coordinates { + % (2,0.000001 ) + % (4,0.000001 ) + % (8,0.000001 ) + % (16,0.000010 ) + % (32,0.000081 ) + (64,0.000654 ) + (128,0.005556 ) + (256,0.054253 ) + (512,0.487317 ) +(1024,4.162845 ) +(2048,125.909034 ) +(4096,1111.312696) +}; +\addlegendentry{BLAS} +\addplot[ color=blue, +] coordinates { + % (2,0.000001 ) + % (4,0.000001 ) + % (8,0.000001 ) + % (16,0.000003 ) + % (32,0.000022 ) + (64,0.000179 ) + (128,0.001278 ) + (256,0.010165 ) + (512,0.074739 ) +(1024,0.704748 ) +(2048,6.845095 ) +(4096,55.845038) +}; +\end{axis} +\end{tikzpicture} + +\end{document} diff --git a/buch/papers/multiplikation/images/meas_python.pdf b/buch/papers/multiplikation/images/meas_python.pdf new file mode 100644 index 0000000..cea2232 Binary files /dev/null and b/buch/papers/multiplikation/images/meas_python.pdf differ diff --git a/buch/papers/multiplikation/images/meas_python.tex b/buch/papers/multiplikation/images/meas_python.tex new file mode 100644 index 0000000..ee4db43 --- /dev/null +++ b/buch/papers/multiplikation/images/meas_python.tex @@ -0,0 +1,137 @@ + +\documentclass[border=10pt,varwidth]{standalone} +\usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{times} +\usepackage{geometry} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{mathrsfs} +\usepackage{amsfonts} +\usepackage{amsthm} +\usepackage{lipsum} +\usepackage{amscd} +\usepackage{graphicx} +\usepackage{fancyhdr} +\usepackage{textcomp} +\usepackage{pgfplots} +\usepackage{txfonts} +\usepackage[all]{xy} +\usepackage{paralist} +\usepackage[colorlinks=true]{hyperref} +\usepackage{array} +\usepackage{tikz} +\usepackage{slashed} +\usepackage{pdfpages} +\usepackage{cite} +\usepackage{url} +\usepackage{amsmath,amsfonts,amssymb} +\usepackage{tikz} +\usepackage{pgfplotstable} +\usetikzlibrary{arrows,matrix,positioning} +\usetikzlibrary{overlay-beamer-styles} +\usetikzlibrary{matrix.skeleton} +\usetikzlibrary{automata,positioning} +\usetikzlibrary{decorations.text} +\usepackage{listings} +\usepackage{multirow} +\usepackage{color} + +\begin{document} + +\begin{tikzpicture} +\begin{axis}[ +xmode=log, ymode=log, +xmin=30, xmax=1050, +ymin=0.01, ymax=900, +grid=both, +major grid style={black!50}, +xlabel = data input ($n$), +ylabel = {time ($s$)}, +legend pos=north west, +very thick, +scale only axis=true, +width=12cm, height=8cm, + log basis x={10} +] +\addlegendentry{Winograd} +\addplot[ color=purple, +] coordinates { +% (2, 2.7895e-05 ) +% (4, 0.000104904) +% (8, 0.000552893) +% (16, 0.0045557 ) +(32, 0.0187144 ) +(64, 0.153069 ) +(128, 1.19476 ) +(256, 8.29899 ) +(512, 68.3699 ) +(1024,537.374 ) + +}; +\addlegendentry{Strassen} +\addplot [ color=black, +]coordinates { + % (2,2.09808e-05 ) + % (4,0.000174284 ) + % (8,0.000943899 ) + % (16,0.00475407 ) + (32,0.0485256 ) + (64,0.220414 ) + (128,1.44718 2 ) + (256,9.93866 0 ) + (512,63.961 2 ) +(1024,461.494 2 ) +}; + +\addlegendentry{MM div and conq} +\addplot[ color=green, +] coordinates { + % (2,8.10623e-06 ) + % (4,9.01222e-05 ) + % (8,0.000729084 ) + % (16,0.00497079 ) + (32,0.02719 ) + (64,0.26528 ) + (128,1.77787 ) + (256,13.27 ) + (512,105.397 ) +(1024,847.321 ) +}; + +\addlegendentry{MM} +\addplot [ color=red, +]coordinates { + % (2,1.85966e-05) + % (4,8.29697e-05 ) + % (8,0.000547171) + % (16,0.00305367 ) + (32, 0.0240743 ) + (64, 0.186895 ) + (128, 1.56369 ) + (256, 11.0062 ) + (512, 85.4768) +(1024,750.757 ) +}; +% \addlegendentry{NumPy} +% \addplot[ color=blue, +% ] coordinates { +% (2,1.83582e-05 ) +% (4,7.86781e-06) +% (8,1.00136e-05) +% (16,5.4121e-05 ) +% (32,4.26769e-05) +% (64,0.000118494) +% (128,0.000244141 ) +% (256,0.000695705 ) +% (512,0.00221705 ) +% (1024,0.0188088 ) +% }; +\end{axis} +\end{tikzpicture} + +\end{document} + + + diff --git a/buch/papers/multiplikation/loesungsmethoden.tex b/buch/papers/multiplikation/loesungsmethoden.tex index 43181d4..a7612e1 100755 --- a/buch/papers/multiplikation/loesungsmethoden.tex +++ b/buch/papers/multiplikation/loesungsmethoden.tex @@ -15,7 +15,7 @@ Die Standardmethode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen w Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert. Die \texttt{for i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{for j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{for k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten. -\begin{algorithm}\footnotesize\caption{Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Matrizenmultiplikation} \label{multiplikation:alg:smm} \setlength{\lineskip}{7pt} \begin{algorithmic}[1] @@ -50,7 +50,7 @@ Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Die Matrizenmultiplikation kann ebenfalls mit solch einem Ansatz berechnet werden. Zur vereinfachten Veranschaulichung kann die Situation mit $\mathbf{A}$ und $\mathbf{B}$ der Gr\"osse $2^n \times 2^n$ verwendet werden. Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der Gr\"osse $2^{n-1} \times 2^{n-1}$ aufgeteilt. -Das Matrizen produklt +Das Matrizen Produkt \begin{equation} \mathbf{A}\mathbf{B}= \begin{bmatrix} @@ -76,7 +76,7 @@ ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, f\"ur die Multiplik Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz, Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen. Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ durchgef\"uhrt. -\begin{algorithm}\footnotesize\caption{Divide and Conquer Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Divide and Conquer Matrizenmultiplikation} \setlength{\lineskip}{7pt} \label{multiplikation:alg:devide_mm} \begin{algorithmic} @@ -105,7 +105,7 @@ Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ \end{algorithmic} \end{algorithm} -Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} \cite{multiplikation:master_theorem} berechnet werden. Das \textit{Master Theorem} bestimmt die Zeitkomplexit\"at von rekursiven Algortihmen. +Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} \cite{multiplikation:master_theorem} berechnet werden. Das \textit{Master Theorem} bestimmt die Zeitkomplexit\"at von rekursiven Algorithmen. Ohne auf dieses vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe $\mathcal{T} $ der Funktion die Laufzeit. In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt \begin{equation} \label{multiplikation:eq:laufzeitdac} @@ -141,7 +141,7 @@ aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Bl\"ocke \end{split} \end{equation} der Matrix $\mathbf{C}$ gebraucht. -\begin{algorithm}\footnotesize\caption{Strassen Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Strassen Matrizenmultiplikation} \label{multiplikation:alg:strassen} \setlength{\lineskip}{7pt} \begin{algorithmic} @@ -186,7 +186,7 @@ der Matrix $\mathbf{C}$ gebraucht. \EndFunction \end{algorithmic} \end{algorithm} -Strassen's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. +Strassens Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt. Jedes Feld steht f\"ur eine Multiplikation zweier Matrizenelementen von $\mathbf{A}$ oder $\mathbf{B}$ . Die gr\"unen Felder auf der linken Seite, zeigen die Addition, welche f\"ur den dazugeh\"origen Term ben\"otigt wird. Die sieben Spalten beschreiben die Matrizen $\mathbf{P,Q,R, \dotsb, V}$. @@ -194,7 +194,7 @@ Rote Felder stehen f\"ur eine Subtraktion und die gr\"unen f\"ur eine Addition. \begin{figure} \center \includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf} - \caption{Strassen's Algorithmus} + \caption{Strassens Algorithmus} \label{multiplikation:fig:strassen} \end{figure} @@ -207,7 +207,7 @@ Dies f\"uhrt nach dem \textit{Master Theorem} zu einer Laufzeit von und ist somit schneller als die Standardmethode. Man beachte, dass die Anzahl von Additionen und Subtraktionen gr\"osser und die Anzahl der Multiplikationen kleiner wurde. -\subsection{Winograd's Algorithmus} +\subsection{Winograds Algorithmus} Einen weiteren Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}. Er beschrieb einen neuen Algorithmus f\"ur das Skalarprodukt @@ -232,9 +232,10 @@ Das Skalarprodukt ist nun geben mit \displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{wenn $n$ ungerade}. \end{cases} \end{equation} -Das Skalarprodukt kann also mit $ \lfloor \frac{n+1}{2} \rfloor$ weiteren Multiplikationen brechnet werden. +Das Skalarprodukt kann also mit $ \lfloor \frac{n+1}{2} \rfloor$ weiteren Multiplikationen berechnet werden. Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte. Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt. +Die Summen f\"ur $\xi$ und $\eta$ m\"ussen nur einmal berechnet werden. Für die Gleichung \eqref{multiplikation:eq:skalar} benötigt man $Tn$ Multiplikationen. Im Vergleich mit der neuen Methode \begin{equation} @@ -254,15 +255,20 @@ Dies f\"uhrt zu Multiplikationen. Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt. Was im Vergleich zu den $mpn$ Multiplikation der Standardmethode nur die H\"alfte ist. -Mit dem glichen Ansatz wie in der Gleichung \ref{multiplikation:eq:eff} aber mit quadratischen Matrizen, muss +Mit dem gleichen Ansatz wie in der Gleichung \ref{multiplikation:eq:eff} aber mit quadratischen Matrizen, muss \begin{equation} - N=2n \ll T=n^2 + \begin{split} +N=2n, \quad T = n^2 \\ + 2n \leq n^2 \\ + 2 \leq n +\end{split} \end{equation} -damit man etwas einspart. +sein, damit man etwas einspart. Die Implementation kann Algorithmus \ref{multiplikation:alg:winograd} entnommen werden. -Falls $m=n=p$ werden $\frac{n^3}/{2}$ Multiplikationen benötigt. Im Abschnitt \ref{muliplikation:sec:bigo} wurde bereits erläutert: falls $n \rightarrow \infty$ können Konstanten vernachlässigt werden und +Falls $m=n=p$ werden $\frac{n^3}/{2}$ Multiplikationen benötigt. +Im Abschnitt \ref{muliplikation:sec:bigo} wurde bereits erläutert: falls $n \rightarrow \infty$ können Konstanten vernachlässigt werden und somit entsteht für diesen Algorithmus wieder die Ursprüngliche Laufzeit von $\mathcal{O}\left(n^3 \right)$. -\begin{algorithm}\footnotesize\caption{Winograd Matrix Multiplication} +\begin{algorithm}\footnotesize\caption{Winograds Matrizenmultiplikation} \setlength{\lineskip}{7pt} \label{multiplikation:alg:winograd} \begin{algorithmic} @@ -374,8 +380,8 @@ Folgende Algorithmen wurden jeweils in \texttt{C} und \texttt{Python} implementi \begin{itemize} \item Standard Matrizenmultiplikation \item \textit{Devide and Conquer} Matrizenmultiplikation - \item Strassen's Matrizenmultiplikation - \item Winograd's Matrizenmultiplikation + \item Strassens Matrizenmultiplikation + \item Winograds Matrizenmultiplikation \item \texttt{BLAS} Matrizenmultiplikation in \texttt{C} \item \texttt{Numpy} Matrizenmultiplikation in \texttt{Python} \end{itemize} @@ -458,7 +464,7 @@ Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{mul \begin{figure} \center - \includegraphics[width=\linewidth]{papers/multiplikation/images/c_meas_4096} + \includegraphics[width=\linewidth]{papers/multiplikation/images/meas_c} \caption{Messresultate mit der Programmiersprache \texttt{C}} \label{multiplikation:fig:c_meas_4096} \end{figure} @@ -466,7 +472,7 @@ Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{mul \begin{figure} \center - \includegraphics[width=\linewidth]{papers/multiplikation/images/meas_1024} + \includegraphics[width=\linewidth]{papers/multiplikation/images/meas_python} \caption{Messresultate mit der Programmiersprache \texttt{Python}} \label{multiplikation:fig:python} \end{figure} @@ -474,7 +480,7 @@ Die Hardwareinformationen des verwendeten Computers sind in der Tabelle \ref{mul \section{Fazit} \rhead{Fazit} -Wie man im Abschnit \ref{multiplikation:section:Implementation} sehen kann, sind die gezeigten Algorithmen trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen. +Wie man im Abschnitt \ref{multiplikation:section:Implementation} sehen kann, sind die gezeigten Algorithmen trotz den theoretisch geringeren Zeitkomplexitäten, den Implementationen der numerischen Bibliotheken klar unterlegen. Ein optimierter Speicherzugriff hat einen weitaus grösseren Einfluss auf die Laufzeit als die Zeitkomplexität des Algorithmus. Doch haben Entdeckungen wie jene von Strassen und Winograd ihre Daseinsberechtigung. diff --git a/buch/papers/multiplikation/problemstellung.tex b/buch/papers/multiplikation/problemstellung.tex index c6fd10e..e53b0de 100755 --- a/buch/papers/multiplikation/problemstellung.tex +++ b/buch/papers/multiplikation/problemstellung.tex @@ -7,13 +7,14 @@ \rhead{Problemstellung} Wegen der breiten Anwendung der Matrizenmultiplikation ist eine effiziente L\"osung dieser Operation von grosser Bedeutung. Das Ziel dieses Papers ist, verschiedenen Algorithmen der Matrizenmultiplikation vorzustellen. -Gezielt wird auf Algorithmen eingegange, welche das Problem schneller als der Standard Algorithmus l\"osen. +Gezielt wird auf Algorithmen eingegangen, welche das Problem schneller als der Standard Algorithmus l\"osen. \subsection{Big $\mathcal{O}$ Notation} \label{muliplikation:sec:bigo} -Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus in Abhänigkeit zur Inputgrösse \cite{multiplikation:bigo}. +Die Big $\mathcal{O}$ Notation beschreibt die Laufzeitkomplexit\"at eines Algorithmus in Abhängigkeit zur Inputgrösse \cite{multiplikation:bigo}. $f(x) \in \mathcal{O}(g(x))$ besagt, dass die Funktion $f$ nicht wesentlich schneller w\"achst als $g$ wenn $x \rightarrow \infty$. -Als Beispiel: benötigt eine Funktion $g$, $\mathcal{O}\left(n+n^2 \right)$ Multiplikationen so wächst $f$ mit $\mathcal{O}\left(n^2 \right)$ nicht wesentlich schneller als $g$. +% Es gibt eine Konstante $K$ derart, dass $f(x) \le K g(x)$ für $x\to\infty$ +Als Beispiel: benötigt eine Funktion $g$ $\mathcal{O}\left(n^2 \right)$ Multiplikationen, so wächst $f$ mit $\mathcal{O}\left(n+ n^2 \right)$ nicht wesentlich schneller falls $x\to\infty$. Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet: \begin{itemize} \item $f \in \mathcal{O}(1) \rightarrow f$ ist beschr\"ankt @@ -26,13 +27,9 @@ Vereinfacht werden f\"ur Algorithmen die folgende Notation verwendet: \end{itemize} In der Abbildung \ref{multiplikation:fig:bigo} k\"onnen die verschiedenen Laufzeiten miteinander verglichen werden. +Bei einer logarithmischen Darstellung werden Polynome der Form $f(x) = x^k$ als Gerade und Exponentialfunktionen der Form $f(x) = a^x$ als nach oben gekr\"ummte Kurven dargestellt. +Sch\"on zu erkennen ist, dass Logarithmische Kurven beschr\"ankt sind. -\begin{figure} - \center - \includegraphics[]{papers/multiplikation/images/bigo} - \caption{Verschiedene Laufzeiten} - \label{multiplikation:fig:bigo} -\end{figure} \subsubsection{Beispiel Algorithmen} @@ -101,23 +98,25 @@ Es folgen einige Beispiele von Algorithmen welche zu einer bestimmten Zeitkomple \paragraph{Beschr\"ankter Algorithmus} -Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen einfluss auf die Laufzeit. - - +Ein Beispiel eines Beschr\"ankter Verhalten $\mathcal{O}(1)$, kann im Algorithmus \ref{multiplikation:alg:b1} entnommen werden. Da $a$ und $b$ Skalare sind, hat keine Gr\"osse $n$ einen Einfluss auf die Laufzeit. Konstanten werden nicht beachtet, der Algorithmus \ref{multiplikation:alg:b2} f\"uhrt ebenso zu $\mathcal{O}(1)$ und nicht zu $\mathcal{O}(2)$. - - \paragraph{Linearer Algorithmus} Der Algorithmus \ref{multiplikation:alg:linear} hat ein lineares Verhalten. Die \texttt{for}-Schleife wird $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}(n)$. - - \paragraph{Quadratischer Algorithmus} Der Algorithmus \ref{multiplikation:alg:q1} hat ein quadratisches Verhalten. -Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchglaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. +Die beiden \texttt{for}-Schleifen werden jeweils $n$-mal durchlaufen und f\"uhrt deshalb zu $\mathcal{O}\left(n^2\right)$. + + +\begin{figure} + \center + \includegraphics[]{papers/multiplikation/images/bigo} + \caption{Verschiedene Laufzeiten} + \label{multiplikation:fig:bigo} +\end{figure} -- cgit v1.2.1 From f93391f38bb4fcc1aaad4a22fa23fca78375cf82 Mon Sep 17 00:00:00 2001 From: JODBaer Date: Sat, 7 Aug 2021 11:19:04 +0200 Subject: save --- buch/papers/reedsolomon/idee.tex | 96 +++++++++++++++---------- buch/papers/reedsolomon/tikz/tikz/codiert.txt | 96 +++++++++++++++++++++++++ buch/papers/reedsolomon/tikz/tikz/decodiert.txt | 96 +++++++++++++++++++++++++ buch/papers/reedsolomon/tikz/tikz/empfangen.txt | 96 +++++++++++++++++++++++++ buch/papers/reedsolomon/tikz/tikz/fehler.txt | 96 +++++++++++++++++++++++++ buch/papers/reedsolomon/tikz/tikz/locator.txt | 96 +++++++++++++++++++++++++ buch/papers/reedsolomon/tikz/tikz/signal.txt | 96 +++++++++++++++++++++++++ buch/papers/reedsolomon/tikz/tikz/syndrom.txt | 96 +++++++++++++++++++++++++ 8 files changed, 729 insertions(+), 39 deletions(-) create mode 100644 buch/papers/reedsolomon/tikz/tikz/codiert.txt create mode 100644 buch/papers/reedsolomon/tikz/tikz/decodiert.txt create mode 100644 buch/papers/reedsolomon/tikz/tikz/empfangen.txt create mode 100644 buch/papers/reedsolomon/tikz/tikz/fehler.txt create mode 100644 buch/papers/reedsolomon/tikz/tikz/locator.txt create mode 100644 buch/papers/reedsolomon/tikz/tikz/signal.txt create mode 100644 buch/papers/reedsolomon/tikz/tikz/syndrom.txt (limited to 'buch') diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index 7620df1..c071b5e 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -5,60 +5,78 @@ \label{reedsolomon:section:idee}} \rhead{Problemstellung} Um beim Datenübertragen Fehler zu erkennen, könnte man die Daten jeweils doppelt senden, -und so jeweilige Fehler zu erkennen. + also immer zwei gleich Werte miteinander und so jeweilige einen Fehler zu erkennen. +Wenn jedoch mehr als nur ein Fehler erkennt werden soll und sogar noch das orginal rekonstruiert werden soll, +dann werden die Daten drei oder vierfach versendet. Doch nur schon um Fehler zu erkennen werden überproportional viele Daten doppelt und dreifach gesendet. -Der Reed-Solomon-Code macht dies auf eine andere, clevere Weise. Das Problem liegt darin Informationen, Zahlen, -zu Übertragen und Fehler zu erkennen. + zu Übertragen und Fehler zu erkennen. Speziell beim Reed-Solomon-Code kann man nicht nur Fehler erkennen, -man kann sogar einige Fehler korrigieren. + man kann sogar einige Fehler korrigieren. Der Unterschied des Fehler erkennen und korrigiren, ist das beim Erkennen nur die Frage beantwortet wird: Ist die Übertragung fehlerhaft oder nicht? Beim Korrigieren werden Fehler erkannt und dann zusätzlich noch den original Wert rekonstruieren. -Auch eine Variante wäre die Daten nach einer Fehlerhaften sendung, nochmals zum senden auffordern(auch hier wird doppelt und dreifach gesendung), -was bei Reed-Solomon-Code-Anwendungen nicht immer sinnvoll ist. +Der Reed-Solomon-Code macht dies auf eine andere, clevere Weise. Anwendungen finden sind im Abschnitt \externaldocument{papers/reedsolomon/anwendungen} \ref{reedsolomon:section:anwendung} beschrieben. \subsection{Polynom-Ansatz \label{reedsolomon:section:polynomansatz}} \rhead{Polynom-Ansatz} -Eine Idee ist, aus den Daten ein Polynom zu bilden. -Diese Polynomfunktion bei bestimmten Werten errechnet und diese Punkte dann überträgt. -\begin{beispiel} Nehmen wir die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}, -welche uns dann das Polynom +Eine Idee ist, aus den Daten ein Polynom zu bilden. +In deieser Art arbeitet der Reed-Solomon-Code. +Von dieser Polynomfunktion wird dann eine Anzahl Werte übertragen. +\begin{beispiel} Nehmen wir zum Beispiel die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}, + welche uns dann das Polynom \begin{equation} p(x) = \textcolor{blue}{2}x^2 + \textcolor{blue}{1}x + \textcolor{blue}{5} \label{reedsolomon:equation1} \end{equation} -ergeben. +ergibt. +\par +Ein Polynome zweiten Grades ist durch drei Punkte eindeutig bestimmbar. +Bei einer fehlerlosen Übertragung, können wir mit 3 übertragene Werte, + das Polynom durch Polynominterpolation volständig rekonstruieren. +Weder erkläre noch erläutere ich die Polynominterpolation, + sie kann nachgeschaut werden oder als Funktion angewendet werden. +Die koeffizente, des rekonstruierten Polynoms, sind dann unsere gesendten Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}. +Wie können wir nun Fehler erkennen oder sogar korrigieren? +Versuchen wir doch mehr Werte zu Übertragen, wir nehmen im Beispiel 7 Werte. Übertragen werden nun die \textcolor{darkgreen}{grünen Werte} -dieses \textcolor{blue}{blauen Polynomes} an den Stellen 1, 2, 3\dots 7 dieses Polynomes. + dieses 7 Werte \textcolor{blue}{blauen Polynomes} an den Stellen 1, 2, 3\dots 7 dieses Polynomes. Grafisch sieht man dies dann in Abbildung \ref{fig:polynom}, -mit den Punkten, $p(1),p(2),...,p(7) = (\textcolor{darkgreen}{8}, -\textcolor{darkgreen}{15}, \textcolor{darkgreen}{26}, -\textcolor{darkgreen}{41}, \textcolor{darkgreen}{60}, -\textcolor{darkgreen}{83}, \textcolor{darkgreen}{110})$ -Wenn ein Fehler sich in die Übertragung eingeschlichen hat, muss der Leser/Empfänger diesen erkennen und das Polynom rekonstruieren. -Der Leser/Empfänger weiss, den Grad des Polynoms und dessen \textcolor{darkgreen}{Werte} übermittelt wurden. -Die Farbe blau brauchen wir für die \textcolor{blue}{Daten} welche wir mit der Farbe grün \textcolor{darkgreen}{Übermitteln}. -\end{beispiel} - -\begin{beispiel} -Ein Polynome zweiten Grades ist durch drei Punkte eindeutig bestimmbar. -Hat es Fehler in der Übertragunge gegeben,in der Abbilbung \ref{fig:polynom} die \textcolor{red}{roten Punkte}). -Erkennt man diese Fehler, da alle korrekten Punkte auf der Parabel liegen müssen. -Die \textcolor{darkgreen}{grünen Punkte} bestimmen die Parabel, und die Fehler können zu den -\textcolor{gray}{Orginalpunkte} rekonstruiert werden. -Ab wie vielen Fehler ist das Polynom nicht mehr erkennbar beim Übertragen von 7 Punkten? -Bei 2 Fehlern kann man noch eindeutig bestimmen, dass das Polynom mit 4 Punkten, -gegenüber dem mit 5 Punkten falsch liegt. \ref{fig:polynom} -Werden es mehr Fehler kann nur erkannt werden, dass das Polynom nicht stimmt. -Das orginale Polynom kann aber nicht mehr gefunden werden. -Da andere Polynome oder das Konkurrenzpolynom, grau gestrichelt in Abbildung \ref{fig:polynom}, das orginal fehlleitet. -Um das Konkurrenzpolynom auszuschliessen, währen mehr \textcolor{darkgreen}{Übertragungspunkte} nötig. -\end{beispiel} + mit den Punkten, $p(1),p(2),...,p(7) = (\textcolor{darkgreen}{8}, + \textcolor{darkgreen}{15}, \textcolor{darkgreen}{26}, + \textcolor{darkgreen}{41}, \textcolor{darkgreen}{60}, + \textcolor{darkgreen}{83}, \textcolor{darkgreen}{110})$ +Nun wird durch drei der 7 Punkte das Polynom eindeutig bestimmbar und + alle anderen müssen auf diesem Polynom liegen. +Dabei gingen wir von keinem Fehler aus, + hat es Fehler in der Übertragunge gegeben. +Wir erhöhen nun die Fehleranzahl Schritt für Schritt: +\begin{enumerate} + \item \textit{Fehler} können konkurenzierende Polynome, zusammen mit zwei originalen Punkten fehlleiten. + Dabei kann aber maximal 3 Punkte auf diesem Konkurrenzpolynom sein, + ansonsten ist der Fehler ein Orginalpunkt und somit kein Fehler. + Da 6 übereinstimende grössser als 3 ist haben wir unser original Polynom gefunden. + \par Orginal mit 6 Punkte > 3 Punkte Konkurrenzpolynom, Original Polynom gefunden + Damit ist klar das unser Polynom mit 6 Punkten richtig ist und unser Fehler kann rekonstruiert werden. + \item \textit{Fehler} kann ein Fehler mit zwei originalen Punkten ein fehlleitendes Konkurrenzpolynom bilden. + Da der zweite Fehler frei wählbar ist kann dieser auch auf dem Konkurrenzpolynom liegen, wie in der Abbilbung \ref{fig:polynom}. + Nun haben wir, wie in unserer Grafik \ref{fig:polynom}, ein Polynom mit 5 übereinstimmenden und eines mit 4 Punkten. + Da 5 noch grösser als 4 ist, können wir sagen welches das original Polynom ist. + \par Orginal mit 5 Punkte > 4 Punkte Konkurrenzpolynom, Original Polynom gefunden + \item \textit{Fehler} kann genau wie bei 2 Fehler, ein Fehler ein fehlleitendes Polynom mit 2 original Punkten bestimmen werden. + Auch hier sind die anderen Fehler frei wählbar und liegen auf dem Konkurrenzpolynom. + Nun ist es so das 5 Punkte auf diesem konkurenzierenden Polynom und 4 Punkte auf dem Originalen. + Das Original Polynom kann nicht mehr gefunden werden. + \par Orginal mit 5 Punkte > 4 Punkte Konkurrenzpolynom, Original Polynom nicht gefunden + \item \textit{Fehler} Es kann noch erkennt weden das Fehler statt gefunden haben, da 3 orginale Punkte das ursprüngliche Polynom ergeben. + Somit haben wir mindestens 2 verschieden Polynome, dass bedeutet Fehler sind entstanden. + \item \textit{Fehler} Mit den 2 originalen Punkte kann das Originale Polynom nicht mehr erkannt werden und + somit auch keine Aussgae gemacht werden ob Fehler statt gefunden haben oder nicht. +\end{enumerate} \begin{figure}%[!ht] \centering @@ -71,13 +89,13 @@ Um das Konkurrenzpolynom auszuschliessen, währen mehr \textcolor{darkgreen}{Üb \section{Fehlerkorekturstellen bestimmen \label{reedsolomon:section:Fehlerkorrekturstellen}} Um zu bestimmen wieviel zusätzliche \textcolor{darkgreen}{Übertragungspunkte} notwendig sind, um die Fehler zu korrigieren, -muss man zuerst wissen, wieviel \textcolor{blue}{Daten} gesendet und wieviel \textcolor{red}{Fehler} erkennt werden sollen. + muss man zuerst wissen, wieviel \textcolor{blue}{Daten} gesendet und wieviel \textcolor{red}{Fehler} erkennt werden sollen. Die Anzahl \textcolor{blue}{Daten} (ab hier verwenden wir das Wort Nutzlast), die als Polynomkoeffizente $k$ übergeben werden, -brauchen die gleiche Anzahl an Polynomkoeffizententräger, beginnend bei Grad 0 somit ergibt sich der Polynomgrad mit $k-1$. + brauchen die gleiche Anzahl an Polynomkoeffizententräger, beginnend bei Grad 0 somit ergibt sich der Polynomgrad mit $k-1$. Für die Anzahl der Fehler $t$, welche korrigiert werden können, gehen wir zum Beispiel. \begin{beispiel} von den Polynom \ref{reedsolomon:equation1} in, welchem wir \textcolor{darkgreen}{7 Übertragungspunkte} senden. Durch 3 Punkte wird das Polyom eindeutig bestimmt, nun haben wir mehrere Konkurrenzpolynome, doch mit maximal 2 Fehler liegen auf einem Konkurrenzpolynom, -maximal 4 Punkte und auf unserem orginal 5 Punkte. Ansonsten hatt es mehr Fehler oder unser Konkurrenzpolynom ist das gleiche wie das Original. + maximal 4 Punkte und auf unserem orginal 5 Punkte. Ansonsten hatt es mehr Fehler oder unser Konkurrenzpolynom ist das gleiche wie das Original. Somit können wir nun bestimmen, dass von den \textcolor{darkgreen}{7 Übertragungspunkten$u$} bis zu 2 Fehler korrigiert werden können und 4 Übertragungspunkte zusätzlich gesendet werden müssen. \end{beispiel} Man könnte auch dies in der Tabelle \ref{tab:fehlerkorrekturstellen} erkennen, doch mit dieser Gleichung @@ -86,7 +104,7 @@ Man könnte auch dies in der Tabelle \ref{tab:fehlerkorrekturstellen} erkennen, =2 \label{reedsolomon:equation2} \end{equation} -zeigt sich, dass es $k+2t$ Übertragungspunkte braucht. + zeigt sich, dass es $k+2t$ Übertragungspunkte braucht. \begin{table} \centering diff --git a/buch/papers/reedsolomon/tikz/tikz/codiert.txt b/buch/papers/reedsolomon/tikz/tikz/codiert.txt new file mode 100644 index 0000000..4a481d8 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/codiert.txt @@ -0,0 +1,96 @@ +0,284 +1,131.570790435043 +2,41.9840308053375 +3,12.1189172092243 +4,23.8408857476069 +5,69.1793197789512 +6,24.0186013379153 +7,37.3066577242559 +8,18.2010889773887 +9,12.3214904922455 +10,15.6627133315015 +11,24.5237955316204 +12,32.1114345314062 +13,44.9845039238714 +14,13.5324640263625 +15,10.1736266929292 +16,4.58257569495584 +17,23.217268502288 +18,16.5769107917917 +19,6.89948680823017 +20,4.84567134895776 +21,10.4219666223433 +22,43.6179140616243 +23,35.9073375743642 +24,15.0332963783729 +25,21.7594021268945 +26,23.2496572716993 +27,17.9815599423852 +28,11.3577742151117 +29,38.467599433197 +30,28.3035029562577 +31,9.54321919833388 +32,21.377558326432 +33,17.6292439561917 +34,12.6951848921471 +35,20.0667752354841 +36,22.9097309529208 +37,8.78894645948548 +38,13.360682005498 +39,25.1757616314718 +40,38.0357773686457 +41,18.4633287776253 +42,19.0584505869806 +43,10.8631093309173 +44,12.6147770818983 +45,12.5398140021274 +46,34.901983501949 +47,22.3480442021702 +48,6 +49,22.3480442021702 +50,34.901983501949 +51,12.5398140021274 +52,12.6147770818983 +53,10.8631093309173 +54,19.0584505869806 +55,18.4633287776253 +56,38.0357773686457 +57,25.1757616314718 +58,13.360682005498 +59,8.78894645948548 +60,22.9097309529208 +61,20.0667752354841 +62,12.6951848921471 +63,17.6292439561917 +64,21.377558326432 +65,9.54321919833388 +66,28.3035029562577 +67,38.467599433197 +68,11.3577742151117 +69,17.9815599423852 +70,23.2496572716993 +71,21.7594021268945 +72,15.0332963783729 +73,35.9073375743642 +74,43.6179140616243 +75,10.4219666223433 +76,4.84567134895776 +77,6.89948680823017 +78,16.5769107917917 +79,23.217268502288 +80,4.58257569495584 +81,10.1736266929292 +82,13.5324640263625 +83,44.9845039238714 +84,32.1114345314062 +85,24.5237955316204 +86,15.6627133315015 +87,12.3214904922455 +88,18.2010889773887 +89,37.3066577242559 +90,24.0186013379153 +91,69.1793197789512 +92,23.8408857476069 +93,12.1189172092243 +94,41.9840308053375 +95,131.570790435043 diff --git a/buch/papers/reedsolomon/tikz/tikz/decodiert.txt b/buch/papers/reedsolomon/tikz/tikz/decodiert.txt new file mode 100644 index 0000000..f6221e6 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/decodiert.txt @@ -0,0 +1,96 @@ +0,6.05208333333333 +1,6.02602539785853 +2,0.0261327016093151 +3,5.98927158561317 +4,4.019445724874 +5,0.0247005083663722 +6,4.97798278395618 +7,1.95246440445439 +8,0.974000110512201 +9,2.00528527696027 +10,1.00071804528155 +11,1.97630907888264 +12,0.0232923747656228 +13,6.01302820392331 +14,3.03567381915226 +15,5.02435590137329 +16,7.00526061008995 +17,5.00739608089369 +18,5.02211514480064 +19,4.02175864806658 +20,1.00236543833726 +21,4.98147315261261 +22,8.97728828610336 +23,8.98481304394618 +24,2.98958333333333 +25,1.98491220960989 +26,5.97728835934715 +27,5.98144124907561 +28,4.00163839998525 +29,2.02176249296313 +30,9.02210713874162 +31,1.00742763919872 +32,1.00557258081044 +33,1.02435888848794 +34,2.03577412756745 +35,6.01302820392331 +36,5.97917574041123 +37,0.976310374034338 +38,9.00062625447998 +39,7.00515849238528 +40,6.97396416790894 +41,0.95256880864368 +42,8.97794719866783 +43,9.01850701506487 +44,10.0194409579917 +45,8.98926601525997 +46,7.9866590265379 +47,5.02603060999077 +48,2.05208333333333 +49,4.02603841132848 +50,0.986882897867895 +51,0.0177592928994285 +52,9.01944131204563 +53,3.0185365665612 +54,2.97803642439316 +55,2.95243072164649 +56,4.97396651395488 +57,6.00516695947321 +58,0.0143895905726619 +59,7.97630812771393 +60,5.97917574041123 +61,9.01298821331865 +62,3.03567381915226 +63,4.02435609145793 +64,0.0275599094902563 +65,0.0115837187254191 +66,0.025877761014238 +67,0.0224618032819697 +68,0.04410594689944 +69,0.0474504002669341 +70,0.0227694695500626 +71,0.0271436638090525 +72,0.0104166666666667 +73,0.0271436638090523 +74,0.0227694695500608 +75,0.0474504002669343 +76,0.0441059468994397 +77,0.0224618032819701 +78,0.0258777610142379 +79,0.0115837187254183 +80,0.027559909490256 +81,0.0245124379481793 +82,0.0499782237195209 +83,0.0401432022864265 +84,0.0232923747656228 +85,0.0237974288564099 +86,0.0143895905726624 +87,0.0271745729691685 +88,0.0275599094902567 +89,0.0515501672184983 +90,0.0358255004834542 +91,0.024700508366373 +92,0.0210194725405171 +93,0.0177592928994296 +94,0.0261327016093158 +95,0.0314909067039411 diff --git a/buch/papers/reedsolomon/tikz/tikz/empfangen.txt b/buch/papers/reedsolomon/tikz/tikz/empfangen.txt new file mode 100644 index 0000000..38c13b0 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/empfangen.txt @@ -0,0 +1,96 @@ +0,284 +1,131.570790435043 +2,41.9840308053375 +3,12.1189172092243 +4,23.8408857476069 +5,69.1793197789512 +6,23.6290258699579 +7,37.3066577242559 +8,18.2010889773887 +9,12.3214904922455 +10,15.6627133315015 +11,24.5237955316204 +12,32.1114345314062 +13,44.9845039238714 +14,13.5324640263625 +15,10.1736266929292 +16,4.58257569495584 +17,23.217268502288 +18,16.5769107917917 +19,6.89948680823017 +20,5.55320238736303 +21,10.4219666223433 +22,43.6179140616243 +23,35.9073375743642 +24,15.0332963783729 +25,21.7594021268945 +26,23.2496572716993 +27,17.9815599423852 +28,11.3577742151117 +29,38.467599433197 +30,28.3035029562577 +31,9.54321919833388 +32,21.377558326432 +33,17.6292439561917 +34,12.6951848921471 +35,20.0667752354841 +36,22.9097309529208 +37,8.78894645948548 +38,13.360682005498 +39,25.1757616314718 +40,38.0357773686457 +41,18.4633287776253 +42,19.0584505869806 +43,10.8631093309173 +44,12.6147770818983 +45,12.5398140021274 +46,34.901983501949 +47,22.3480442021702 +48,6 +49,22.3480442021702 +50,34.901983501949 +51,12.5398140021274 +52,12.6147770818983 +53,10.8631093309173 +54,19.0584505869806 +55,18.4633287776253 +56,38.0357773686457 +57,25.1757616314718 +58,13.360682005498 +59,8.78894645948548 +60,22.9097309529208 +61,20.0667752354841 +62,12.6951848921471 +63,17.6292439561917 +64,21.377558326432 +65,9.54321919833388 +66,28.3035029562577 +67,38.467599433197 +68,11.3577742151117 +69,17.9815599423852 +70,23.2496572716993 +71,21.7594021268945 +72,15.0332963783729 +73,35.9073375743642 +74,44.6135417384784 +75,10.4219666223433 +76,4.84567134895776 +77,6.89948680823017 +78,16.5769107917917 +79,23.217268502288 +80,4.58257569495584 +81,10.1736266929292 +82,13.5324640263625 +83,44.9845039238714 +84,32.1114345314062 +85,24.5237955316204 +86,15.6627133315015 +87,12.3214904922455 +88,18.2010889773887 +89,37.3066577242559 +90,24.0186013379153 +91,69.1793197789512 +92,23.8408857476069 +93,12.1189172092243 +94,41.9840308053375 +95,131.570790435043 diff --git a/buch/papers/reedsolomon/tikz/tikz/fehler.txt b/buch/papers/reedsolomon/tikz/tikz/fehler.txt new file mode 100644 index 0000000..23f1a83 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/fehler.txt @@ -0,0 +1,96 @@ +0,0 +1,0 +2,0 +3,0 +4,0 +5,0 +6,2 +7,0 +8,0 +9,0 +10,0 +11,0 +12,0 +13,0 +14,0 +15,0 +16,0 +17,0 +18,0 +19,0 +20,2 +21,0 +22,0 +23,0 +24,0 +25,0 +26,0 +27,0 +28,0 +29,0 +30,0 +31,0 +32,0 +33,0 +34,0 +35,0 +36,0 +37,0 +38,0 +39,0 +40,0 +41,0 +42,0 +43,0 +44,0 +45,0 +46,0 +47,0 +48,0 +49,0 +50,0 +51,0 +52,0 +53,0 +54,0 +55,0 +56,0 +57,0 +58,0 +59,0 +60,0 +61,0 +62,0 +63,0 +64,0 +65,0 +66,0 +67,0 +68,0 +69,0 +70,0 +71,0 +72,0 +73,0 +74,1 +75,0 +76,0 +77,0 +78,0 +79,0 +80,0 +81,0 +82,0 +83,0 +84,0 +85,0 +86,0 +87,0 +88,0 +89,0 +90,0 +91,0 +92,0 +93,0 +94,0 +95,0 diff --git a/buch/papers/reedsolomon/tikz/tikz/locator.txt b/buch/papers/reedsolomon/tikz/tikz/locator.txt new file mode 100644 index 0000000..b28988c --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/locator.txt @@ -0,0 +1,96 @@ +0,0.0301224340567056 +1,0.141653026854885 +2,0.138226631799377 +3,0.0339903276086929 +4,0.310585462557496 +5,0.551427312631385 +6,0.628514858396814 +7,0.51102386251559 +8,0.275861355940449 +9,0.0502396354182268 +10,0.090185502547573 +11,0.110759344849756 +12,0.0684618905063001 +13,0.0362855426992259 +14,0.0697096919781468 +15,0.109288539370248 +16,0.0923187999496653 +17,0.0512198536768088 +18,0.274192386987782 +19,0.51349614953654 +20,0.633154426602466 +21,0.553283743533942 +22,0.307840573214514 +23,0.0341664350328392 +24,0.140270857957 +25,0.138527177682831 +26,0.029637547736156 +27,0.0816962563186052 +28,0.0944383203811073 +29,0.0263932110686261 +30,0.0585881348402056 +31,0.0737117341599984 +32,0.0239973937701886 +33,0.0464215468420038 +34,0.0616218854220964 +35,0.0221963086695009 +36,0.0390764778127646 +37,0.0537637218396934 +38,0.0208333333333332 +39,0.0343107696069045 +40,0.0483441215964552 +41,0.0198077862118806 +42,0.0311207395968725 +43,0.0444955089373458 +44,0.0190533549944159 +45,0.0290049795038723 +46,0.0417536642697558 +47,0.0185261550443084 +48,0.0277059929762261 +49,0.0398606084144816 +50,0.0181978813094817 +51,0.0271098219177584 +52,0.0386836665079729 +53,0.0180518611046889 +54,0.0272138992557141 +55,0.0381891287148314 +56,0.0180809085252469 +57,0.0281418959420061 +58,0.0384596362516637 +59,0.0182864418432272 +60,0.0302250788423173 +61,0.0397874837986351 +62,0.0186786556701694 +63,0.0342489348284216 +64,0.0429932815348666 +65,0.0192777878591759 +66,0.0422808966931999 +67,0.0506815964680563 +68,0.0201167847752226 +69,0.0615048274405271 +70,0.0744953894508454 +71,0.021246054596492 +72,0.142602265816215 +73,0.273502052865436 +74,0.325309673287599 +75,0.272705389655349 +76,0.149074257381345 +77,0.0247199397628712 +78,0.0680137859566976 +79,0.075388270873485 +80,0.0273637831604903 +81,0.0407867704453274 +82,0.0632964886441949 +83,0.0309749128751093 +84,0.0315202035072035 +85,0.0627625211892184 +86,0.0360843918243497 +87,0.02794920551495 +88,0.0677921493367236 +89,0.0437167157553067 +90,0.0270640150996317 +91,0.0783380025231622 +92,0.0561293738314281 +93,0.0278742033265809 +94,0.0981443889498639 +95,0.0794543457386548 diff --git a/buch/papers/reedsolomon/tikz/tikz/signal.txt b/buch/papers/reedsolomon/tikz/tikz/signal.txt new file mode 100644 index 0000000..c4fa5f8 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/signal.txt @@ -0,0 +1,96 @@ +0,6 +1,6 +2,0 +3,6 +4,4 +5,0 +6,5 +7,2 +8,1 +9,2 +10,1 +11,2 +12,0 +13,6 +14,3 +15,5 +16,7 +17,5 +18,5 +19,4 +20,1 +21,5 +22,9 +23,9 +24,3 +25,2 +26,6 +27,6 +28,4 +29,2 +30,9 +31,1 +32,1 +33,1 +34,2 +35,6 +36,6 +37,1 +38,9 +39,7 +40,7 +41,1 +42,9 +43,9 +44,10 +45,9 +46,8 +47,5 +48,2 +49,4 +50,1 +51,0 +52,9 +53,3 +54,3 +55,3 +56,5 +57,6 +58,0 +59,8 +60,6 +61,9 +62,3 +63,4 +64,0 +65,0 +66,0 +67,0 +68,0 +69,0 +70,0 +71,0 +72,0 +73,0 +74,0 +75,0 +76,0 +77,0 +78,0 +79,0 +80,0 +81,0 +82,0 +83,0 +84,0 +85,0 +86,0 +87,0 +88,0 +89,0 +90,0 +91,0 +92,0 +93,0 +94,0 +95,0 diff --git a/buch/papers/reedsolomon/tikz/tikz/syndrom.txt b/buch/papers/reedsolomon/tikz/tikz/syndrom.txt new file mode 100644 index 0000000..8ca9eed --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/syndrom.txt @@ -0,0 +1,96 @@ +0,0 +1,0 +2,0 +3,0 +4,0 +5,0 +6,0 +7,0 +8,0 +9,0 +10,0 +11,0 +12,0 +13,0 +14,0 +15,0 +16,0 +17,0 +18,0 +19,0 +20,0 +21,0 +22,0 +23,0 +24,0 +25,0 +26,0 +27,0 +28,0 +29,0 +30,0 +31,0 +32,0 +33,0 +34,0 +35,0 +36,0 +37,0 +38,0 +39,0 +40,0 +41,0 +42,0 +43,0 +44,0 +45,0 +46,0 +47,0 +48,0 +49,0 +50,0 +51,0 +52,0 +53,0 +54,0 +55,0 +56,0 +57,0 +58,0 +59,0 +60,0 +61,0 +62,0 +63,0 +64,0.0275599094902563 +65,0.0115837187254191 +66,0.025877761014238 +67,0.0224618032819697 +68,0.04410594689944 +69,0.0474504002669341 +70,0.0227694695500626 +71,0.0271436638090525 +72,0.0104166666666667 +73,0.0271436638090523 +74,0.0227694695500608 +75,0.0474504002669343 +76,0.0441059468994397 +77,0.0224618032819701 +78,0.0258777610142379 +79,0.0115837187254183 +80,0.027559909490256 +81,0.0245124379481793 +82,0.0499782237195209 +83,0.0401432022864265 +84,0.0232923747656228 +85,0.0237974288564099 +86,0.0143895905726624 +87,0.0271745729691685 +88,0.0275599094902567 +89,0.0515501672184983 +90,0.0358255004834542 +91,0.024700508366373 +92,0.0210194725405171 +93,0.0177592928994296 +94,0.0261327016093158 +95,0.0314909067039411 -- cgit v1.2.1 From 14c4c9bde57c1cd89510719439bdd31374ddc280 Mon Sep 17 00:00:00 2001 From: JODBaer Date: Sat, 7 Aug 2021 14:11:14 +0200 Subject: save --- buch/papers/reedsolomon/dtf.tex | 2 +- buch/papers/reedsolomon/einleitung.tex | 4 +- buch/papers/reedsolomon/idee.tex | 116 ++++++++++------------ buch/papers/reedsolomon/standalone/standalone.pdf | Bin 1830948 -> 1835588 bytes 4 files changed, 55 insertions(+), 67 deletions(-) (limited to 'buch') diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex index a975da8..179d90d 100644 --- a/buch/papers/reedsolomon/dtf.tex +++ b/buch/papers/reedsolomon/dtf.tex @@ -28,7 +28,7 @@ Der Auftrag ist nun 64 Daten zu übertragen, 32 Fehler erkennen und 16 Fehler re Mit hilfe der Fourier-Transformation werden die \textcolor{blue}{blauen Datenpunkte} transformiert, zu den \textcolor{darkgreen}{grünen Übertragungspunkten}. Durch eine Rücktransformation könnnen die \textcolor{blue}{blauen Datenpunkte} wieder rekonstruiert werden. -\par + \begin{figure} \centering \resizebox{\textwidth}{!}{ diff --git a/buch/papers/reedsolomon/einleitung.tex b/buch/papers/reedsolomon/einleitung.tex index 074df05..ca4f398 100644 --- a/buch/papers/reedsolomon/einleitung.tex +++ b/buch/papers/reedsolomon/einleitung.tex @@ -6,8 +6,8 @@ \section{Einleitung \label{reedsolomon:section:einleitung}} \rhead{Einleitung} -Der Reed-Solomon-Code ist entstanden um, -das Problem der Fehler bei der Datenübertragung, zu lösen. +Der Reed-Solomon-Code wurde von den beiden Mathematiker Irving S.Reed und Gustave Solomon, im Jahre 1960, entwickelt. +Dabei haben sie das Problem der Fehler bei der Datenübertragung gelöst. In diesem Abschnitt wird möglichst verständlich die mathematische Abfolge, Funktion oder Algorithmus des Reed-Solomon-Code erklärt. Es wird jedoch nicht auf die technische Umsetzung oder Implementierung eingegangen. diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index c071b5e..3061498 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -4,79 +4,69 @@ \section{Idee \label{reedsolomon:section:idee}} \rhead{Problemstellung} -Um beim Datenübertragen Fehler zu erkennen, könnte man die Daten jeweils doppelt senden, - also immer zwei gleich Werte miteinander und so jeweilige einen Fehler zu erkennen. +Um Fehler in einer Datenübertragung zu erkennen, könnte man die Daten jeweils doppelt senden, + also immer zwei gleich Werte miteinander und so jeweilige einzelne Fehler erkennen. Wenn jedoch mehr als nur ein Fehler erkennt werden soll und sogar noch das orginal rekonstruiert werden soll, dann werden die Daten drei oder vierfach versendet. Doch nur schon um Fehler zu erkennen werden überproportional viele Daten doppelt und dreifach gesendet. Das Problem liegt darin Informationen, Zahlen, - zu Übertragen und Fehler zu erkennen. -Speziell beim Reed-Solomon-Code kann man nicht nur Fehler erkennen, - man kann sogar einige Fehler korrigieren. + zu Übertragen und Fehler zu erkennen und zu korrigieren. Der Unterschied des Fehler erkennen und korrigiren, ist das beim Erkennen nur die Frage beantwortet wird: Ist die Übertragung fehlerhaft oder nicht? Beim Korrigieren werden Fehler erkannt und dann zusätzlich noch den original Wert rekonstruieren. -Der Reed-Solomon-Code macht dies auf eine andere, clevere Weise. -Anwendungen finden sind im Abschnitt \externaldocument{papers/reedsolomon/anwendungen} -\ref{reedsolomon:section:anwendung} beschrieben. +Eine weitere Möglichkeit wäre, dass der Empfänger nach einer fehlerhaften Übertragung die selben Daten nochmals auffordert. +Dies führt wieder zu unerwünschten mehrfach Übertragung. +In Anwendungen des Reed-Soöomon-Code \externaldocument{papers/reedsolomon/anwendungen} \ref{reedsolomon:section:anwendung} +ist dies vom Empfänger gesteuerte erneute Übertragen meistens nicht sinnvoll oder sogar unmöglich. +Der Reed-Solomon-Code macht dies Übertragung auf eine andere, clevere Weise. \subsection{Polynom-Ansatz \label{reedsolomon:section:polynomansatz}} \rhead{Polynom-Ansatz} -Eine Idee ist, aus den Daten ein Polynom zu bilden. -In deieser Art arbeitet der Reed-Solomon-Code. +Eine zentrale Idee des Reed-Solomon-Code ist, aus den Daten ein Polynom zu bilden. Von dieser Polynomfunktion wird dann eine Anzahl Werte übertragen. -\begin{beispiel} Nehmen wir zum Beispiel die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}, - welche uns dann das Polynom +\begin{beispiel} Nehmen wir die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}, + welche übertragen werden sollen. Daraus bilden wir das Polynom \begin{equation} p(x) = \textcolor{blue}{2}x^2 + \textcolor{blue}{1}x + \textcolor{blue}{5} \label{reedsolomon:equation1} -\end{equation} -ergibt. +\end{equation}. \par Ein Polynome zweiten Grades ist durch drei Punkte eindeutig bestimmbar. Bei einer fehlerlosen Übertragung, können wir mit 3 übertragene Werte, das Polynom durch Polynominterpolation volständig rekonstruieren. -Weder erkläre noch erläutere ich die Polynominterpolation, - sie kann nachgeschaut werden oder als Funktion angewendet werden. +Weder erkläre noch erläutere ich die Polynominterpolation, + wir brauchen sie als Funktion, die von Punktn ein Polynom errechnet. Die koeffizente, des rekonstruierten Polynoms, sind dann unsere gesendten Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}. Wie können wir nun Fehler erkennen oder sogar korrigieren? Versuchen wir doch mehr Werte zu Übertragen, wir nehmen im Beispiel 7 Werte. Übertragen werden nun die \textcolor{darkgreen}{grünen Werte} - dieses 7 Werte \textcolor{blue}{blauen Polynomes} an den Stellen 1, 2, 3\dots 7 dieses Polynomes. -Grafisch sieht man dies dann in Abbildung \ref{fig:polynom}, - mit den Punkten, $p(1),p(2),...,p(7) = (\textcolor{darkgreen}{8}, - \textcolor{darkgreen}{15}, \textcolor{darkgreen}{26}, - \textcolor{darkgreen}{41}, \textcolor{darkgreen}{60}, - \textcolor{darkgreen}{83}, \textcolor{darkgreen}{110})$ -Nun wird durch drei der 7 Punkte das Polynom eindeutig bestimmbar und - alle anderen müssen auf diesem Polynom liegen. -Dabei gingen wir von keinem Fehler aus, - hat es Fehler in der Übertragunge gegeben. + dieses 7 Werte \textcolor{blue}{blauen Polynomes} an den Stellen 1, 2, 3\dots 7 . +In Abbildung \ref{fig:polynom} ist das zu den \textcolor{blue}{Datenpunkten} gehörige Polynom blau dargestellt, +die \textcolor{darkgreen}{übertragene Werte} des Polynoms sind grün. +Die grünen Punkte bestimmen die Parabel. +Damit können die Fehler erkannt werden, weil die empfangenen Punktenicht auf der Parabel liegen. +Somit könnendie grauen Punkte auf der Parabel ersetzt werden und sind damit korrigiert. +bis zu wivielen Fehler können wir nun korrigieren im Beispiel korrigieren? Wir erhöhen nun die Fehleranzahl Schritt für Schritt: -\begin{enumerate} - \item \textit{Fehler} können konkurenzierende Polynome, zusammen mit zwei originalen Punkten fehlleiten. - Dabei kann aber maximal 3 Punkte auf diesem Konkurrenzpolynom sein, - ansonsten ist der Fehler ein Orginalpunkt und somit kein Fehler. +\begin{itemize} + \item Bei \textit{1 Fehler} können konkurenzierende Polynome, zusammen mit zwei originalen Punkten fehlleiten. + Dabei kann aber maximal 3 Punkte auf diesem Konkurrenzpolynom sein. Da 6 übereinstimende grössser als 3 ist haben wir unser original Polynom gefunden. - \par Orginal mit 6 Punkte > 3 Punkte Konkurrenzpolynom, Original Polynom gefunden - Damit ist klar das unser Polynom mit 6 Punkten richtig ist und unser Fehler kann rekonstruiert werden. - \item \textit{Fehler} kann ein Fehler mit zwei originalen Punkten ein fehlleitendes Konkurrenzpolynom bilden. - Da der zweite Fehler frei wählbar ist kann dieser auch auf dem Konkurrenzpolynom liegen, wie in der Abbilbung \ref{fig:polynom}. - Nun haben wir, wie in unserer Grafik \ref{fig:polynom}, ein Polynom mit 5 übereinstimmenden und eines mit 4 Punkten. - Da 5 noch grösser als 4 ist, können wir sagen welches das original Polynom ist. - \par Orginal mit 5 Punkte > 4 Punkte Konkurrenzpolynom, Original Polynom gefunden - \item \textit{Fehler} kann genau wie bei 2 Fehler, ein Fehler ein fehlleitendes Polynom mit 2 original Punkten bestimmen werden. + \item Bei \textit{2 Fehler} kann ein Fehler mit zwei originalen Punkten ein fehlleitendes Konkurrenzpolynom bilden. + Da der zweite Fehler frei wählbar ist, kann dieser auch auf dem Konkurrenzpolynom liegen, wie in der Abbilbung \ref{fig:polynom}. + Nun haben wir, ein originles Polynom mit 5 übereinstimmenden und eine konkurrenzierendes mit 4 Punkten. + Da 5 noch grösser als 4 ist, können wir sagen, welches das original Polynom ist. + \item Bei \textit{3 Fehler} kann genau wie bei 2 Fehler, ein Fehler ein fehlleitendes Polynom mit 2 original Punkten bestimmen werden. Auch hier sind die anderen Fehler frei wählbar und liegen auf dem Konkurrenzpolynom. Nun ist es so das 5 Punkte auf diesem konkurenzierenden Polynom und 4 Punkte auf dem Originalen. Das Original Polynom kann nicht mehr gefunden werden. - \par Orginal mit 5 Punkte > 4 Punkte Konkurrenzpolynom, Original Polynom nicht gefunden - \item \textit{Fehler} Es kann noch erkennt weden das Fehler statt gefunden haben, da 3 orginale Punkte das ursprüngliche Polynom ergeben. + \item Bei \textit{4 Fehler} Es kann noch erkennt weden das Fehler statt gefunden haben, da 3 orginale Punkte das ursprüngliche Polynom ergeben. Somit haben wir mindestens 2 verschieden Polynome, dass bedeutet Fehler sind entstanden. - \item \textit{Fehler} Mit den 2 originalen Punkte kann das Originale Polynom nicht mehr erkannt werden und + \item Bei \textit{5 Fehler} Mit den 2 originalen Punkte kann das Originale Polynom nicht mehr erkannt werden und somit auch keine Aussgae gemacht werden ob Fehler statt gefunden haben oder nicht. -\end{enumerate} +\end{itemize} \begin{figure}%[!ht] \centering @@ -85,27 +75,16 @@ Wir erhöhen nun die Fehleranzahl Schritt für Schritt: \caption{Polynom $p(x)$ von der Gleichung\eqref{reedsolomon:equation1}} \label{fig:polynom} \end{figure} - -\section{Fehlerkorekturstellen bestimmen -\label{reedsolomon:section:Fehlerkorrekturstellen}} -Um zu bestimmen wieviel zusätzliche \textcolor{darkgreen}{Übertragungspunkte} notwendig sind, um die Fehler zu korrigieren, - muss man zuerst wissen, wieviel \textcolor{blue}{Daten} gesendet und wieviel \textcolor{red}{Fehler} erkennt werden sollen. -Die Anzahl \textcolor{blue}{Daten} (ab hier verwenden wir das Wort Nutzlast), die als Polynomkoeffizente $k$ übergeben werden, - brauchen die gleiche Anzahl an Polynomkoeffizententräger, beginnend bei Grad 0 somit ergibt sich der Polynomgrad mit $k-1$. -Für die Anzahl der Fehler $t$, welche korrigiert werden können, gehen wir zum Beispiel. -\begin{beispiel} von den Polynom \ref{reedsolomon:equation1} in, welchem wir \textcolor{darkgreen}{7 Übertragungspunkte} senden. -Durch 3 Punkte wird das Polyom eindeutig bestimmt, nun haben wir mehrere Konkurrenzpolynome, doch mit maximal 2 Fehler liegen auf einem Konkurrenzpolynom, - maximal 4 Punkte und auf unserem orginal 5 Punkte. Ansonsten hatt es mehr Fehler oder unser Konkurrenzpolynom ist das gleiche wie das Original. -Somit können wir nun bestimmen, dass von den \textcolor{darkgreen}{7 Übertragungspunkten$u$} bis zu 2 Fehler korrigiert werden können und 4 Übertragungspunkte zusätzlich gesendet werden müssen. \end{beispiel} -Man könnte auch dies in der Tabelle \ref{tab:fehlerkorrekturstellen} erkennen, doch mit dieser Gleichung -\begin{equation} - \frac{\textcolor{darkgreen}{u}-\textcolor{blue}{k}}{\textcolor{red}{t}} - =2 - \label{reedsolomon:equation2} -\end{equation} - zeigt sich, dass es $k+2t$ Übertragungspunkte braucht. +\section{Anzahl Übertragungswerte bestimmen +\label{reedsolomon:section:Fehlerkorrekturstellen}} +Um zu bestimmen, wieviel zusätzliche \textcolor{darkgreen}{Übertragungspunkte} notwendig sind, um die Fehler zu korrigieren, + muss man zuerst wissen, wieviel \textcolor{blue}{Datenwerte} gesendet und wieviel \textcolor{red}{Fehler} erkennt werden sollen. +Die Anzahl \textcolor{blue}{Datenwerte}, ergeben die anzahl Polynomkoeffizente $k$ und somit den Grad $k-1$. +Die Bestimmung der Anzahl der Fehler $t$, welche korrigiert werden können, brauchen redundanz. +Gehen wir die Fehleranzahl mit verschiedenen Übertragungsanzahlen durch, + erkennt man almählich ein Muster. \begin{table} \centering \begin{tabular}{ c c | c} @@ -122,8 +101,17 @@ Man könnte auch dies in der Tabelle \ref{tab:fehlerkorrekturstellen} erkennen, \caption{ Fehlerkorrekturstellen Bestimmung.} \label{tab:fehlerkorrekturstellen} \end{table} +Es müssen mehr Punkte auf dem \textcolor{blue}{originalen Polynom} liegen, als auf dem Konkurenzierenden. +Somit braucht man für die Übertragung pro Fehler 2 übertragungspunkte mehr. +Wie in der Tabelle ergibt sich diese Übertragungsanzahl +\begin{equation} + \textcolor{darkgreen}{u}= + \textcolor{blue}{k}2\textcolor{red}{t} + \label{reedsolomon:equation2} +\end{equation}. -Ein Nebeneffekt ist, dass dadurch auch $2t$ Fehler erkannt werden können, nicht aber korrigiert. -Um aus den übertragenen Zahlen wieder die Nutzlastzahlen zu bekommen könnte man eine Polynominterpolation anwenden, -doch die Punkte mit Polynominterpolation zu einem Polynom zu rekonstruieren ist schwierig und fehleranfällig. +Ein Nebeneffekt ist, dass auch $2t$ Fehler erkannt werden können, nicht aber korrigiert. +Nun haben wir für jede rekonstruktion des Polynoms, die Polynominterpolation gebraucht. +Diese Polynoiminterpolation ist leider schwierig und fehleranfällig. +Deshalb finden wir eine alternative im nächsten Abschnitt. diff --git a/buch/papers/reedsolomon/standalone/standalone.pdf b/buch/papers/reedsolomon/standalone/standalone.pdf index 2666d1e..dc34b2d 100644 Binary files a/buch/papers/reedsolomon/standalone/standalone.pdf and b/buch/papers/reedsolomon/standalone/standalone.pdf differ -- cgit v1.2.1 From 00406f140fd8a0680ef9d03a88ec032134e13566 Mon Sep 17 00:00:00 2001 From: JODBaer Date: Sat, 7 Aug 2021 14:22:04 +0200 Subject: + --- buch/papers/reedsolomon/idee.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch') diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index 3061498..2142f88 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -106,7 +106,7 @@ Somit braucht man für die Übertragung pro Fehler 2 übertragungspunkte mehr. Wie in der Tabelle ergibt sich diese Übertragungsanzahl \begin{equation} \textcolor{darkgreen}{u}= - \textcolor{blue}{k}2\textcolor{red}{t} + \textcolor{blue}{k}+2\textcolor{red}{t} \label{reedsolomon:equation2} \end{equation}. -- cgit v1.2.1 From b147539fdc2367938af08293aa16808adf6260fe Mon Sep 17 00:00:00 2001 From: JODBaer Date: Sat, 7 Aug 2021 14:22:30 +0200 Subject: plot-green --- buch/papers/reedsolomon/figures/plotfft.pdf | Bin 59617 -> 59772 bytes 1 file changed, 0 insertions(+), 0 deletions(-) (limited to 'buch') diff --git a/buch/papers/reedsolomon/figures/plotfft.pdf b/buch/papers/reedsolomon/figures/plotfft.pdf index 80d17d2..b455da5 100644 Binary files a/buch/papers/reedsolomon/figures/plotfft.pdf and b/buch/papers/reedsolomon/figures/plotfft.pdf differ -- cgit v1.2.1