Sind die beiden Permutationen \[ \sigma_1 = \begin{pmatrix} 1& 2& 3& 4& 5& 6& 7& 8\\ 8& 6& 5& 7& 2& 3& 4& 1 \end{pmatrix} \qquad\text{und}\qquad \sigma_2 = \begin{pmatrix} 1& 2& 3& 4& 5& 6& 7& 8\\ 8& 7& 5& 6& 3& 4& 1& 2 \end{pmatrix} \] konjugiert in $S_8$? Wenn ja, finden Sie eine Permutation $\gamma$ derart, dass $\gamma\sigma_1\gamma^{-1}=\sigma_2$ \begin{loesung} Die Zyklenzerlegungen von $\sigma_1$ und $\sigma_2$ sind \begin{center} \begin{tikzpicture}[>=latex,thick] \begin{scope}[xshift=-3.3cm] \node at (-0.25,1.7) {$\sigma_1$}; \draw (-3.3,-1.3) rectangle (2.8,1.3); \coordinate (A) at (-2.4,0.5); \coordinate (B) at (-2.4,-0.5); \coordinate (C) at (-0.8,0.5); \coordinate (D) at (-0.8,-0.5); \coordinate (E) at (0.8,0.5); \coordinate (F) at (0.8,-0.5); \coordinate (G) at (1.8,0.5); \coordinate (H) at (1.8,-0.5); \draw[->] (E) to[out=-135,in=135] (F); \draw[->] (F) to[out=-45,in=-135] (H); \draw[->] (H) to[out=45,in=-45] (G); \draw[->] (G) to[out=135,in=45] (E); \draw[->] (A) to[out=-180,in=-180] (B); \draw[->] (B) to[out=0,in=0] (A); \draw[->] (C) to[out=-180,in=-180] (D); \draw[->] (D) to[out=0,in=0] (C); \node at (A) [above] {$1$}; \node at (B) [below] {$8$}; \node at (C) [above] {$4$}; \node at (D) [below] {$7$}; \node at (E) [above left] {$2$}; \node at (F) [below left] {$6$}; \node at (H) [below right] {$3$}; \node at (G) [above right] {$5$}; \fill (A) circle[radius=0.05]; \fill (B) circle[radius=0.05]; \fill (C) circle[radius=0.05]; \fill (D) circle[radius=0.05]; \fill (E) circle[radius=0.05]; \fill (F) circle[radius=0.05]; \fill (G) circle[radius=0.05]; \fill (H) circle[radius=0.05]; \end{scope} \begin{scope}[xshift=3.3cm] \node at (-0.25,1.7) {$\sigma_2$}; \draw (-3.3,-1.3) rectangle (2.8,1.3); \coordinate (A) at (-2.4,0.5); \coordinate (B) at (-2.4,-0.5); \coordinate (C) at (-0.8,0.5); \coordinate (D) at (-0.8,-0.5); \coordinate (E) at (0.8,0.5); \coordinate (F) at (0.8,-0.5); \coordinate (G) at (1.8,0.5); \coordinate (H) at (1.8,-0.5); \draw[->] (E) to[out=-135,in=135] (F); \draw[->] (F) to[out=-45,in=-135] (H); \draw[->] (H) to[out=45,in=-45] (G); \draw[->] (G) to[out=135,in=45] (E); \draw[->] (A) to[out=-180,in=-180] (B); \draw[->] (B) to[out=0,in=0] (A); \draw[->] (C) to[out=-180,in=-180] (D); \draw[->] (D) to[out=0,in=0] (C); \node at (A) [above] {$3$}; \node at (B) [below] {$5$}; \node at (C) [above] {$4$}; \node at (D) [below] {$6$}; \node at (E) [above left] {$7$}; \node at (F) [below left] {$1$}; \node at (H) [below right] {$8$}; \node at (G) [above right] {$2$}; \fill (A) circle[radius=0.05]; \fill (B) circle[radius=0.05]; \fill (C) circle[radius=0.05]; \fill (D) circle[radius=0.05]; \fill (E) circle[radius=0.05]; \fill (F) circle[radius=0.05]; \fill (G) circle[radius=0.05]; \fill (H) circle[radius=0.05]; \end{scope} \end{tikzpicture} \end{center} Da die beiden Permutationen die gleiche Zyklenzerlegung haben, müssen sie konjugiert sein. Die Permutation \[ \gamma = \begin{pmatrix} 1&2&3&4&5&6&7&8\\ 6&5&1&4&8&7&2&3 \end{pmatrix} \] bildet die Zyklenzerlegung ab, also ist $\gamma\sigma_1\gamma^{-1}=\sigma_2$. \end{loesung}