From 90ef643e08df0d62f4e1124040f7676fb8e7dbce Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Wed, 14 Apr 2021 21:04:36 +0200 Subject: Add doc to write presentation script --- vorlesungen/punktgruppen/script.tex | 47 +++++++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) create mode 100644 vorlesungen/punktgruppen/script.tex (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex new file mode 100644 index 0000000..e4fc63c --- /dev/null +++ b/vorlesungen/punktgruppen/script.tex @@ -0,0 +1,47 @@ +\documentclass[a4paper]{article} + +\usepackage[cm]{manuscript} +\usepackage{xcolor} + +\newcommand{\scene}[1]{\noindent[ #1 ]\par} +\newenvironment{totranslate}{\color{red!60!black}}{} + +\begin{document} + +\section{Intro} + +\section{Geometrie} +\scene{Intro} +\scene{Zyklische Gruppe} + +\begin{totranslate} + Let's now focus our attention on the simplest class of simmetries: those + generated only by a rotation. We'll describe the symmetries with a group + \(G\), and we'll write that it is generated by a rotation \(r\) with these + angle brackets. + + Take this shape as an example. By applying the rotation \emph{action} 5 + times, it seems as if we had not done anything, furthermore, if we \emph{act} + with higher ``powers'' \(r\), they will have the same effect as one of the + previous action. Thus the group only contain the identity and the powers of + \(r\) up to 4. + + In general, groups with this structure are known as the + ``Cyclic Groups'' of order \(n\), where the action \(r\) can be applied + \(n-1\) times before wrapping around. +\end{totranslate} + +\scene{Diedergruppe} + +\begin{totranslate} + Okay that was not difficult, now let's spice this up a bit. +\end{totranslate} + +\scene{Symmetrische Gruppe} +\scene{Alternierende Gruppe} + +\section{Algebra} + +\section{Krystalle} + +\end{document} -- cgit v1.2.1 From 852e683777b8d8594ddd2a752affccb98ebc9fdf Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 15 Apr 2021 09:54:19 +0200 Subject: Reword video script --- vorlesungen/punktgruppen/script.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index e4fc63c..a1e356a 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -15,13 +15,13 @@ \scene{Zyklische Gruppe} \begin{totranslate} - Let's now focus our attention on the simplest class of simmetries: those - generated only by a rotation. We'll describe the symmetries with a group - \(G\), and we'll write that it is generated by a rotation \(r\) with these - angle brackets. + Let's now focus our attention on the simplest class of symmetries: those + generated by a single rotation. We describe the symmetries with a group + \(G\), and denote that it is generated by a rotation \(r\) with these angle + brackets. - Take this shape as an example. By applying the rotation \emph{action} 5 - times, it seems as if we had not done anything, furthermore, if we \emph{act} + Take this shape as an example. By applying the rotation \emph{action} 5 + times, it looks as if we had not done anything, furthermore, if we \emph{act} with higher ``powers'' \(r\), they will have the same effect as one of the previous action. Thus the group only contain the identity and the powers of \(r\) up to 4. @@ -34,7 +34,7 @@ \scene{Diedergruppe} \begin{totranslate} - Okay that was not difficult, now let's spice this up a bit. + Okay that was not difficult, now let's spice this up a bit. \end{totranslate} \scene{Symmetrische Gruppe} -- cgit v1.2.1 From a331aefc04c6d615a693d892048e1615db86a99c Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 16 Apr 2021 01:01:31 +0200 Subject: Continue video script --- vorlesungen/punktgruppen/script.tex | 52 ++++++++++++++++++++++++------------- 1 file changed, 34 insertions(+), 18 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index a1e356a..2a6d95c 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -4,37 +4,52 @@ \usepackage{xcolor} \newcommand{\scene}[1]{\noindent[ #1 ]\par} -\newenvironment{totranslate}{\color{red!60!black}}{} +\newenvironment{totranslate}{\color{blue!70!black}}{} \begin{document} \section{Intro} \section{Geometrie} -\scene{Intro} -\scene{Zyklische Gruppe} - \begin{totranslate} - Let's now focus our attention on the simplest class of symmetries: those - generated by a single rotation. We describe the symmetries with a group +We'll start with geometric symmetries as they are the simplest to grasp. + +\scene{Intro} + To mathematically formulate the concept, we will think of symmetries as + actions to perform on an object, like this square. The simplest action, is to + take this square, do nothing and put it back down. Another action could be to + flip it along an axis, or to rotate it around its center by 90 degrees. + +\scene{Cyclic Groups} + Let's focus our attention on the simplest class of symmetries: those + generated by a single rotation. We will gather the symmetries in a group \(G\), and denote that it is generated by a rotation \(r\) with these angle brackets. - Take this shape as an example. By applying the rotation \emph{action} 5 - times, it looks as if we had not done anything, furthermore, if we \emph{act} - with higher ``powers'' \(r\), they will have the same effect as one of the - previous action. Thus the group only contain the identity and the powers of - \(r\) up to 4. + Take this pentagon as an example. By applying the rotation \emph{action} 5 + times, it is the same as if we had not done anything, furthermore, if we + \emph{act} a sixth time with \(r\), it will be the same as if we had just + acted with \(r\) once. Thus the group only contain the identity and the + powers of \(r\) up to 4. - In general, groups with this structure are known as the - ``Cyclic Groups'' of order \(n\), where the action \(r\) can be applied - \(n-1\) times before wrapping around. -\end{totranslate} + In general, groups with this structure are known as the ``Cyclic Groups'' of + order \(n\), where the action \(r\) can be applied \(n-1\) times before + wrapping around. -\scene{Diedergruppe} + % You can think of them as the rotational symmetries of an \(n\)-gon. -\begin{totranslate} - Okay that was not difficult, now let's spice this up a bit. +\scene{Dihedral Groups} + Okay that was not difficult, now let's spice this up a bit. Consider this + group for a square, generated by two actions: a rotation \(r\) and a + reflection \(\sigma\). Because we have two actions we have to write in the + generator how they relate to each other. + + Let's analyze this expression. Two reflections are the same as the identity. + Four rotations are the same as the identity, and a rotation followed by a + reflection, twice, is the same as the identity. + + This forms a group with 8 possible unique actions. This too can be generalized + to an \(n\)-gon, and is known as the ``Dihedral Group'' of order \(n\). \end{totranslate} \scene{Symmetrische Gruppe} @@ -45,3 +60,4 @@ \section{Krystalle} \end{document} +% vim:et ts=2 sw=2: -- cgit v1.2.1 From 4c2a0d4d394dbb85222f480d271aa2171f0f201c Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Fri, 23 Apr 2021 20:18:45 +0200 Subject: Change brace animation --- vorlesungen/punktgruppen/script.tex | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index 2a6d95c..fe095fb 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -3,7 +3,7 @@ \usepackage[cm]{manuscript} \usepackage{xcolor} -\newcommand{\scene}[1]{\noindent[ #1 ]\par} +\newcommand{\scene}[1]{\par\noindent[ #1 ]\par} \newenvironment{totranslate}{\color{blue!70!black}}{} \begin{document} @@ -56,6 +56,10 @@ We'll start with geometric symmetries as they are the simplest to grasp. \scene{Alternierende Gruppe} \section{Algebra} +\begin{totranslate} +Let's now move into something seemingly unrelated: \emph{algebra}. +\scene{Complex numbers and cyclic groups} +\end{totranslate} \section{Krystalle} -- cgit v1.2.1 From 6eed506199b5ff21b58af9f8db6477d5af56aa0b Mon Sep 17 00:00:00 2001 From: tim30b Date: Mon, 3 May 2021 18:45:24 +0200 Subject: Write Intro --- vorlesungen/punktgruppen/script.tex | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index fe095fb..c4c4e94 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -7,8 +7,18 @@ \newenvironment{totranslate}{\color{blue!70!black}}{} \begin{document} +\section{hello} +(TT) Willkommen zu unserer Präsentation über Punktgruppen und deren Anwendung in der Kristallographie. +Ich bin Tim Tönz habe vor dem Studium die Lehre als Elektroinstallateur abgeschlossen und studiere jetzt Elektrotechnik im Vierten Semester mit Herrn Naoki Pross. +(NP)Das bin ich\ldots \ldots Nun zum Inhalt + +\section{Introtim} +Wir möchten Euch zeigen, was eine Punktgruppe ausmacht, an bespielen zeigen, wie sie im 2D und 3D Raum aussehen kann und Zusammenhänge zu Algebraischen Symmetrien erläutern. +Mit dem Wissen über Punktgruppen können wir uns versuchen der Praxis anzunähern, in unserem Fall dem Kristall und seiner Strukturellen Eigenschaften. +Als Abschluss Zeigen wir euch konkret wieso ein inversionszentrum ein Piezoelektrisches verhalten in einem Kristall ausschliesst. + +\section{intro} -\section{Intro} \section{Geometrie} \begin{totranslate} -- cgit v1.2.1 From 71aa1f502c62c877df738c496199413b631e7606 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 5 May 2021 13:01:22 +0200 Subject: write intro and matrizen --- vorlesungen/punktgruppen/script.tex | 49 ++++++++++++++++++++++++++++--------- 1 file changed, 37 insertions(+), 12 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index c4c4e94..0ea0aed 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -7,19 +7,25 @@ \newenvironment{totranslate}{\color{blue!70!black}}{} \begin{document} -\section{hello} -(TT) Willkommen zu unserer Präsentation über Punktgruppen und deren Anwendung in der Kristallographie. -Ich bin Tim Tönz habe vor dem Studium die Lehre als Elektroinstallateur abgeschlossen und studiere jetzt Elektrotechnik im Vierten Semester mit Herrn Naoki Pross. -(NP)Das bin ich\ldots \ldots Nun zum Inhalt - -\section{Introtim} -Wir möchten Euch zeigen, was eine Punktgruppe ausmacht, an bespielen zeigen, wie sie im 2D und 3D Raum aussehen kann und Zusammenhänge zu Algebraischen Symmetrien erläutern. -Mit dem Wissen über Punktgruppen können wir uns versuchen der Praxis anzunähern, in unserem Fall dem Kristall und seiner Strukturellen Eigenschaften. -Als Abschluss Zeigen wir euch konkret wieso ein inversionszentrum ein Piezoelektrisches verhalten in einem Kristall ausschliesst. +\section{das Sind wir} + (TT) Willkommen zu unserer Präsentation über Punktgruppen und deren Anwendung in der Kristallographie. + Ich bin Tim Tönz habe vor dem Studium die Lehre als Elektroinstallateur abgeschlossen und studiere jetzt Elektrotechnik im Vierten Semester mit Herrn Naoki Pross. + (NP)Das bin ich \ldots Nun zum Inhalt + +\section{Ablauf} + Wir möchten Euch zeigen, was eine Punktgruppe ausmacht, Konkret an Bespielen in 2D zeigen mit Gemainsamkeiten zu Algebraischen Symmetrien. + Da wir Menschen jedoch 3 Räumliche Dimensionen Wahrnehmen möchten wir euch die 3D Symetrien natürlcih nicht vorenthalten. + Um dem Thema des Mathematikseminars gerecht zu werden, Werden wir die einfache Verbindung zwischen Matrizen und Punktsymetrien zeigen. + Dammit die Praxis nicht ganz vergessen geht, Kristalle Mathematisch beschreiben und dessen Limitationen in hinsicht Symmetrien. + Als Abschluss Zeigen wir euch einen zusammenhan zwischen Piezoelektrizität und Symmetrien. \section{intro} - - + Ich hoffe wir konnten schon mit der Einleitung ein wenig Neugirde wecken. + fals dies noch nicht der Fall ist, sind hier noch die wichtigsten fragen, welche wir euch beantworten wollen, oder zumindest überzeugen, wieso dies spannende Fragen sind. + Als erstes, was eine Symetrie ist oder in unserem Fall eine Punktsymetrie. + Was macht ein Kristall aus, also wie kann man seine Wichtigsten eigenschaften mathematisch beschreiben. + Als letztes noch zu der Piezoelektrizität, welche ein Effekt beschreibt, dass bestimmte Krisstalle eine elektrische Spannung erzeugen, wenn sie unter mechanischen Druck gesetzt werden. + welche kristalle diese fähigkeit haben, hat ganz konkret mit ihrer Symmetrie zu tun. \section{Geometrie} \begin{totranslate} We'll start with geometric symmetries as they are the simplest to grasp. @@ -71,7 +77,26 @@ Let's now move into something seemingly unrelated: \emph{algebra}. \scene{Complex numbers and cyclic groups} \end{totranslate} -\section{Krystalle} +\scene{Matrizen} + Das man mit matrizen so einiges darstellen kann ist keine neuigkeit mehr nach einem halben Semester Matheseminar. + Also überrascht es wohl auch keinen, das mann alle punktsymetrischen Operationen auch mit Matrizen Formulieren kann. + (Beispiel zu Rotation mit video) + Für die Spiegelung wie auch eine Punkt inversion habt ihr dank dem matheseminar bestmmt schon eine Idee wie diese Operationen als Matrizen aussehen. + Ich weis nicht obe der Tipp etwas nützt, aber ih müsst nur in der Gruppe O(3) suchen. + Was auch sinn macht, denn die Gruppe O(3) zeichnet sich aus weil ihre Matrizen distanzen konstant hallten wie auch einen fixpunkt haben was sehr erwünscht ist, wenn man Punktsymmetrien beschreiben will. + + + +\scene{Krystalle} + Jenen welchen die Kristalle bis jetzt ein wenig zu kurz gekommen sind, Freuen sich hoffentlich zurecht an dieser Folie. + Es geht ab jetzt nähmlich um Kristalle. + Bevor wir mit ihnen arbeiten könne sollten wir jedoch klähren, was ein Kristall ist. + Per definition aus eienm Anerkanten Theoriebuch von XXXXXXXXXX Zitat:"YYYYYYYYYYYYYYY" + Was so viel heist wie, ein Idealer Kristall ist der schlimmste Ort um sich zu verlaufen. + Macht man nähmlich einen Schritt in genau in das nächste lattice feld hat siet der kristall wieser genau gleich aus. + Als Orentierungshilfe ist diese eigenschaft ein grosser Nachteil nicht jedoch wenn man versucht alle möglichen Symmetrien in einem Kristall zu finden. + Denn die Lattice Strucktur schränkt die unendlichen möglichen Punktsymmetrien im 3D Raum beträchtlich ein. + Was im Englischen bekannt is unter dem Crystallographic Restrictiontheorem. \end{document} % vim:et ts=2 sw=2: -- cgit v1.2.1 From e5cf8cc758fa3444d5b35cf1a2c3597532b3050e Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 7 May 2021 18:01:03 +0200 Subject: Crystallographic restriction theorem --- vorlesungen/punktgruppen/script.tex | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index 0ea0aed..3c4b5b0 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -77,7 +77,7 @@ Let's now move into something seemingly unrelated: \emph{algebra}. \scene{Complex numbers and cyclic groups} \end{totranslate} -\scene{Matrizen} +\section{Matrizen} Das man mit matrizen so einiges darstellen kann ist keine neuigkeit mehr nach einem halben Semester Matheseminar. Also überrascht es wohl auch keinen, das mann alle punktsymetrischen Operationen auch mit Matrizen Formulieren kann. (Beispiel zu Rotation mit video) @@ -87,7 +87,7 @@ Let's now move into something seemingly unrelated: \emph{algebra}. -\scene{Krystalle} +\section{Krystalle} Jenen welchen die Kristalle bis jetzt ein wenig zu kurz gekommen sind, Freuen sich hoffentlich zurecht an dieser Folie. Es geht ab jetzt nähmlich um Kristalle. Bevor wir mit ihnen arbeiten könne sollten wir jedoch klähren, was ein Kristall ist. @@ -97,6 +97,18 @@ Let's now move into something seemingly unrelated: \emph{algebra}. Als Orentierungshilfe ist diese eigenschaft ein grosser Nachteil nicht jedoch wenn man versucht alle möglichen Symmetrien in einem Kristall zu finden. Denn die Lattice Strucktur schränkt die unendlichen möglichen Punktsymmetrien im 3D Raum beträchtlich ein. Was im Englischen bekannt is unter dem Crystallographic Restrictiontheorem. + + \scene{Crystallographic restriction Theorem} + Die Punktsymmetrien von Kristallen sind auf grund verschiedensten geometrischen überlegungen eingeschränkt. + Wir zeigen euch hier nur den beweis wieso die in einem Kristall nur Rotations symetrien um 360,180,120,90 und 60 grad haben kann. + Für den Beweis beginnen wir mit einem Punkt A in dem Gitter wir wssen das in nach einer translation um eine gitterbasis wieder ein Punkt A' existieren muss. + Wir suchen Rotationssymmetrien also drehen wir um den winkel \( \alpha \) und müssen dank der drehsymmetrie \(\alpha\) wieder einen punkt im Gitter finden hier B. + Das selbe oder hier genau die die inverse drehung um \(\alpha\) von A' aus muss uns daher den Punkt B' liefern. + Zwischen zwei punkten im Gitter muss aber die Opertation Q angewendet werden können. + Das heisst der Abstand zwischen B und B' mmuss ein ganzes vielfachen von dem Abstand B zu B' sein. + + \scene{Restriktion in Algebra} + Ausgeschrieben setzen wir q klein auf die Länge der Translation, \(\alpha\) auf \(2\pi / n\) und \(n \) auf \( \mathbb{N}\) \end{document} % vim:et ts=2 sw=2: -- cgit v1.2.1 From 73df34e0710372ea84f94c74598dfa735572e8e2 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sat, 8 May 2021 01:13:16 +0200 Subject: Work on script --- vorlesungen/punktgruppen/script.tex | 116 ++++++++++++++++++++++++++---------- 1 file changed, 85 insertions(+), 31 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index 3c4b5b0..1cd7393 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -1,5 +1,8 @@ \documentclass[a4paper]{article} +\usepackage{amsmath} +\usepackage{amssymb} + \usepackage[cm]{manuscript} \usepackage{xcolor} @@ -7,25 +10,30 @@ \newenvironment{totranslate}{\color{blue!70!black}}{} \begin{document} -\section{das Sind wir} - (TT) Willkommen zu unserer Präsentation über Punktgruppen und deren Anwendung in der Kristallographie. - Ich bin Tim Tönz habe vor dem Studium die Lehre als Elektroinstallateur abgeschlossen und studiere jetzt Elektrotechnik im Vierten Semester mit Herrn Naoki Pross. - (NP)Das bin ich \ldots Nun zum Inhalt +\section{Das sind wir} +\scene{Tim} +Willkommen zu unserer Präsentation über Punktgruppen und deren Anwendung in der +Kristallographie. Ich bin Tim Tönz habe vor dem Studium die Lehre als +Elektroinstallateur abgeschlossen und studiere jetzt Elektrotechnik im Vierten +Semester mit Herrn Naoki Pross. +\scene{Naoki} + Das bin ich \ldots Nun zum Inhalt \section{Ablauf} - Wir möchten Euch zeigen, was eine Punktgruppe ausmacht, Konkret an Bespielen in 2D zeigen mit Gemainsamkeiten zu Algebraischen Symmetrien. - Da wir Menschen jedoch 3 Räumliche Dimensionen Wahrnehmen möchten wir euch die 3D Symetrien natürlcih nicht vorenthalten. - Um dem Thema des Mathematikseminars gerecht zu werden, Werden wir die einfache Verbindung zwischen Matrizen und Punktsymetrien zeigen. - Dammit die Praxis nicht ganz vergessen geht, Kristalle Mathematisch beschreiben und dessen Limitationen in hinsicht Symmetrien. - Als Abschluss Zeigen wir euch einen zusammenhan zwischen Piezoelektrizität und Symmetrien. +Wir möchten Euch zeigen, was eine Punktgruppe ausmacht, Konkret an Bespielen in 2D zeigen mit Gemainsamkeiten zu Algebraischen Symmetrien. +Da wir Menschen jedoch 3 Räumliche Dimensionen Wahrnehmen möchten wir euch die 3D Symetrien natürlcih nicht vorenthalten. +Um dem Thema des Mathematikseminars gerecht zu werden, Werden wir die einfache Verbindung zwischen Matrizen und Punktsymetrien zeigen. +Dammit die Praxis nicht ganz vergessen geht, Kristalle Mathematisch beschreiben und dessen Limitationen in hinsicht Symmetrien. +Als Abschluss Zeigen wir euch einen zusammenhan zwischen Piezoelektrizität und Symmetrien. \section{intro} - Ich hoffe wir konnten schon mit der Einleitung ein wenig Neugirde wecken. - fals dies noch nicht der Fall ist, sind hier noch die wichtigsten fragen, welche wir euch beantworten wollen, oder zumindest überzeugen, wieso dies spannende Fragen sind. - Als erstes, was eine Symetrie ist oder in unserem Fall eine Punktsymetrie. - Was macht ein Kristall aus, also wie kann man seine Wichtigsten eigenschaften mathematisch beschreiben. - Als letztes noch zu der Piezoelektrizität, welche ein Effekt beschreibt, dass bestimmte Krisstalle eine elektrische Spannung erzeugen, wenn sie unter mechanischen Druck gesetzt werden. - welche kristalle diese fähigkeit haben, hat ganz konkret mit ihrer Symmetrie zu tun. +Ich hoffe wir konnten schon mit der Einleitung ein wenig Neugirde wecken. +fals dies noch nicht der Fall ist, sind hier noch die wichtigsten fragen, welche wir euch beantworten wollen, oder zumindest überzeugen, wieso dies spannende Fragen sind. +Als erstes, was eine Symetrie ist oder in unserem Fall eine Punktsymetrie. +Was macht ein Kristall aus, also wie kann man seine Wichtigsten eigenschaften mathematisch beschreiben. +Als letztes noch zu der Piezoelektrizität, welche ein Effekt beschreibt, dass bestimmte Krisstalle eine elektrische Spannung erzeugen, wenn sie unter mechanischen Druck gesetzt werden. +welche kristalle diese fähigkeit haben, hat ganz konkret mit ihrer Symmetrie zu tun. + \section{Geometrie} \begin{totranslate} We'll start with geometric symmetries as they are the simplest to grasp. @@ -68,24 +76,70 @@ We'll start with geometric symmetries as they are the simplest to grasp. to an \(n\)-gon, and is known as the ``Dihedral Group'' of order \(n\). \end{totranslate} -\scene{Symmetrische Gruppe} -\scene{Alternierende Gruppe} - \section{Algebra} -\begin{totranslate} -Let's now move into something seemingly unrelated: \emph{algebra}. -\scene{Complex numbers and cyclic groups} -\end{totranslate} +\scene{Produkt mit \(i\)} +\"Uberlegen wir uns eine spezielle algebraische Operation: Multiplikation mit +der imagin\"aren Einheit. \(1\) mal \(i\) ist gleich \(i\). Wieder mal \(i\) +ist \(-1\), dann \(-i\) und schliesslich kommen wir z\"uruck auf \(1\). Diese +fassen wir in eine Gruppe \(G\) zusammen. Oder sch\"oner geschrieben:. Sieht das +bekannt aus? + +\scene{Morphismen} +Das Gefühl, dass es sich um dasselbe handelt, kann wie folgt formalisiert +werden. Sei \(\phi\) eine Funktion von \(C_4\) zu \(G\). Ordnen wir zu jeder +Symmetrieoperation ein Element aus \(G\). Wenn man die Zuordnung richtig +definiert, dann sieht man die folgende Eigenschaft: Eine Operation nach eine +andere zu nutzen, und dann die Funktion des Resultats zu nehmen, ist gleich wie +die Funktion der einzelnen Operazionen zu nehmen und das Resultat zu +multiplizieren. Dieses Ergebnis ist so bemerkenswert, dass es in der Mathematik +einen Namen bekommen hat: Homorphismus, von griechisch "homos" dasselbe und +"morphe" Form. Manchmal wird es auch so geschrieben. Ausserdem, wenn \(\phi\) +eins zu eins ist, heisst es \emph{Iso}morphismus: "iso" gleiche Form. Was +man typischerweise mit diesem Symbol schreibt. + +\scene{Animation} +Sie haben wahrscheinlich schon gesehen, worauf das hinausläuft. Dass die +zyklische Gruppe \(C_4\) und \(G\) die gleiche Form haben, ist im wahrste Sinne +des Wortes. %% Ask Tim: literally true + +\scene{Modulo} +Der Beispiel mit der komplexen Einheit, war wahrscheinlich nicht so +\"uberraschend. Aber was merkw\"urdig ist, ist das diese geometrische Struktur, +kann man auch in anderen Sachen finden, die erst nicht geometrisch aussehen. +Ein Beispiel für Neugierige: Summe in der Modulo-Arithmetik. Um die Geometrie +zu finden denken Sie an einer Uhr. \section{Matrizen} - Das man mit matrizen so einiges darstellen kann ist keine neuigkeit mehr nach einem halben Semester Matheseminar. - Also überrascht es wohl auch keinen, das mann alle punktsymetrischen Operationen auch mit Matrizen Formulieren kann. - (Beispiel zu Rotation mit video) - Für die Spiegelung wie auch eine Punkt inversion habt ihr dank dem matheseminar bestmmt schon eine Idee wie diese Operationen als Matrizen aussehen. - Ich weis nicht obe der Tipp etwas nützt, aber ih müsst nur in der Gruppe O(3) suchen. - Was auch sinn macht, denn die Gruppe O(3) zeichnet sich aus weil ihre Matrizen distanzen konstant hallten wie auch einen fixpunkt haben was sehr erwünscht ist, wenn man Punktsymmetrien beschreiben will. - - +\scene{Titelseite} +Nun gehen wir kurz auf den Thema unseres Seminars ein: Matrizen. Das man mit +Matrizen Dinge darstellen kann, ist keine Neuigkeit mehr, nach einem +Semester MatheSeminar. Also überrascht es wohl auch keinen, das man alle +punktsymmetrischen Operationen auch mit Matrizen Formulieren kann. + +\scene{Matrizen} + +Sei dann \(G\) unsere Symmetrie Gruppe, die unsere abstrakte Drehungen und +Spiegelungen enth\"ahlt. Die Matrix Darstellung dieser Gruppe, ist eine +Funktion gross \(\Phi\), von \(G\) zur orthogonalen Gruppe \(O(3)\), die zu +jeder Symmetrie Operation klein \(g\) eine Matrix gross \(\Phi_g\) zuordnet. + +Zur Erinnerung, die Orthogonale Gruppe ist definiert als die Matrizen, deren +transponierte auch die inverse ist. Da diese Volumen und Distanzen erhalten, +natuerlich nur bis zu einer Vorzeichenumkehrung, macht es Sinn, dass diese +Punksymmetrien genau beschreiben. + +Nehmen wir die folgende Operationen als Beispiele. Die Matrix der trivialen +Operation, dass heisst nichts zu machen, ist die Einheitsmatrix. Eine +Spiegelung ist dasselbe aber mit einem Minus, und Drehungen sind uns schon +dank Herrn M\"uller bekannt. + +% (Beispiel zu Rotation mit video) Für die Spiegelung wie auch eine Punkt +% inversion habt ihr dank dem matheseminar bestmmt schon eine Idee wie diese +% Operationen als Matrizen aussehen. Ich weis nicht obe der Tipp etwas nützt, +% aber ih müsst nur in der Gruppe O(3) suchen. Was auch sinn macht, denn die +% Gruppe O(3) zeichnet sich aus weil ihre Matrizen distanzen konstant hallten +% wie auch einen fixpunkt haben was sehr erwünscht ist, wenn man +% Punktsymmetrien beschreiben will. \section{Krystalle} Jenen welchen die Kristalle bis jetzt ein wenig zu kurz gekommen sind, Freuen sich hoffentlich zurecht an dieser Folie. @@ -108,7 +162,7 @@ Let's now move into something seemingly unrelated: \emph{algebra}. Das heisst der Abstand zwischen B und B' mmuss ein ganzes vielfachen von dem Abstand B zu B' sein. \scene{Restriktion in Algebra} - Ausgeschrieben setzen wir q klein auf die Länge der Translation, \(\alpha\) auf \(2\pi / n\) und \(n \) auf \( \mathbb{N}\) + Ausgeschrieben setzen wir klein auf die Länge der Translation, \(\alpha\) auf \(2\pi / n\) und \(n\) auf \(\mathbb{N}\). \end{document} % vim:et ts=2 sw=2: -- cgit v1.2.1 From 550545408c41de6ab543e31dde6edfad3d5bd70c Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sat, 8 May 2021 23:15:07 +0200 Subject: Work on script --- vorlesungen/punktgruppen/script.tex | 203 ++++++++++++++++++------------------ 1 file changed, 101 insertions(+), 102 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index 1cd7393..ef16338 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -11,70 +11,64 @@ \begin{document} \section{Das sind wir} -\scene{Tim} -Willkommen zu unserer Präsentation über Punktgruppen und deren Anwendung in der -Kristallographie. Ich bin Tim Tönz habe vor dem Studium die Lehre als -Elektroinstallateur abgeschlossen und studiere jetzt Elektrotechnik im Vierten -Semester mit Herrn Naoki Pross. -\scene{Naoki} - Das bin ich \ldots Nun zum Inhalt +\scene{Camera} \section{Ablauf} -Wir möchten Euch zeigen, was eine Punktgruppe ausmacht, Konkret an Bespielen in 2D zeigen mit Gemainsamkeiten zu Algebraischen Symmetrien. -Da wir Menschen jedoch 3 Räumliche Dimensionen Wahrnehmen möchten wir euch die 3D Symetrien natürlcih nicht vorenthalten. -Um dem Thema des Mathematikseminars gerecht zu werden, Werden wir die einfache Verbindung zwischen Matrizen und Punktsymetrien zeigen. -Dammit die Praxis nicht ganz vergessen geht, Kristalle Mathematisch beschreiben und dessen Limitationen in hinsicht Symmetrien. -Als Abschluss Zeigen wir euch einen zusammenhan zwischen Piezoelektrizität und Symmetrien. +Zuerst werden wir Symmetrien in 2 Dimensionen anschauen, dann \"uberlegen wir +kurz was es heisst f\"ur eine Symmetrie ``algebraisch'' zu sein. Von da aus +kommt die dritte Dimension hinzu, die man besser mit Matrizen verstehen kann. +Mit der aufgebauten Theorie werden wir versuchen Kristalle zu klassifizieren. +Und zum Schluss kommen wir zu Anwendungen, welche f\"ur Ingenieure von +Interesse sind. \section{intro} -Ich hoffe wir konnten schon mit der Einleitung ein wenig Neugirde wecken. -fals dies noch nicht der Fall ist, sind hier noch die wichtigsten fragen, welche wir euch beantworten wollen, oder zumindest überzeugen, wieso dies spannende Fragen sind. -Als erstes, was eine Symetrie ist oder in unserem Fall eine Punktsymetrie. -Was macht ein Kristall aus, also wie kann man seine Wichtigsten eigenschaften mathematisch beschreiben. -Als letztes noch zu der Piezoelektrizität, welche ein Effekt beschreibt, dass bestimmte Krisstalle eine elektrische Spannung erzeugen, wenn sie unter mechanischen Druck gesetzt werden. -welche kristalle diese fähigkeit haben, hat ganz konkret mit ihrer Symmetrie zu tun. - -\section{Geometrie} -\begin{totranslate} -We'll start with geometric symmetries as they are the simplest to grasp. +\scene{Spontan} +\section{2D Geometrie} \scene{Intro} - To mathematically formulate the concept, we will think of symmetries as - actions to perform on an object, like this square. The simplest action, is to - take this square, do nothing and put it back down. Another action could be to - flip it along an axis, or to rotate it around its center by 90 degrees. - -\scene{Cyclic Groups} - Let's focus our attention on the simplest class of symmetries: those - generated by a single rotation. We will gather the symmetries in a group - \(G\), and denote that it is generated by a rotation \(r\) with these angle - brackets. - - Take this pentagon as an example. By applying the rotation \emph{action} 5 - times, it is the same as if we had not done anything, furthermore, if we - \emph{act} a sixth time with \(r\), it will be the same as if we had just - acted with \(r\) once. Thus the group only contain the identity and the - powers of \(r\) up to 4. - - In general, groups with this structure are known as the ``Cyclic Groups'' of - order \(n\), where the action \(r\) can be applied \(n-1\) times before - wrapping around. - - % You can think of them as the rotational symmetries of an \(n\)-gon. - -\scene{Dihedral Groups} - Okay that was not difficult, now let's spice this up a bit. Consider this - group for a square, generated by two actions: a rotation \(r\) and a - reflection \(\sigma\). Because we have two actions we have to write in the - generator how they relate to each other. - - Let's analyze this expression. Two reflections are the same as the identity. - Four rotations are the same as the identity, and a rotation followed by a - reflection, twice, is the same as the identity. - - This forms a group with 8 possible unique actions. This too can be generalized - to an \(n\)-gon, and is known as the ``Dihedral Group'' of order \(n\). -\end{totranslate} +Wir fangen mit den 2 dimensionalen Symmetrien an, da man sie sich am +einfachsten vorstellen kann. Eine Symmetrie eines Objektes beschreibt eine +Aktion, welche nachdem sie auf das Objekt wirkt, das Objekt wieder gleich +aussehen l\"asst. + +\scene{Viereck} +Die einfachste Aktion, ist das Viereck zu nehmen, und wieder hinzulegen. +Eine andere Aktion k\"onnte sein, das Objekt um eine Achse zu spiegeln, +oder eine Rotation um 90 Grad. + +\scene{Zyklische Gruppe} +Fokussieren wir uns auf die einfachste Klassen von Symmetrien: diejenigen die +von einer reinen Drehung generiert werden. Wir sammeln diese in einer Gruppe +\(G\), und notieren das sie von eine Rotation \(r\) generiert worden sind, mit +diesen spitzen Klammern. + +Nehmen wir als Beispiel dieses Pentagon. Wenn wir \(r\) 5-mal anwenden, ist es +dasselbe als wenn wir nichts gemacht h\"atten. Wenn wir es noch ein 6. mal +drehen, entspricht dies dasselbe wie \(r\) nur 1 mal zu nutzen. + +\scene{Notation} +So, die Gruppe setzt sich zusammen aus dem neutralen Element, und den Potenzen +1 bis 4 von \(r\). Oder im allgemein Gruppen mit dieser Struktur, in welcher die +Aktion \(n-1\) mal angewendet werden kann, heissen ``Zyklische Gruppe''. + +\scene{Diedergruppe} +Nehmen wir nun auch noch die Spiegeloperation \(\sigma\) dazu. Weil wir jetzt 2 +Operationen haben, m\"ussen wir auch im Generator schreiben wie sie +zusammenh\"angen. Schauen wir dann uns genauer diesen Ausdr\"uck an. Zweimal +Spielegeln ist \"aquivalent zum neutralen Element, sowie 4 mal um 90 Grad +drehen und 2 Drehspiegelungen, welche man auch Inversion nennt. + +\scene{Notation} +Daraus k\"onnen wir wieder die ganze Gruppe erzeugen, die im allgemeinen den +Symmetrien eines \(n\)-gons entsprechen. + +\scene{Kreisgruppe} +Bis jetzt hatten wir nur diskrete Symmetrien, was nicht zwingend der Fall sein +muss. Ein Ring kann man kontinuierlich drehen, und sieht dabei immer gleich +aus. + +Diese Symmetrie ist auch als Kreisgruppe bekannt, die man sch\"on mit dem +komplexen Einheitskreis definieren kann. \section{Algebra} \scene{Produkt mit \(i\)} @@ -86,28 +80,52 @@ bekannt aus? \scene{Morphismen} Das Gefühl, dass es sich um dasselbe handelt, kann wie folgt formalisiert -werden. Sei \(\phi\) eine Funktion von \(C_4\) zu \(G\). Ordnen wir zu jeder -Symmetrieoperation ein Element aus \(G\). Wenn man die Zuordnung richtig +werden. Sei \(\phi\) eine Funktion von \(C_4\) zu \(G\) und ordnen wir zu +jeder Symmetrieoperation ein Element aus \(G\). Wenn man die Zuordnung richtig definiert, dann sieht man die folgende Eigenschaft: Eine Operation nach eine andere zu nutzen, und dann die Funktion des Resultats zu nehmen, ist gleich wie -die Funktion der einzelnen Operazionen zu nehmen und das Resultat zu +die Funktion der einzelnen Operazionen zu nehmen und die Resultate zu multiplizieren. Dieses Ergebnis ist so bemerkenswert, dass es in der Mathematik einen Namen bekommen hat: Homorphismus, von griechisch "homos" dasselbe und -"morphe" Form. Manchmal wird es auch so geschrieben. Ausserdem, wenn \(\phi\) -eins zu eins ist, heisst es \emph{Iso}morphismus: "iso" gleiche Form. Was -man typischerweise mit diesem Symbol schreibt. +"morphe" Form. Manchmal auch so geschrieben. Ausserdem, wenn \(\phi\) eins zu +eins ist, heisst es \emph{Iso}morphismus: "iso" gleiche Form. Was man +typischerweise mit diesem Symbol schreibt. \scene{Animation} -Sie haben wahrscheinlich schon gesehen, worauf das hinausläuft. Dass die -zyklische Gruppe \(C_4\) und \(G\) die gleiche Form haben, ist im wahrste Sinne -des Wortes. %% Ask Tim: literally true +Sie haben wahrscheinlich schon gesehen, worauf das hinausläuft. Dass die +zyklische Gruppe \(C_4\) und \(G\) isomorph sind ist nicht nur Fachjargon der +mathematik, sondern sie haben wirklich die selbe Struktur. \scene{Modulo} -Der Beispiel mit der komplexen Einheit, war wahrscheinlich nicht so -\"uberraschend. Aber was merkw\"urdig ist, ist das diese geometrische Struktur, -kann man auch in anderen Sachen finden, die erst nicht geometrisch aussehen. -Ein Beispiel für Neugierige: Summe in der Modulo-Arithmetik. Um die Geometrie -zu finden denken Sie an einer Uhr. +Das Beispiel mit der komplexen Einheit, war wahrscheinlich nicht so +\"uberraschend. Aber was merkw\"urdig ist, ist das Beziehungen zwischen +Symmetrien und Algebra auch in Bereichen gefunden werden, welche auf den ersten +Blick, nicht geomerisch erscheinen. Ein R\"atsel für die Neugierigen: die Summe +in der Modulo-Arithmetik. Als Hinweis: Um die Geometrie zu finden denken Sie +an einer Uhr. + +\section{3D Geometrie} +2 Dimensionen sind einfacher zu zeichnen, aber leider leben wir im 3 +dimensionalen Raum. + +\scene{Zyklische Gruppe} +Wenn wir unser bekanntes Viereck mit seiner zyklischer Symmetrie in 3 +Dimensionen betrachten, k\"onnen wir seine Drehachse sehen. + +\scene{Diedergruppe} +Um auch noch die andere Symmetrie des Rechteckes zu sehen, ben\"otigen wir eine +Spiegelachse \(\sigma\), die hier eine Spiegelebene ist. + +\scene{Transition} +Um die Punktsymmetrien zu klassifizieren orientiert man sich an einer Achse, um +welche sich die meisten Symmetrien drehen. Das geht aber nicht immer, wie beim +Tetraeder. + +\scene{Tetraedergruppe} +Diese Geometrie hat 4 gleichwertige Symmetrieachsen, die eben eine +Symmetriegruppe aufbauen, welche kreativer weise Tetraedergruppe genannt wird. +Vielleicht fallen Ihnnen weitere Polygone ein mit dieser Eigenschaft, bevor wir +zum n\"achsten Thema weitergehen. \section{Matrizen} \scene{Titelseite} @@ -133,36 +151,17 @@ Operation, dass heisst nichts zu machen, ist die Einheitsmatrix. Eine Spiegelung ist dasselbe aber mit einem Minus, und Drehungen sind uns schon dank Herrn M\"uller bekannt. -% (Beispiel zu Rotation mit video) Für die Spiegelung wie auch eine Punkt -% inversion habt ihr dank dem matheseminar bestmmt schon eine Idee wie diese -% Operationen als Matrizen aussehen. Ich weis nicht obe der Tipp etwas nützt, -% aber ih müsst nur in der Gruppe O(3) suchen. Was auch sinn macht, denn die -% Gruppe O(3) zeichnet sich aus weil ihre Matrizen distanzen konstant hallten -% wie auch einen fixpunkt haben was sehr erwünscht ist, wenn man -% Punktsymmetrien beschreiben will. - -\section{Krystalle} - Jenen welchen die Kristalle bis jetzt ein wenig zu kurz gekommen sind, Freuen sich hoffentlich zurecht an dieser Folie. - Es geht ab jetzt nähmlich um Kristalle. - Bevor wir mit ihnen arbeiten könne sollten wir jedoch klähren, was ein Kristall ist. - Per definition aus eienm Anerkanten Theoriebuch von XXXXXXXXXX Zitat:"YYYYYYYYYYYYYYY" - Was so viel heist wie, ein Idealer Kristall ist der schlimmste Ort um sich zu verlaufen. - Macht man nähmlich einen Schritt in genau in das nächste lattice feld hat siet der kristall wieser genau gleich aus. - Als Orentierungshilfe ist diese eigenschaft ein grosser Nachteil nicht jedoch wenn man versucht alle möglichen Symmetrien in einem Kristall zu finden. - Denn die Lattice Strucktur schränkt die unendlichen möglichen Punktsymmetrien im 3D Raum beträchtlich ein. - Was im Englischen bekannt is unter dem Crystallographic Restrictiontheorem. - - \scene{Crystallographic restriction Theorem} - Die Punktsymmetrien von Kristallen sind auf grund verschiedensten geometrischen überlegungen eingeschränkt. - Wir zeigen euch hier nur den beweis wieso die in einem Kristall nur Rotations symetrien um 360,180,120,90 und 60 grad haben kann. - Für den Beweis beginnen wir mit einem Punkt A in dem Gitter wir wssen das in nach einer translation um eine gitterbasis wieder ein Punkt A' existieren muss. - Wir suchen Rotationssymmetrien also drehen wir um den winkel \( \alpha \) und müssen dank der drehsymmetrie \(\alpha\) wieder einen punkt im Gitter finden hier B. - Das selbe oder hier genau die die inverse drehung um \(\alpha\) von A' aus muss uns daher den Punkt B' liefern. - Zwischen zwei punkten im Gitter muss aber die Opertation Q angewendet werden können. - Das heisst der Abstand zwischen B und B' mmuss ein ganzes vielfachen von dem Abstand B zu B' sein. - - \scene{Restriktion in Algebra} - Ausgeschrieben setzen wir klein auf die Länge der Translation, \(\alpha\) auf \(2\pi / n\) und \(n\) auf \(\mathbb{N}\). +\section{Kristalle} +\scene{Spontan} + +\section{Piezo} +\scene{Spontan} + +\section{Licht} +TODO + +\section{Outro} +\scene{Camera} \end{document} % vim:et ts=2 sw=2: -- cgit v1.2.1 From 18a8833cf205fdc887c89f66832cc8d15b12b59c Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Sun, 9 May 2021 17:14:26 +0200 Subject: Light script --- vorlesungen/punktgruppen/script.tex | 49 ++++++++++++++++++++++++++++++++++++- 1 file changed, 48 insertions(+), 1 deletion(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index ef16338..c542702 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -158,7 +158,54 @@ dank Herrn M\"uller bekannt. \scene{Spontan} \section{Licht} -TODO +Als Finale, haben wir ein schwieriges Problem aus der Physik. Das Ziel dieser +Folie ist nicht jedes Zeichen zu versehen, sondern zu zeigen wie man von hier +weiter gehen kann. Wir mochten sehen wie Licht in einem Kristall sich +verhaltet. Genauer, wir m\"ochten wie die Amplitude einer +elektromagnetischer Welle in einem Kristall wissen. + +Das Beispiel richtet sich mehr an Elektrotechnik Studenten, aber die Theorie +ist die gleiche bei mechanischen Wellen in Materialien mit einer +Spannungstensor wie dem, den wir letzte Woche gesehen haben. Ganz grob gesagt, +ersetzt man E durch Xi und epsilon durch den sigma. + +Um eine Welle zu beschreiben, verwenden wir die Helmholtz-Gleichung, die einige +von uns bereits in anderen Kursen gel\"ost haben. Schwierig wird aber dieses +Problem, wenn der Term vor der Zeitableitung ein Tensor ist (f\"ur uns eine Matrix). + +Zur Vereinfachung werden wir eine ebene Welle verwenden. Setzt man dieses E in +die Helmholtz-Gleichung ein, erhält man folgendes zurück: ein Eigenwertproblem. + +Physikalisch bedeutet dies, dass die Welle in diesem Material ihre Amplitude in +Abhängigkeit von der Ausbreitungsrichtung ändert. Und die Eigenwerte sagen +aus, wie stark die Amplitude der Welle in jeder Richtung skaliert wird. + +Ich sagte, in jede Richtung skaliert, aber welche Richtungen genau? +Physikalisch hängt das von der kristallinen Struktur des Materials ab, aber +mathematisch können wir sagen: in Richtung der Eigenvektoren! Aber diesen +Eigenraum zu finden, in dem die Eigenvektoren wohnen, ist beliebig schwierig. + +Hier kommt unsere Gruppentheorie zu Hilfe. Wir können die Symmetrien unseres +Kristalls kennen. Und zu jeder dieser Symmetrien lässt sich bekanntlich eine +einfache Matrix finden, deren Eigenraum ebenfalls relativ leicht zu finden ist. +Zum Beispiel ist der Eigenraum der Rotation \(r\), die Rotationsachse, für die +Reflexion \(\sigma\) eine Ebene, und so weiter. + +Nun die frage ist, ob man diese Eingenraume der Symmetrienoperationen +kombinieren kann um den Eigenraum des physikalisches Problems zu finden. + +Aber leider ist meine Zeit abgelaufen, also müssen Sie mir einfach glauben, +dass es einen Weg gibt. Und es ist gar nicht so schlimm, wenn man die Notation +einmal gelernt hat. + +Nachdem wir den Eigenraum U gefunden haben, können wir einen Vektor E darin +nehmen und dann direkt lambda ablesen. Das sagt uns, wie die Amplitude der +Welle, in diese Richtung gedämpft wurde. + +Diese Methode ist nicht spezifisch für dieses Problem, im Gegenteil, ich habe +gesehen, dass sie in vielen Bereichen eingesetzt wird, wie z.B.: +Kristallographie, Festkörperphysik, Molekülschwingungen in der Quantenchemie +und numerische Simulationen von Membranen. \section{Outro} \scene{Camera} -- cgit v1.2.1 From d8fe865f486d8aed3fb7105671783efd6738bfb4 Mon Sep 17 00:00:00 2001 From: HeadAndToes <55713950+HeadAndToes@users.noreply.github.com> Date: Sun, 9 May 2021 17:52:17 +0200 Subject: Update script.tex --- vorlesungen/punktgruppen/script.tex | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index c542702..789fbd4 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -160,14 +160,14 @@ dank Herrn M\"uller bekannt. \section{Licht} Als Finale, haben wir ein schwieriges Problem aus der Physik. Das Ziel dieser Folie ist nicht jedes Zeichen zu versehen, sondern zu zeigen wie man von hier -weiter gehen kann. Wir mochten sehen wie Licht in einem Kristall sich -verhaltet. Genauer, wir m\"ochten wie die Amplitude einer -elektromagnetischer Welle in einem Kristall wissen. +weiter gehen kann. Wir mochten sehen wie sich Licht in einem Kristall verhaltet. +Genauer, wir m\"ochten die Amplitude einer +elektromagnetischer Welle in einem Kristall beschreiben. Das Beispiel richtet sich mehr an Elektrotechnik Studenten, aber die Theorie ist die gleiche bei mechanischen Wellen in Materialien mit einer Spannungstensor wie dem, den wir letzte Woche gesehen haben. Ganz grob gesagt, -ersetzt man E durch Xi und epsilon durch den sigma. +ersetzt man E durch Xi und epsilon durch das Sigma. Um eine Welle zu beschreiben, verwenden wir die Helmholtz-Gleichung, die einige von uns bereits in anderen Kursen gel\"ost haben. Schwierig wird aber dieses @@ -186,20 +186,20 @@ mathematisch können wir sagen: in Richtung der Eigenvektoren! Aber diesen Eigenraum zu finden, in dem die Eigenvektoren wohnen, ist beliebig schwierig. Hier kommt unsere Gruppentheorie zu Hilfe. Wir können die Symmetrien unseres -Kristalls kennen. Und zu jeder dieser Symmetrien lässt sich bekanntlich eine +Kristalls zur Hilfe nehmen. Zu jeder dieser Symmetrien lässt sich bekanntlich eine einfache Matrix finden, deren Eigenraum ebenfalls relativ leicht zu finden ist. Zum Beispiel ist der Eigenraum der Rotation \(r\), die Rotationsachse, für die Reflexion \(\sigma\) eine Ebene, und so weiter. -Nun die frage ist, ob man diese Eingenraume der Symmetrienoperationen +Nun ist die Frage, ob man diese Eingenraume der Symmetrienoperationen kombinieren kann um den Eigenraum des physikalisches Problems zu finden. -Aber leider ist meine Zeit abgelaufen, also müssen Sie mir einfach glauben, -dass es einen Weg gibt. Und es ist gar nicht so schlimm, wenn man die Notation -einmal gelernt hat. +Aber leider ist meine Zeit abgelaufen in der Recherche, also müssen Sie mir einfach glauben, +dass es einen Weg gibt. (Und es ist gar nicht so schlimm, wenn man die Notation +einmal gelernt hat.)-> weiss nicht ganz was du hier sagen willst/wieso du das erwähnst -Nachdem wir den Eigenraum U gefunden haben, können wir einen Vektor E darin -nehmen und dann direkt lambda ablesen. Das sagt uns, wie die Amplitude der +Nachdem wir an, wir haben den Eigenraum U gefunden, dann können wir einen (Eigen)Vektor E daraus +nehmen und in ihm direkt lambda ablesen. Das sagt uns, wie die Amplitude der Welle, in diese Richtung gedämpft wurde. Diese Methode ist nicht spezifisch für dieses Problem, im Gegenteil, ich habe -- cgit v1.2.1 From 77fe1064cdf1e7a0233d6bc6411a74e1807e5bbc Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Mon, 10 May 2021 13:15:12 +0200 Subject: Minor changes in script --- vorlesungen/punktgruppen/script.tex | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) (limited to 'vorlesungen/punktgruppen/script.tex') diff --git a/vorlesungen/punktgruppen/script.tex b/vorlesungen/punktgruppen/script.tex index 789fbd4..bc50e21 100644 --- a/vorlesungen/punktgruppen/script.tex +++ b/vorlesungen/punktgruppen/script.tex @@ -166,8 +166,8 @@ elektromagnetischer Welle in einem Kristall beschreiben. Das Beispiel richtet sich mehr an Elektrotechnik Studenten, aber die Theorie ist die gleiche bei mechanischen Wellen in Materialien mit einer -Spannungstensor wie dem, den wir letzte Woche gesehen haben. Ganz grob gesagt, -ersetzt man E durch Xi und epsilon durch das Sigma. +Spannungstensor wie dem, den wir letzte Woche gesehen haben. +% Ganz grob gesagt, ersetzt man E durch Xi und epsilon durch das Sigma. Um eine Welle zu beschreiben, verwenden wir die Helmholtz-Gleichung, die einige von uns bereits in anderen Kursen gel\"ost haben. Schwierig wird aber dieses @@ -194,13 +194,13 @@ Reflexion \(\sigma\) eine Ebene, und so weiter. Nun ist die Frage, ob man diese Eingenraume der Symmetrienoperationen kombinieren kann um den Eigenraum des physikalisches Problems zu finden. -Aber leider ist meine Zeit abgelaufen in der Recherche, also müssen Sie mir einfach glauben, -dass es einen Weg gibt. (Und es ist gar nicht so schlimm, wenn man die Notation -einmal gelernt hat.)-> weiss nicht ganz was du hier sagen willst/wieso du das erwähnst +Aber leider ist meine Zeit abgelaufen in der Recherche, also müssen Sie mir 2 +Dingen einfach glauben, erstens dass es einen Weg gibt, und zweitens dass eher +nicht so schlimm ist, wenn man die Notation einmal gelernt hat. -Nachdem wir an, wir haben den Eigenraum U gefunden, dann können wir einen (Eigen)Vektor E daraus -nehmen und in ihm direkt lambda ablesen. Das sagt uns, wie die Amplitude der -Welle, in diese Richtung gedämpft wurde. +Nachdem wir an, wir haben den Eigenraum U gefunden, dann können wir einen +(Eigen)Vektor E daraus nehmen und in ihm direkt lambda ablesen. Das sagt uns, +wie die Amplitude der Welle, in diese Richtung gedämpft wurde. Diese Methode ist nicht spezifisch für dieses Problem, im Gegenteil, ich habe gesehen, dass sie in vielen Bereichen eingesetzt wird, wie z.B.: -- cgit v1.2.1