From 9aa06203d62e6d9092597fc7f89a0a8e3a6636c9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 3 Jun 2021 08:28:20 +0200 Subject: new slides --- vorlesungen/slides/2/hilbertraum/basis.tex | 61 ++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 vorlesungen/slides/2/hilbertraum/basis.tex (limited to 'vorlesungen/slides/2/hilbertraum/basis.tex') diff --git a/vorlesungen/slides/2/hilbertraum/basis.tex b/vorlesungen/slides/2/hilbertraum/basis.tex new file mode 100644 index 0000000..46c2320 --- /dev/null +++ b/vorlesungen/slides/2/hilbertraum/basis.tex @@ -0,0 +1,61 @@ +% +% basis.tex -- slide template +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Hilbert-Basis} +\vspace{-20pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Definition} +Eine Menge $\mathcal{B}=\{b_k|k>0\}$ ist eine Hilbertbasis, wenn +\begin{itemize} +\item $\mathcal{B}$ ist orthonormiert: $\langle b_k,b_l\rangle=\delta_{kl}$ +\item Der Unterraum $\langle b_k|k>0\rangle\subset H$ ist +dicht: +Jeder Vektor von $H$ kann beliebig genau durch Linearkombinationen von $b_k$ +approximiert werden. +\end{itemize} +Ein Hilbertraum mit einer Hilbertbasis heisst {\em separabel} +\end{block} +\begin{block}{Endlichdimensional} +Der Algorithmus bricht nach endlich vielen Schritten ab. +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\begin{block}{Konstruktion} +Iterativ: $\mathcal{B}_0=\emptyset$ +\begin{enumerate} +\item $V_k = \langle \mathcal{B}_k \rangle$ +\item Wenn $V_k\ne H$, wähle einen Vektor +\begin{align*} +x\in V_k^{\perp} +&= +\{ +x\in H\;|\; x\perp V_k +\} +\\ +&= +\{x\in H\;|\; +x\perp y\;\forall y\in V_k +\} +\end{align*} +\item $b_{k+1} = x/\|x\|$ +\[ +\mathcal{B}_{k+1} = \mathcal{B}_k\cup \{b_{k+1}\} +\] +\end{enumerate} +Wenn $H$ separabel ist, dann ist +\[ +\mathcal{B} = \bigcup_{k} \mathcal{B}_k +\] +eine Hilbertbasis für $H$ +\end{block} +\end{column} +\end{columns} +\end{frame} +\egroup -- cgit v1.2.1