From 22d2b924b156f953409cd9f524501c7d71f7eb9b Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 27 Jul 2021 08:50:58 +0200 Subject: Some corrections from feedback --- buch/papers/punktgruppen/crystals.tex | 51 ++++++++++++++++++---------------- buch/papers/punktgruppen/piezo.tex | 52 +++++++++++++++++------------------ buch/papers/punktgruppen/symmetry.tex | 18 ++++++------ 3 files changed, 62 insertions(+), 59 deletions(-) (limited to 'buch') diff --git a/buch/papers/punktgruppen/crystals.tex b/buch/papers/punktgruppen/crystals.tex index 21e29c9..18b8395 100644 --- a/buch/papers/punktgruppen/crystals.tex +++ b/buch/papers/punktgruppen/crystals.tex @@ -1,5 +1,6 @@ \section{Kristalle} -%einleitung sollte noch an das ende von der Symmetrie angepasst werden +% TODO: einleitung sollte noch an das ende von der Symmetrie angepasst werden +% TODO: sich jeder => paper sprache Unter dem Begriff Kristall sollte sich jeder ein Bild machen können. Wir werden uns aber nicht auf sein Äusseres fokussieren, sondern was ihn im Inneren ausmacht. Die Innereien eines Kristalles sind glücklicherweise relativ einfach definiert. @@ -30,10 +31,11 @@ Sind die Vektoren \(\vec{a}_1\), \(\vec{a}_2\), \(\vec{a}_3\) gegeben, ist ein \subsection{Translationssymmetrie} Da sich das ganze Kristallgitter wiederholt, wiederholen sich auch dessen Eigenschaften periodisch mit den Grundvektoren. Sollte man sich auf einem Gitterpunkt in einem Kristall aufhalten, ist es unmöglich zu wissen, auf welchem Gitterpunkt man sich befindet, da die Umgebungen aller Punkte identisch sind. -Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{Translationssymmetrisch} in der Translation +Mit anderen Worten: Jedes Kristallgitter $ G $ ist \emph{translationssymmetrisch} in der Translation \[ - \vec{Q}_i(G) = G + \vec{a}_i -\] wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. + \vec{Q}_i(G) = G + \vec{a}_i, +\] +wobei der Vektor $\vec{a}_i$ ein Grundvektor sein muss. Da die Translationssymmetrie beliebig oft mit allen Grundvektoren angewendet werden kann, können wir auch sagen, dass alle Verschiebungen um eine Linearkombination der Vektoren $\vec{a}_1$ , $\vec{a}_2$ und $\vec{a}_3$ erlaubt sind oder kurz, um $\vec{r}$. @@ -62,7 +64,7 @@ solange wir ein unendlich grosses Kristallgitter verschieben. 90\(^{\circ}\), 120\(^{\circ}\) und 180\(^{\circ}\) - erlaubt. + m\"oglich. \end{satz} \begin{proof} @@ -78,9 +80,8 @@ solange wir ein unendlich grosses Kristallgitter verschieben. Für uns bedeutet dies lediglich, dass unser zweiter Punkt \(A'\) abgedreht wird. An der neuen Position \(B\) von \(A'\) muss also auch ein Punkt des Gitters sein, um die Rotationssymmetrie zu erfüllen. \item \(B\) ist unser Name für diesen neuen Punkt. - Da auch die Eigenschaften des Kristallgittes periodisch mit dem Gitter sein müssen, dürfen wir \(C_n\) auch auf \(A'\) anwenden. - Also wenden wir \(C_n\) invertiert\footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren. - Genauere Überlegungen hierzu werden dem Leser überlassen, da sich die Autoren nicht explizit mit dieser Frage Auseinander gesetzt haben.} + Da auch die Eigenschaften des Kristallgitters periodisch mit dem Gitter sein müssen, dürfen wir \(C_n\) auch auf \(A'\) anwenden. + Also wenden wir \(C_n\) invertiert\footnote{Eine Rotationssymmetrie muss auch in die inverse Richtung funktionieren.} auch auf \(A'\) an. Dies dreht \(A\) auf einen neuen Punkt. \item \(B'\) ist kein zufälliger Name für diesen neuen Punkt, denn wir wissen, dass zwischen allen Punkten eine Translationssymmetrie bestehen muss. @@ -89,14 +90,14 @@ solange wir ein unendlich grosses Kristallgitter verschieben. Mit den gegebenen Punkten lassen sich geometrische Folgerungen ziehen. Wir beginnen, indem wir die Länge der Verschiebung \(|\vec{Q}| = Q\) setzen und \(|\vec{Q}'| = Q'\). Aus Abbildung \ref{fig:punktgruppen:rot-geometry} ist ersichtlich, dass \(Q' = Q + 2x\). - Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes vielfaches von \(\vec{Q}\) sein. - Demnach auch die Längen + Da \(\vec{Q}\) eine Translation um ein Grundvektor ist , muss \(\vec{Q}'\) ein ganzes Vielfaches von \(\vec{Q}\) sein. + Demnach ist auch die Länge \[ - Q' = nQ = Q + 2x + Q' = nQ = Q + 2x . \] - Die Strecke \(x\) lässt sich auch mit hilfe der Trigonometrie und dem angenommenen Rotationswinkel \(\alpha\) ausdrücken: + Die Strecke \(x\) lässt sich auch mit Hilfe der Trigonometrie und dem angenommenen Rotationswinkel \(\alpha\) ausdrücken: \[ - nQ = Q + 2Q\sin(\alpha - \pi/2) + nQ = Q + 2Q\sin(\alpha - \pi/2) . \] Wir können durch \(Q\) dividieren um unabhängig von der Läge des Grundvektors zu werden, was auch Sinn macht, da eine Skalierung eines Kristalles seine Symmetrieeigenschaften nicht tangiert. @@ -126,7 +127,7 @@ ein. \subsection{Kristallklassen} -Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. +Im vorausgegangenen Abschnitt wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht alle Symmetrien möglich sind. Mit weiteren ähnlichen Überlegungen kann gezeigt werden, dass Kristalle im dreidimensionalen Raum nur auf genau 32 Arten rein punktsymmetrische Symmetriegruppen bilden können. Diese 32 möglichen Symmetriegruppen scheinen durchaus relevant zu sein, denn sie werden unter anderem als Kristallklassen bezeichnet. Die 32 möglichen Kristallklassen sind auf Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen. @@ -140,21 +141,23 @@ Vorgehend wurde gezeigt, dass in einem zweidimensionalen Kristallgitter nicht al \label{fig:punktgruppen:Kristallkassen} \end{figure} -\subsubsection{Schönflies-Symbilok} +\subsubsection{Schönflies-Symbolik} Jede der 32 Kristallklassen auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} ist mit ihrem zugehörigen Schöönflies-Symbol bezeichnet. Die Schönflies-Symbolik stammt von dem Mathematiker Arthur Moritz Schönflies, welcher sich unter anderem mit der Klasifizierung der Punktgruppen auseinandergesetzt hat. Er hat Untergruppen gebildet, welche als Grossbuchstaben in Abbildung \ref{fig:punktgruppen:Kristallkassen} zu sehen sind. Da nicht alle Symmetriegruppen in Kristallen möglich sind, werden nicht alle Untergruppen von Schönflies verwendet. - Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). - Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. - Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. - Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. - Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. - Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. - Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). - Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. - \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. + \begin{itemize} + \item Es ist nur die Drehgruppe \(C\), Diedergruppe \(D\), Drehspiegelgruppe \(S\), Tetraedergruppe \(T\) und die Oktaedergruppe \(O\). + Für die eindeutige zuweisung in eine Kristallklasse werden noch identifizierende Merkmale als Subskript notiert. + Bei der Untergruppe \(C\) werden beispielsweise die möglichen Rotationssymmetrien gezeigt. + \item Dank Abschintt \ref{txt:punktgruppen:Translationssymmetrie} wissen wir, wieso auf \(C\) nur ganz bestimmte Subskripte folgen, weil das Subskript \(n\) von \(C_n\) zeigt, dass es sich um eine \(n\)-fache Rotationssymmetrie handelt. + Daher darf \(C_5\) auf der Abbildung \ref{fig:punktgruppen:Kristallkassen} nicht vorkommen darf, da \(360^\circ/5 = 72^\circ\) was nach Abschnitt \ref{txt:punktgruppen:Translationssymmetrie} in einem Kristall keine mögliche Rotationssymmetrie ist. + \item Sind im Subskript Buchstaben, definieren diese weitere Symmetrieeigenschaften der Klasse. + Wie zum Beispiel ein Inversionszentrum\footnote{Ein Objekt mit Inversionszentrum ist Punktsymmetrisch im Inversionszentrum.} \(i\) oder eine horizontale\footnote{Als Orientierungspunkt wird die Symmetrieachse höchster Ordnung (\(n\)) als vertikal definiert} Spiegelachse \(h\). + \item Zu beachten ist jedoch, dass manche Symmetriegruppen mit mehreren Schönflies-Symbolen beschieben werden können. + \(C_{3i}\) beschreibt genau das selbe wie \(S_6\), da eine dreifache Rotationssymmetrie mit einem Inversionszentrum einer sechsfachen Drehspiegelsymmetrie entspricht. + \end{itemize} diff --git a/buch/papers/punktgruppen/piezo.tex b/buch/papers/punktgruppen/piezo.tex index 6defcdc..67e6214 100644 --- a/buch/papers/punktgruppen/piezo.tex +++ b/buch/papers/punktgruppen/piezo.tex @@ -1,6 +1,6 @@ \section{Piezoelektrizität} -Die Piezoelektrizität ist per Definition spannend. -Sie beschreibt die Eigenschaft, dass gewisse Kristalle eine elektrische Spannung erzeugen, wenn machanischer Druck auf sie ausgeübt wird. +%% TODO: improve this paragraph +Die Piezoelektrizität ist die spannende Eigenschaft, dass gewisse Kristalle eine elektrische Spannung erzeugen, wenn mechanischer Druck auf sie ausgeübt wird. \begin{figure} \centering @@ -10,10 +10,10 @@ Sie beschreibt die Eigenschaft, dass gewisse Kristalle eine elektrische Spannung \end{figure} \subsection{Polarisierung} -Piezoelektrizität basiert darauf, dass zwischen den Oberflächen des Kristalles ein Ladungsungleichgewicht entsteht siehe Abbildung\ref{fig:punktgruppen:basicPiezo}. +Piezoelektrizität basiert darauf, dass zwischen den Oberflächen des Kristalles ein Ladungsungleichgewicht entsteht (siehe Abbildung\ref{fig:punktgruppen:basicPiezo}). Dieses Ungleichgewicht resultiert, -weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positiv Ione näher an die Oberfläche gelangen, -wärend auf der gegenüberliegenden Oberfläche sich mehr negative Ionen Sammeln. +weil durch den mechanischen Druck auf der einen Oberfläche des Kristalles positiv Ionen näher an die Oberfläche gelangen, +wärend auf der gegenüberliegenden Oberfläche sich mehr negative Ionen sammeln. Das sich die atomare Struktur eines Kristalles unter Druck genau so verformt ist nicht bei jedem Kristall gegeben. Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für die Entstehung dieses Effektes. @@ -37,47 +37,45 @@ Der Aufbau und somit auch die Symmetrie des Kristalles sind daher relevant für \subsection{Atomarer Aufbau} Die Polarisation resultiert über eine gesamte Oberfläche eines Kristalles, entscheidend ist aber der atomare Aufbau. Wir wollen dazu die verschiedenen Kristallstrukturen auf Abbildung \ref{fig:punktgruppen:atomPiezo} diskutieren. -In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise Positive Ionen und blaue negative Ionen repräsentieren. -%liste oder anderes format?.. +In Abbildung \ref{fig:punktgruppen:atomPiezo} gilt für alle Strukturen, dass rote Kreise positive Ionen und blaue negative Ionen repräsentieren. Struktur \subref{fig:punktgruppen:atoms-piezo} zeigt ein piezoelektrisches Material in Ruhe. Struktur \subref{fig:punktgruppen:atoms-piezo-fv} ist dasselbe Kristallgitter, jedoch wird es senkrecht belastet. -Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil mitlleren Ladungsträger weiter auseinander gerdrückt werden. -Als hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, +Eingezeichnet ist auch das elektrische Feld, welches entsteht, weil die mittleren Ladungsträger weiter auseinander gedrückt werden. +Als Hilfe zur Vorstellung kann man \subref{fig:punktgruppen:atoms-piezo-fv} zwischen zwei leitende Platten setzen, so wird ersichtlich, dass mit wachsendem Druck eine negative Ladung an die rechte Platte gedrückt wird, während sich die positiven Ionen weiter entfernen. +\par \subref{fig:punktgruppen:atoms-grid} ist nicht piezoelektrisch. -Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unterdruck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. +Dies wird ersichtlich, wenn man \subref{fig:punktgruppen:atoms-grid} unter Druck setzt und sich die Struktur zu \subref{fig:punktgruppen:atoms-grid-f} verformt. Setzt man \subref{fig:punktgruppen:atoms-grid-f} gedanklich auch zwischen zwei leitende Platten, -scheint es als würden rechts mehr Positive Ionen in die Platte gedrückt werden und links umgekehrt. +scheint es als würden rechts mehr positive Ionen in die Platte gedrückt werden und links umgekehrt. Dies ist aber nicht mehr der Fall, wenn die Struktur sich nach oben und unten periodisch wiederholt. Struktur \subref{fig:punktgruppen:atoms-piezo-fh} zeigt \subref{fig:punktgruppen:atoms-piezo} in unter horizontaler Belastung. +\par Was zwischen \subref{fig:punktgruppen:atoms-piezo-fv} und \subref{fig:punktgruppen:atoms-piezo-fh} zu beobachten ist, ist dass das entstandene Ladungsdifferenz orthogonal zu der angelegten Kraft entsteht, im Gegensatz zu \subref{fig:punktgruppen:atoms-piezo-fh}. -Daraus kann man schlissen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von $90^\circ$ besitzen kann, -weil die Eigenschaften ändern bei einer $90^\circ$ Drehung. -Das Fehlen dieser Rotationssymmetrie kann mit betrachten von \subref{fig:punktgruppen:atoms-piezo} bestätigt werden. +Daraus kann man schliessen, dass \subref{fig:punktgruppen:atoms-piezo} keine Rotationssymmetrie von \(90^\circ\) besitzen kann, +weil die Eigenschaften ändern bei einer \(90^\circ\) Drehung. +Das Fehlen dieser Rotationssymmetrie kann in \subref{fig:punktgruppen:atoms-piezo} beobachtet werden. \subsection{Punktsymmetrie} -Piezoelektrische Kristalle können nicht Punktsymmetrisch sein. +Piezoelektrische Kristalle können nicht punktsymmetrisch sein. Kristallgitter, bei welchen eine Punktspiegelung eine symmetrische Operation ist, können keine piezoelektrische Kristalle bilden. -Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht Punktsymmetrischer Kristall -mit einem Punktsymmetrischen \subref{fig:punktgruppen:atoms-grid}verglichen worden. -Als vereinfachte Erklärung kann mann sich wieder das Bild vor augen führen, eines Kristalles, +Auf Abbildung \ref{fig:punktgruppen:atomPiezo} ist bewusst \subref{fig:punktgruppen:atoms-piezo} ein nicht punktsymmetrischer Kristall +mit einem punktsymmetrischen \subref{fig:punktgruppen:atoms-grid} verglichen worden. +Als vereinfachte Erklärung kann man sich wieder das Bild eines Kristalles vor Augen führen, welcher unter Druck auf der einen Seite negative und der anderen Seite positive Ionen an seine Oberfläche verdrängt. -Spiegelt man nun den Kristall um den Gitterpunkt in der mitte des Kristalles, so würden die negativen Ionen auf den Positiven auf der anderen seite landen, +Spiegelt man nun den Kristall um den Gitterpunkt in der Mitte des Kristalles, so würden die negativen Ionen auf den positiven auf der anderen Seite landen, was der Definition einer Symmetrie deutlich widerspricht. \subsection{Vom Kristall zum Feuer} -Piezoelektrizität hat durchaus nutzen im Alltag. +Piezoelektrizität hat durchaus Nutzen im Alltag. Feuerzeuge welche nicht auf dem Prinzip beruhen einen Zündstein abzuschleifen, sonder ohne Verschleiss auf Knopfdruck einen Zündfunken erzeugen, basieren auf dem Prinzip der Piezoelektrizität. -Drückt der Nutzende auf den Zündknopf spannt sich eine Feder bis zu einer Konfigurierten Spannung. +Drückt der Nutzende auf den Zündknopf, spannt sich eine Feder bis zu eine konfigurierten Spannung. Wird vom Nutzenden weiter gedrückt entspannt sich die Feder schlagartig und beschleunigt mit der gespeicherten Energie ein Hammer, -welcher auf das Piezoelement aufschlägt. -Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so Kurze aber hohe elekrische Spannung. +welchen auf das Piezoelement aufschlägt. +Der augenblicklich hohe Druck sorgt an den Piezokontakten für eine eben so kurze aber hohe elektrische Spannung. Die Spannung reicht aus, um eine Funkenstrecke zu überwinden und so eine entflammbares Gas zu entzünden. -Sollten Sie also eines Tages in die Situation geraten, in welcher Sie zwei verschiedene Kristalle vor sich haben -und ein piezoelektrisches Feuerzeug bauen müssen, -wobei Sie aber wissen, dass einer eine Punktsymmetrie aufweist, -versuche sie es mit dem anderen. +Sollte der Leser eines Tages in die Situation geraten, in welcher er zwei verschiedene Kristalle vor sich hat und ein piezoelektrisches Feuerzeug bauen musst, wobei bekannt ist, dass einer eine Punktsymmetrie aufweist, empfiehlt es sich mit die anderen zu versuchen. diff --git a/buch/papers/punktgruppen/symmetry.tex b/buch/papers/punktgruppen/symmetry.tex index 0bb4aec..a5b2fe2 100644 --- a/buch/papers/punktgruppen/symmetry.tex +++ b/buch/papers/punktgruppen/symmetry.tex @@ -22,27 +22,29 @@ Wie wir jedoch später sehen werden, ist das Konzept der Symmetrie eigentlich vi In Abbildung \ref{fig:punktgruppen:geometry-example} haben wir einige Formen, die offensichtlich symmetrisch sind. Zum Beispiel hat das Quadrat eine Gerade, an deren es gespiegelt werden kann, ohne sein Aussehen zu verändern. Regelmässige Polygone mit \(n\) Seiten sind auch gute Beispiele, um eine diskrete Rotationssymmetrie zu veranschaulichen, was bedeutet, dass eine Drehung um einen Punkt um einen bestimmten Winkel \(360^\circ/n\) die Figur unverändert lässt. -Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für \(\alpha \in \mathbb{R}\) gibt, die die Form unverändert lassen. +Das letzte Beispiel auf der rechten Seite ist eine unendliche Rotationssymmetrie. Sie wird so genannt, weil es unendlich viele Werte für den Drehwinkel \(\alpha \in \mathbb{R}\) gibt, der die Form unverändert lassen. Ein Objekt kann mehr als nur eine Symmetrie aufweisen. -Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch Diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. +Als Beispiel, kann das Quadrat in Abbildung \ref{fig:punktgruppen:geometry-example} nicht nur um \(\sigma\) sondern auch diagonal gespiegelt werden oder um \(90^\circ\) gedreht werden. Fasst man die möglichen Symmetrien zusammen, entsteht eine Symmetriegruppe. \begin{definition}[Symmetriegruppe] - \(g\) und \(h\) sein umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. + %% TODO + Seien \(g\) und \(h\) umkehrbare Operationen, die ein mathematisches Objekt unverändert lassen. Die Komposition \(h\circ g\) definieren wir als die Anwendung der Operationen nacheinander. - Alle möglichen Operationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. + Alle möglichen Symmetrieoperationen bilden unter Komposition eine Gruppe, die Symmetriegruppe genannt wird. \end{definition} Eine Gruppe benötigt ausserdem auch zwingend ein neutrales Element, welches wir mit \(\mathds{1}\) bezeichnen. Die Anwendung der neutralen Operation ist gleichbedeutend damit, alles unverändert zu lassen. \(\mathds{1}\) ist auch äquivalent dazu, eine Operation anzuwenden und sie dann rückgängig zu machen (ihre Inverse anzuwenden). - Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, es wird aber auch oft als Multiplikation geschrieben. +%% TODO + Die Definition der Symmetriegruppe ist mit der Kompositionsoperation gegeben, sie wird aber auch oft als Multiplikation geschrieben. Das liegt daran, dass in manchen Fällen die Zusammensetzung algebraisch durch eine Multiplikation berechnet wird. Die Verwendung einer multiplikativen Schreibweise ermöglicht es, einige Ausdrücke kompakter zu schreiben, z.B. durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine wiederholte Komposition. \begin{definition}[Zyklische Untergruppe, Erzeuger] - \(g\) sei ein Element einer Symmetriegruppe \(G\). + Sei \(g\) ein Element einer Symmetriegruppe \(G\). Alle möglichen Kompositionen von \(g\) und \(g^{-1}\) bilden eine sogenannte zyklische Untergruppe von \(G\), wobei \(g\) Erzeuger der Untergruppe genannt wird. Die von \(g\) erzeugte Untergruppe \(\langle g \rangle = \left\{ g^k : k \in \mathbb{Z} \right\}\) wird mit spitzen Klammern bezeichnet. \end{definition} @@ -51,7 +53,7 @@ durch Verwendung von Potenzen \(r^n = r\circ r \circ \cdots r\circ r\) für eine Das bedeutet, dass \(G\) die Elemente \(a, aa, aaa, \ldots\) sowie \(a^{-1}, a^{-1}a^{-1}, \ldots\) und ein neutrales Element \(\mathds{1} = aa^{-1}\) enthält. \end{beispiel} \begin{beispiel} - Als anschaulicheres Beispiel, können wir eine Zyklische Untergruppe des \(n\)-Gon formalisieren. + Als anschaulicheres Beispiel, können wir eine zyklische Untergruppe des \(n\)-Gon formalisieren. Wir bezeichnen mit \(r\) eine Drehung im Gegenuhrzeigersinn von \(360^\circ/n\) um einen Punkt. Diese Definition reicht aus, um die gesamte Symmetriegruppe \[ @@ -98,7 +100,7 @@ Dies ist jedoch keine Voraussetzung für eine Symmetrie, da es Symmetrien gibt, \subsection{Algebraische Symmetrien} Wir haben nun unseren Operationen Symbole gegeben, mit denen es tatsächlich möglich ist, Gleichungen zu schreiben. -Die anschliesende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. +Die anschliessende Frage ist dann, ob wir bereits mathematische Objekte haben, mit denen wir Gleichungen schreiben, die sich auf die gleiche Weise verhalten. Die Antwort lautet natürlich ja. Um es formaler zu beschreiben, werden wir einige Begriffe einführen. \begin{definition}[Gruppenhomomorphismus] -- cgit v1.2.1