% % nine.tex -- Nine node graph to illustrate Wilf's theorem % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \documentclass[tikz]{standalone} \usepackage{amsmath} \usepackage{times} \usepackage{txfonts} \usepackage{pgfplots} \usepackage{csvsimple} \usetikzlibrary{arrows,intersections,math} \begin{document} \def\skala{1} \def\kante#1#2{ \draw[shorten >= 0.2cm,shorten <= 0.2cm] (#1) -- (#2); } \def\knoten#1#2{ \fill[color=#2!30] (#1) circle[radius=0.2]; \draw[color=#2] (#1) circle[radius=0.2]; \draw (#1) circle[radius=0.2]; } \def\R{1.5} \definecolor{rot}{rgb}{1,0,0} \definecolor{gruen}{rgb}{0,0.6,0} \definecolor{blau}{rgb}{0,0,1} \begin{tikzpicture}[>=latex,thick,scale=\skala] \coordinate (A) at (0:\R); \coordinate (B) at (40:\R); \coordinate (C) at (80:\R); \coordinate (D) at (120:\R); \coordinate (E) at (160:\R); \coordinate (F) at (200:\R); \coordinate (G) at (240:\R); \coordinate (H) at (280:\R); \coordinate (I) at (320:\R); \knoten{A}{rot} \knoten{B}{blau} \knoten{C}{gruen} \knoten{D}{blau} \knoten{E}{rot} \knoten{F}{blau} \knoten{G}{rot} \knoten{H}{gruen} \knoten{I}{blau} \kante{A}{B} \kante{B}{C} \kante{C}{D} \kante{D}{E} \kante{E}{F} \kante{F}{G} \kante{G}{H} \kante{H}{I} \kante{I}{A} \kante{A}{C} \kante{A}{D} \kante{D}{G} \end{tikzpicture} \end{document}