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Abstract—We provide efficient single-precision and integer
GPU implementations of Strassen’s algorithm as well as of
Winograd’s variant. On an NVIDIA C1060 GPU, a speedup of
32% (35%) is obtained for Strassen’s 4-level implementation
and 33% (36%) for Winograd’s variant relative to the sgemm
(integer version of sgemm) code in CUBLAS 3.0 when multi-
plying 16384×16384 matrices. The maximum numerical error
for the single-precision implementations is about 2 orders of
magnitude higher than those for sgemm when n = 16384 and
is zero for the integer implementations.

Keywords-GPU; CUDA; matrix multiplication; Strassen’s
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I. INTRODUCTION

Matrix multiplication is an integral component of the

CUDA (Compute Unified Driver Architecture) BLAS li-

brary [1] and much effort has been expended in obtaining an

efficient CUDA implementation. The current implementation

in the CUDA BLAS library is based on an algorithm due

to Volkov and Demmel [18]. A further 3% reduction (on

the NVIDIA Tesla C1060) in run time is achieved by the

algorithm GPU8 [12]. Li, Ranka, and Sahni [12] provide

a step-by-step development of efficient GPU matrix multi-

plication algorithms beginning with the classical three-loop

O(n3) single-core algorithm to multiply two n×n matrices.

Although significant effort has been expended to obtain effi-

cient GPU algorithms for matrix multiplication based on the

classical O(n3) single-core algorithm, there appears to be

no work toward obtaining efficient GPU implementations of

any of the single-core matrix algorithms whose complexity is

less than O(n3). Of these latter lower complexity algorithms,

Strassen’s original O(n2.81) algorithm [17] and Winograd’s

variant [19] of this algorithm, whose asymptotic complexity

is also O(n2.81) are considered the most practical. Hence,

we focus on these two algorithms in this paper. We note that

the asymptotically fastest matrix multiplication algorithm at

this time has a complexity O(n2.38) [6] and it is believed

that “an optimal algorithm for matrix multiplication will run
in essentially O(n2) time” [14].

Both Strassen’s algorithm and Winograd’s variant com-

pute the product C of two matrices A and B by first

decomposing each matrix into 4 roughly equal sized blocks

as in Figure 1. Strassen’s algorithm [17] computes C by

Figure 1. Block decomposition of A, B, and C

performing 7 matrix multiplications and 18 add/subtracts

using the following equations:

M1 = (A11 +A22)(B11 +B22) C11 = M1 +M4 −M5 +M7

M2 = (A21 +A22)B11 C12 = M3 +M5
M3 = A11(B12 −B22) C21 = M2 +M4

M4 = A22(B21 −B11) C22 = M1 −M2 +M3 +M6

M5 = (A11 +A12)B22

M6 = (A21 −A11)(B11 +B12)
M7 = (A12 −A22)(B21 +B22)

When this block decomposition is applied recursively until

the block dimensions reach (or fall below) a threshold value

(say τ ) the arithmetic complexity of Strassen’s algorithm

becomes O(n2.81).
Winograd’s variant of Strassen’s method uses the follow-

ing equations to compute C with 7 matrix multiplies and 15

add/subtracts [7]:

S1 = A21 +A22 M1 = S2 ∗ S6 V1 = M1 +M2

S2 = S1 −A11 M2 = A11 ∗B11 V2 = V1 +M4

S3 = A11 −A21 M3 = A12 ∗B21 C11 = M2 +M3

S4 = A12 − S2 M4 = S3 ∗ S7 C12 = V1 +M5 +M6

S5 = B12 −B11 M5 = S1 ∗ S5 C21 = V2 −M7

S6 = B22 − S5 M6 = S4 ∗B22 C22 = V2 +M5

S7 = B22 −B12 M7 = A22 ∗ S8

S8 = S6 −B21

Although the recursive application of Winograd’s variant

also results in an asymptotic complexity of O(n2.81), the

reduction in number of matrix adds/subtracts from 18 to 15

manifests itself as a slightly smaller measured run time in

practice.

Bailey, Lee, and Simon [4] describe an implementation of

Strassen’s algorithm for the CRAY-2 and CRAY Y-MP. This

implementation uses three temporary (scratch) matrices at

each level of the recursion. The total space required by these

temporary matrices is at most n2. However, the computation

can be done using 2 temporaries and the space required

by temporary matrices to at most 2n2/3. Karunadasa and

Ranasinghe [11] decribe an implementation of Strassesn’s

algorithm on a 2 CPU GPU cluster in which one CPU has

4 cores and the other 2; each node has an NVIDIA GT

8800 GPU. In this implementation the work is shared by
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the 2 CPUs and the 2 GPUs with the GPUs doing most of

the submatrix multiplies and the CPUs doing the submatrix

additions and subtractions and some of the multiplications.

They do not, however, attempt to develop an efficient im-

plementation in which all of the work is done by a GPU.

Douglas et al. [7] provide an implementation of Winograd’s

variant that uses two temporary matrices at each level of

the recursion. So, this implementation uses at most 2n2/3
memory for temporary matrices. Douglas et al. [7] report

on the performance of their implementation on a variety of

serial and parallel computers. Huss-Lederman et al. [10],

[9] describe two implementations of Winograd’s variant.

The first uses two temporary matrices at each level of the

recursion and is identical to the implementation of Douglas

et al. [7]. The second implementation uses 3 temporaries

at each level of the recursion. This second implementation,

however, is recommended only for the case when we are

using the Winograd variant to do a multiply-accumulate

(i.e., C = αAB + βC) and not when we are doing a

straight multiply (C = AB) as in this paper. So, we do not

consider this implementation further in this paper. Boyer et

al. [5] show how to implement Winograd’s variant using no

temporary matrix. They provide two implementations. The

first does not increase the number of arithmetic operations

but overwrites the input matrices A and B. Since we do

not permit overwriting of the input matrices, we do not

consider this implementation. Although the second in-place

implementation does not overwrite the input matrices, it

increases the number of arithmetics by a constant factor. So,

we do not consider this implementation either. There appears

to be no GPU implementation of Winograd’s algorithm.

The remainder of this paper is organized as follows. In

Section II, we describe the architecture of the NVIDIA Tesla

C1060 GPU. The fastest O(n3) GPU matrix multiplication

algorithm GPU8 [12] is described in Section III. Section IV

gives the basic GPU kernels used in our GPU adaptations

of Strassen’s algorithm and Winograd’s variant and also

analyzes these kernels for their device-memory transactions

and volume complexity. A one-level GPU implementation

of Strassen’s algorithm and Winograd’s variant (i.e., an

implementation that does not apply Strassen’s and Wino-

grad’s equations recursively) is given in Section V and

the general multilevel recursive implementation is given

in Section VI. Experimentation results for single-precision

and integer implementations of Strassen’s and Winograd’s

algorithms are presented in Section VII. We conclude in

Section VIII.

Throughout this paper, we assume that n is a power of

2. Adaptations to other values of n may be done using

methods such as padding and peeling [10], [9]. While our

development is done explicitly for single-precision data, the

integer version is obtained by simply changing the data type

from float to int.

II. GPU ARCHITECTURE

NVIDIA’s Tesla C1060 GPU is an example of NVIDIA’s

general purpose parallel computing architecture CUDA

(Compute Unified Driver Architecture) [16]. The C1060

comprises 30 streaming multiprocessors (SMs) and each

SM comprises 8 scalar processors (SPs), 16KB of on-chip

shared memory, and 16,384 32-bit registers. Each SP has its

own integer and single-precision floating point units. Each

SM has 1 double-precision floating-point unit and 2 single-

precision transcendental function (special function, SF) units

that are shared by the 8 SPs in the SM. The 240 SPs

of a Tesla C1060 share 4GB of off-chip memory referred

to as device or global memory [2]. A C1060 has a peak

performance of 933 GFlops of single-precision floating-point

operations and 78 GFlops of double-precision operations.

The peak of 933GFlops is for the case when Multiply-Add

(MADD) instructions are dual issued with special function

(SF) instructions. In the absence of SF instructions, the peak

is 622GFlops (MADDs only) [3]. The C1060 consumes

188W of power.

A Tesla GPU is packaged as a double-wide PCIe card

and using an appropriate motherboard and a sufficiently

large power supply, one can install up to 4 GPUs on the

same motherboard. In this paper, we focus on single GPU

computation.

III. THE MATRIX MULTIPLICATION ALGORITHM GPU8

The matrix multiplication kernel GPU8, which is due

to Li, Ranka, and Sahni [12], assumes that the matrices

A, B, and C are mapped to the device memory arrays a,
b, and c using the row-major mapping [15]. The kernel is

invoked by the host using (16, 8) thread blocks. A thread

block reads a 16× 64 sub-matrix of a from device memory

to shared memory. Each half warp reads the 64 a values in

a row of the 16× 64 sub-matrix, which lie in two adjacent

128-byte segments of device memory, using two 128-byte

transactions. To accomplish this, each thread reads a 1 × 4
sub-matrix of a using the data type float4. The 16×64 a
sub-matrix that is input from device memory may be viewed

as a 16×16 matrix in which each element is a 1×4 vector.

The transpose of this 16× 16 matrix of vectors is stored in

the shared-memory array as[16][65] with each 1× 4 vector

using four adjacent elements of a row of as. This mapping

ensures that the 16 elements in each column of the 16× 64
sub-matrix of a that is input from device memory are stored

in different banks of shared memory. So, the writes to shared

memory done by a half warp of GPU8 are conflict free.

Further, by storing the transpose of a 16 × 16 matrix of

1× 4 vectors rather than the transpose of a 16× 64 matrix

of scalars, GPU8 is able to do the writes to shared memory

using float4s rather than floats as would otherwise be

the case. This reduces the time to write to shared memory.

The total number of transactions for GPU8 is

17n3/4096 + n2/16 and the volume is 9n3/32 + 4n2 [12].
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__global__ void add (float *d_A, float *d_B, float *d_C,
int widthA, int widthB, int widthC)

{
int startA = blockIdx.x*64 + threadIdx.x*2 +

(blockIdx.y*8 + threadIdx.y)*widthA;
int startB = blockIdx.x*64 + threadIdx.x*2 +

(blockIdx.y*8 + threadIdx.y)*widthB;
int startC = blockIdx.x*64 + threadIdx.x*2 +

(blockIdx.y*8 + threadIdx.y)*widthC;

float2 tempA = *(float2 *)(d_A+startA);
float2 tempB = *(float2 *)(d_B+startB);

tempA.x += tempB.x;
tempA.y += tempB.y;

*(float2 *)(d_C+startC) = tempA;
}

Figure 2. Kernel to add two matrices

By comparison, the number of transactions and volume for

the sgemm code in CUBLAS 3.0 [1] are 5n3/1024+n2/16
and 5n3/16 + 4n2, respectively.

IV. BASIC GPU KERNELS

We use several basic GPU kernels to arrive at our efficient

GPU adaptation of Strassen’s algorithm and Winograd’s

variant. These kernels are described below.

1) add(X,Y, Z) computes Z = X + Y using the kernel

code of Figure 2. Each thread fetches two adjacent

values of X and two adjacent values of B from device

memory using the data type float2. Since the 16

pairs of X (Y ) fetched from device memory lie in the

same 128-byte segment, the fetches of a half warp are

coalesced into a single 128-byte memory transaction.

The fetched pairs of X and Y are added and the sums

written to device memory. This write also requires one

memory transaction per half warp. So, two m × m
matrices are added using a total of 3m2/32 128-byte

transactions that result in a total volume of 12m2

bytes.

2) sub(X,Y, Z) computes Z = X − Y using a kernel

code similar to that of Figure 2.

3) mul(X,Y, Z) computes Z = X ∗Y using GPU8. Let

T and V , respectively, denote the number of memory

transactions and volume for this code when multiply-

ing two m ×m matrices (T = 17m3/4096 +m2/16
and V = 9m3/32 + 4m2).

4) mulIncInc(W,X, Y, Z) computes (Y+, Z+) = W ∗
X (i.e., Y and Z are both incremented by W ∗ X).

This is done by modifying the matrix multiply kernel

so that it does not write out the elements of W ∗X as

each is computed. Instead, after an element of W ∗X
has been computed, the corresponding elements of Y
and Z are read from device memory, incremented by

the computed element of W ∗X , and the incremented

values written back to device memory. Note that each

element of W ∗ X is computed exactly once. The

modified kernel makes T − m2/16 transactions to

multiply W and X as it does not write out W ∗ X .

Additional transactions are made to fetch Y and Z and

write the incremented values. A half warp reads/writes

Y and Z using coalesced 64-byte transactions. The

total number of these transactions is m2/4 (m2/16
transactions are made to read or write each of Y and

Z). So, the total number of transactions is T+3m2/16
and the volume is V + 12m2.

5) mulIncDec(W,X, Y, Z) computes (Y+, Z−) = W ∗
X . This is similar to mulIncInc and has the same

transaction count and volume.

6) mulStoreDec(W,X, Y, Z) computes (Y, Z−) = W ∗
X . Again, this is one by modifying the matrix multiply

kernel so that after it stores a computed element of

W ∗ X to the appropriate device memory location

for Y , it reads the corresponding element of Z from

device memory, decrements this element of Z by the

value of he just computed element of Y and stores

the decremented element of Z in device memory. In

addition to the transactions (T ) made to compute and

store W ∗ X , the modified kernel fetches and writes

Z using m2/8 64-byte transactions. So, the modified

kernel makes a total of T + m2/8 transactions and

generates a volume of V + 8m2.

7) mulStoreInc(W,X, Y, Z) computes (Y, Z+) = W ∗
X using a suitable modification of the matrix multiply

kernel. This kernel is similar to that for mulStoreDec
and has the same number of transactions and volume.

8) mulAdd(W,X, Y, Z) computes Z = W ∗X+Y . This

kernel, in addition to doing all the work done by the

matrix multiply kernel, needs to fetch Y from device

memory. This fetching is done using m2/16 64-byte

transactions. So, the total number of transactions is

T +m2/16 and the volume is V + 4m2.

9) mulIncIncInc(U, V,W,X, Y, Z) computes W = U∗
V ;Y += W ;Z += Y ;Y += X (in this order). The

modification to the matrix multiply kernel requires that

when an element of U ∗V is computed, it is written to

device memory as an element of W ; the corresponding

element of Y is fetched from device memory and

incremented (but not written back to device memory);

next the corresponding element of Z is fetched from

device memory, incremented by the just computed

Y value and written to device memory; finally this

element of Y is incremented again by fetching the

corresponding element of X from device memory

and the incremented value written to device memory.

mulIncIncInc makes m2/16 transactions to fetch

each of X , Y , and Z and to write each of Y and

Z (in addition to those made by the matrix multiply

kernel). So, an extra 5m2/16 64-byte transactions are

made. The total number of transactions is T+5m2/16
and the volume is V + 20m2.

10) mulSubInc(V,W,X, Y, Z) computes Y = X − V ∗
W ;Z += X using a modification of the matrix
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Kernel Transactions Volume

add 3m2/32 12m2

sub 3m2/32 12m2

mul T = 17m3/4096 +m2/16 V = 9m3/32 + 4m2

mulIncInc T + 3m2/16 V + 12m2

mulIncDec T + 3m2/16 V + 12m2

mulStoreDec T +m2/8 V + 8m2

mulStoreInc T +m2/8 V + 8m2

mulAdd T +m2/16 V + 4m2

mulIncIncInc T + 5m2/16 V + 20m2

mulSubInc T + 3m2/16 V + 12m2

Figure 3. Device-memory transaction statistics for m×m matrices

Step Computation GPU Kernel

1 C12 = A21 −A11 sub(A21, A11, C12)
2 C21 = B11 +B12 add(B11, B12, C21)
3 C22 = C12 ∗ C21 mul(C12, C21, C22)
4 C12 = A12 −A22 sub(A12, A22, C12)
5 C21 = B21 +B22 add(B21, B22, C21)
6 C11 = C12 ∗ C21 mul(C12, C21, C11)
7 C12 = A11 +A22 add(A11, A22, C12)
8 C21 = B11 +B22 add(B11, B22, C21)
9 T1 = C12 ∗ C21

10 C11 = T1 + C11

11 C22 = T1 + C22 mulIncInc(C12, C21, C11, C22)
12 T2 = A21 +A22 add(A21, A22, T2)
13 C21 = T2 ∗B11

14 C22 = C22 − C21 mulStoreDec(T2, B11, C21, C22)
15 T1 = B21 −B11 sub(B21, B11, T1)
16 T2 = A22 ∗ T1
17 C21 = C21 + T2
18 C11 = C11 + T2 mulIncInc(A22, T1, C21, C11)
19 T1 = B12 −B22 sub(B12, B22, T1)
20 C12 = A11 ∗ T1
21 C22 = C22 + C12 mulStoreInc(A11, T1, C12, C22)
22 T2 = A11 +A12 add(A11, A12, T2)
23 T1 = T2 ∗B22

24 C12 = C12 + T1
25 C11 = C11 − T1 mulIncDec(T2, B22, C12, C11)

Figure 4. GPU kernels in Strassen implementation

multiply kernel. The total number of transactions is

T + 3m2/16 and the volume is V + 12m2.

V. ONE-LEVEL ADAPTATION

A. One-Level Strassen

In a one-level implementation of Strassen’s algorithm

and Winograd’s variant, the 7 matrix products M1 through

M7 are computed by a direct application of GPU8 (i.e.,

Strassen’s and Winograd’s equations are not applied recur-

sively). Figure 4 gives the sequence of kernel calls in our

one-level implementation of Strassen’s method. We refer

to the resulting program as one-level Strassen. The one-

level GPU implementation of Strassen’s method invokes the

add and sub kernels 10 times, the mul and mulIncInc
kernels twice each, and the mulStoreDec, mulStoreInc,
and mulIncDec kernels once each. Using the transaction

and volume data for each kernel (Figure 3), we determine

the total transaction count to be 7T + 7m2/4 and the total

volume to be 7V +172m2, where T = 17m3/4096+m2/16
and V = 9m3/32+4m2. When multiplying n×n matrices,

the kernels are invoked with m = n/2. So, the total number

of transactions is 119n3/32768 + 35n2/64 and the volume

is 63n3/256 + 50n2.

Step Computation GPU Kernel

1 T1 = A11 −A21 sub(A11, A21, T1)
2 T2 = B22 −B12 sub(B22, B12, T2)
3 C21 = T1 ∗ T2 mul(T1, T2, C21)
4 T1 = A21 +A22 add(A21, A22, T1)
5 T2 = B12 −B11 sub(B12, B11, T2)
6 C22 = T1 ∗ T2 mul(T1, T2, C22)
7 T1 = T1 −A11 sub(T1, A11, T1)
8 T2 = B22 − T2 sub(B22, T2, T2)
9 C11 = T1 ∗ T2 mul(T1, T2, C11)
10 T1 = A12 − T1 sub(A12, T1, T1)
11 C12 = T1 ∗B22

12 C12 = C22 + C12 mulAdd(T1, B22, C22, C12)
13 T1 = A11 ∗B11

14 C11 = C11 + T1
15 C12 = C11 + C12

16 C11 = C11 + C21 mulIncIncInc(A11, B11, , T1, C21, C11, C12)
17 T2 = T2 −B21 sub(T2, B21, T2)
18 C21 = A22 ∗ T2
19 C21 = C11 − C21

20 C22 = C11 + C22 mulSubInc(A22, T2, C11, C21, C22)
21 C11 = A12 ∗B21

22 C11 = T1 + C11 mulAdd(A12, B21, T1, C11)

Figure 5. GPU kernels in Douglas et al.’s [7] implementation of Winograd
variant

Method Arithmetics Transactions Volume

GPU8 2n3 − n2 17n3/4096 + n2/16 9n3/32 + 4n2

Strassen 7n3/4 + 11n2/4 119n3/32768 + 35n2/64 63n3/256 + 50n2

Winograd 7n3/4 + 2n2 119n3/32768 + 29n2/64 63n3/256 + 41n2

Figure 6. Transactions and volume for one-level multiplication of n× n
matrices

B. One-Level Winograd

Our one-level GPU implementation of Winograd’s variant

is given in Figure 5. This is based on the 22-step im-

plementation of Douglas et al.’s [7]. We refer to this im-

plementation as one-level Winograd. This implementation

invokes the add and sub kernels 8 times, the mul kernel

3 times, the mulAdd kernel twice, and the mulIncIncInc
and mulSubInc kernels once each. When the kernels are

invoked using m × m matrices, a total of 7T + 11m2/8
transactions are made and the total volume is 7V +136m2.

In a one-level implementation, m = n/2 and the total

number of transactions becomes 119n3/32768 + 29n2/64
and the volume is 63n3/256 + 41n2. Figure 6 summarizes

the number of arithmetic operations and transactions done

by GPU8, one-level Strassen, and one-level Winograd as

well as the volume of data transfer done by each. Figure 7

gives the percent reduction in these quantities relative to

GPU8. Based on this analysis, we expect the one-level

methods to be about 12% faster than GPU8.

VI. MULTILEVEL RECURSIVE GPU ADAPTATION

A. Multilevel Strassen

Figure 8 gives the recursive code for our implementation

of Strassen’s method for n a power of 2. Adaptations to other

n Method Arithmetics Transactions Volume

4096
Strassen 12.5 9.6 8.5

Winograd 12.5 10.2 9.3

8192
Strassen 12.5 11.1 10.5

Winograd 12.5 11.3 10.9

16384
Strassen 12.5 11.8 11.5

Winograd 12.5 11.9 11.7

Figure 7. Percent reduction relative to GPU8 for one-level multiplication
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Strassen(A,B,C, n) {
if (n <= τ1) compute C = A ∗ B using GPU8;
else if (n <= τ2) compute C = A ∗ B using Figure 4;
else {

C12 = A21 − A11; C21 = B11 + B12;
Strassen(C12, C21, C22, n/2); // M6
C12 = A12 − A22; C21 = B21 + B22;
Strassen(C12, C21, C11, n/2); // M7
C12 = A11 + A22; C21 = B11 + B22;
Strassen(C12, C21, T1, n/2); // M1
(C11+, C22+) = T1; T2 = A21 + A22;
Strassen(T2, B11, C21, n/2); // M2
C22 −= C21; T1 = B21 − B11;
Strassen(A22, T1, T2, n/2); // M4
(C11+, C21+) = T2; T1 = B12 − B22;
Strassen(A11, T1, C12, n/2); // M3
C22 += C12; T2 = A11 + A12;
Strassen(T2, B22, T1, n/2); // M5
(C11−, C12+) = T1;}

}

Figure 8. Strassen’s GPU matrix multiply

values of n may be done using methods such as padding and

peeling [10], [9]. The code uses 2 threshold values τ1 and

τ2. When n ≤ τ1 the matrices are multiplied using GPU8
and when τ1 < n ≤ τ2 a one-level Strassen multiplication

(defined by the kernel sequence given in Figure 4) is used.

When n > τ2, Strassen’s method is applied recursively. In

Figure 8, the notation (X+, Y+) = Z refers to a single

kernel that increments X and Y by Z. Such a kernel would

read X , Y and Z from device memory, increment X and

Y , and then write the incremented X and Y to device

memory. Hence the kernel would read Z only once while

incrementing X and Y using the two steps X+ = Z and

Y+ = Z would read Z twice. When, τ2 < n ≤ 2 ∗ τ2 the

execution of Figure 8 is referred to as a two-level Strassen

multiplication. The number of arithmetics, A(2, n), in a two-

level multiplication is 7A(1, n/2) + 18ADD(n/2), where

A(1, n/2) is the number of arithmetics needed in a one-level

multiplication of n/2×n/2 matrices and ADD(n/2) is the

number of arithmetics needed to add two n/2×n/2 matrices.

So, A(2, n) = 7(7(2(n/4)3 − (n/4)2) + 18ADD(n/4)) +
18ADD(n/2) = 49n3/32 + 149n2/16. For the number of

transactions, T (2, n), we see that two-level multiplication

does 12 adds/subtracts/increments/decrements of n/2×n/2
matrices with each requiring 3(n/2)2/32 = 3n2/128 trans-

actions. The ++ and −+ operations each make 5n2/128
transactions (this is a reduction of n2/128 over doing two

+ = or one + = and one − = operation). Each of the

7 multiply operations multiplies two n/2 × n/2 matrices

using a one-level multiply that does 119(n/2)3/32768 +
35(n/2)2/64 transactions. So, T (2, n) = 833n3/262144 +
347n2/256. Using a similar analysis, we know that the

volume, V (2, n), is 441n3/2048 + 277n2/2.
When 2k−2τ2 < n ≤ 2k−1τ2, a k=level execution of

strassen occurs. For this k-level execution,

A(k, n) = 7A(k − 1, n/2) + 18(n
2
/4)

= 7A(k − 1, n/2) + 9n
2
/2

T (k, n) = 7T (k − 1, n/2) + 12 ∗ 3 ∗ n2/128 + 3 ∗ 5 ∗ n2/128
= 7T (k − 1, n/2) + 51n

2
/128

V (k, n) = 7V (k − 1, n/2) + 51n
2

n Method Arithmetics Transactions Volume

4096
Strassen 23.3 15.8 11.7

Winograd 23.3 17.2 13.9

8192
Strassen 23.4 19.6 17.6

Winograd 23.4 20.3 18.7

16384
Strassen 23.4 21.5 20.5

Winograd 23.4 21.9 21.1

Figure 12. Percent reduction relative to GPU8 for two-level multiplication

n Method Arithmetics Transactions Volume

4096
Strassen 32.7 17.0 7.9

Winograd 32.8 20.0 12.6

8192
Strassen 32.9 25.0 20.4

Winograd 32.9 26.5 22.8

16384
Strassen 32.9 29.0 26.7

Winograd 33.0 29.7 27.9

Figure 13. Percent reduction relative to GPU8 for three-level multipli-
cation

where A(1, n), T (1, n), and V (1, n) are for a 1-level

execution and are given in Figure 6.

Figures 9 through 11 give the values of A, T , and V for

k = 2, 3, and 4. Figures 12 through 14 give the percent

reduction in arithmetics, transactions, and volume relative

to GPU8 for k = 2, 3, and 4. Based on these numbers, we

expect the two-level Strassen algorithm to run about 20%

faster than GPU8 when n = 16384 (this would correspond

to τ2 = 8192); we expect the three-level Strassen algorithm

run 26% to 33% faster than GPU8; and the 4-level version

to run 29% to 41% faster (depending on whether arithmetics,

transactions, or volume dominates run time).

B. Multilevel Winograd
The recursive code for a matrix multiply using Winograd’s

variant is similar to the multilevel code for Strassen’s
algorithm and is given in Figure 15. This code does 10
standalone adds/subtracts/increments/decrements of n/2 ×
n/2 matrices at the outermost level with each reading
2 n/2 × n/2 matrices and writing 1; the assignment to
(C12, C11) reads 4 n/2×n/2 matrices and writes two; and
the assignment to (C21, C22) reads 3 n/2×n/2 matrices and
writes 2. The total number of reads/writes at the outermost
level is therefore 41. So, for this code, we see that:

A(k, n) = 7A(k − 1, n/2) + 15n
2
/4

T (k, n) = 7T (k − 1, n/2) + 41 ∗ n2/128
V (k, n) = 7V (k − 1, n/2) + 41n

2

for k > 1 and A(1, n), T (1, n), and V (1, n) are as in

Figure 7. Figures 9 through 11 and Figures 12 through 14,

respectively, give the values of A, T , and V and the percent

reduction in these quantities relative to GPU8 for k = 2,

3, and 4. The expected speedup of Winograd relative to

GPU8 is slightly higher than for Strassen.

n Method Arithmetics Transactions Volume

4096
Strassen 40.9 10.8 -7.2

Winograd 41.0 16.5 2.0

8192
Strassen 41.1 26.1 17.0

Winograd 41.2 28.9 21.6

16384
Strassen 41.3 33.7 29.2

Winograd 41.3 35.1 31.5

Figure 14. Percent reduction relative to GPU8 for four-level multiplica-
tion
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Method Arithmetics Transactions Volume

GPU8 2n3 − n2 17n3/4096 + n2/16 9n3/32 + 4n2

Strassen 49n3/32 + 149n2/16 833n3/262144 + 347n2/256 441n3/2048 + 277n2/2
Winograd 49n3/32 + 29n2/4 833n3/262144 + 285n2/256 441n3/2048 + 451n2/4

Figure 9. Transactions and volume for two-level multiplication of n× n matrices

Method Arithmetics Transactions Volume

GPU8 2n3 − n2 17n3/4096 + n2/16 9n3/32 + 4n2

Strassen 343n3/256 + 1331n2/64 5831n3/2097152 + 2837n2/1024 3087n3/16384 + 2347n2/8
Winograd 343n3/256 + 263n2/16 5831n3/2097152 + 2323n2/1024 3087n3/16384 + 3813n2/16

Figure 10. Transactions and volume for three-level multiplication of n× n matrices

Method Arithmetics Transactions Volume

GPU8 2n3 − n2 17n3/4096 + n2/16 9n3/32 + 4n2

Strassen 2401n3/2048 + 10469n2/256 40817n3/16777216 + 21491n2/4096 21609n3/131072 + 18061n2/32
Winograd 2401n3/2048 + 2081n2/64 40817n3/16777216 + 17573n2/4096 21609n3/131072 + 29315n2/64

Figure 11. Transactions and volume for four-level multiplication of n× n matrices

Winograd(A,B,C, n)
{

if (n <= τ1 ) compute C = A ∗ B using GPU8;
else if (n <= τ2) compute C = A ∗ B using Figure 5;
else {

T1 = A11 − A21;T2 = B22 − B12;
Winograd(T1, T2, C21, n/2); //M4
T1 = A21 + A22;T2 = B12 − B11;
Winograd(T1, T2, C22, n/2); //M5
T1 −= A11;T2 = B22 − T2;
Winograd(T1, T2, C11, n/2); //M1
T1 = A12 − T1;
Winograd(T1, B22, C12, n/2); //M6
C12 += C22;
Winograd(A11, B11, T1, n/2); //M2
(C12, C11) = (C11 + C12 + T1, C11 + C21 + T1);
T2 −= B21;
Winograd(A22, T2, C21, n/2);
(C21, C22) = (C11 − C21, C11 + C22);
Winograd(A12, B21, C11, n/2); //M3
C11 + = T1; }

}

Figure 15. Winograd’s GPU matrix multiply

VII. EXPERIMENTAL RESULTS

A. Single Precision Matrix Multiply

We programmed several versions of GPU8, Strassen,

Winograd, and sgemm using CUDA and measured their

run time as well as accuracy on a Tesla C1060 GPU. The

different versions of each algorithm varied in their use of

texture memory for the input matrices A and B. Because

of the limited availability of texture memory, GPU8 and

sgemm can be readily adapted to use texture memory only

when n < 16384. For larger values of n, it is necessary

to write a blocked version of these algorithms invoking

the blocked version using texture memory for the smaller

sized A and B blocks to be multiplied. Our experiments

with the blocked version of sgemm, for example, resulted

in a very small reduction in run time from the use of

texture memory. For example, when n = 16384, our texture

memory versions of sgemm yielded best performance using

blocks of size 8192× 8192 and designating only the blocks

of A as texture blocks. The measured reduction in time

was about 0.6% relative to the non-blocked sgemm code.

Because of this very marginal reduction in run time even

for the largest matrix size we used in our experiments,

we do not report further on the blocked texture memory

versions of GPU8 and sgemm. Strassen and Winograd,
on the other hand are well suited for texture memory as they

recursively and naturally decompose matrices to smaller size

submatrices until the threshold value τ2 is reached. So long

as τ2 ≤ 16384, the pairs of matrices to be multiplied by

GPU8 using the one-level kernels at the lowest level of

recursion may be designated as texture matrices. Again, our

experiments showed best performance when only the first

matrix in the pair to be multiplied was designated as texture.

Hence, in the following, tStrassen and tWinograd refer

to versions of Strassen and Winograd in which when

GPU8 is invoked by the one-level code used when the

matrix size drops to τ2, the first matrix of each pair to be

multiplied by GPU8 is designated as texture (the syntax of

the GPU8 code is correspondingly modified to work with

its first matrix being texture). For our experiments, we set

τ1 = τ2/2.

1) Run Time: Figure 16 gives the time take by our various

matrix multiplication codes. Strassen and Winograd had

best performance when τ2 = 4096 while tStrasen and

tWinograd performed best when τ2 = 2048. Figure 16

shows the run time only for these best values of τ2. Note

that the n = 2048 times for Strassen and Winograd
are the same as for GPU8 because n = τ2/2 = τ1.
When n = 16384, the optimal τ2 (4096) for Strassen and

Winograd results in 3 levels of recursion while the optimal

τ2 (2048) for tStrassen and tWinograd results in 4 levels

of recursion. As far as run time goes, when n = 16384,
tStrassen takes 2.7% less time than does Strassen and the

use of texture reduces the run time of Winograd by 3.5%.

Further, Strassen is 30.1% faster than sgemm and 27.9%

faster than GPU8. Our fastest code, tWinograd, takes

33.1% less time to multiply two 16384×16384 than sgemm
and 31.0% less than taken by GPU8. Figures 17 and 18 plot

the percent reduction in run time, number of arithmetics,

number of transactions, and volume achieved by Strassen
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Algorithm τ2 2048 4096 8192 16384

sgemm - 0.048 0.373 2.966 23.699

GPU8 - 0.046 0.361 2.875 22.971

Strassen 4096 0.046 0.329 2.344 16.561

tStrassen 2048 0.044 0.320 2.276 16.107

Winograd 4096 0.046 0.328 2.329 16.425

tWinograd 2048 0.044 0.318 2.243 15.846

Figure 16. Run time (seconds) on the Tesla C1060

and Winograd relative to GPU8 when τ2 = 4096. As can

be seen, the speedup (reduction in run time) most closely

tracks the reduction in volume.
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Figure 17. Strassen speedup when τ2 = 4096
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Figure 18. Winograd speedup when τ2 = 4096

2) Accuracy: Although Strassen’s algorithm produces ac-

curate results over exact domain such as integers, it is known

to be numerically inaccurate over the reals. [8] We assess the

numerical accuracy of Strassen’s algorithm and Winograd’s

variant using the single-precision test matrix used in [13].

Figure 19 gives the maximum absolute difference between

an element of the product matrix as computed by each of our

algorithms and the exact product and Figure 20 gives the av-

erage of the absolute differences. For comparison purposes,

we include also the errors in the results obtained using the

classical O(n3) matrix multiplication algorithm on the host

CPU. For the reported errors, we used τ2 = 2048 and 4096.

Algorithm τ2 2048 4096 8192 16384

O(n3) on CPU - 7.9e-5 1.6e-4 2.3e-4 3.9e-4

sgemm - 8.1e-5 1.6e-4 2.4e-4 3.9e-4

GPU8 - 8.1e-5 1.6e-4 2.4e-4 3.9e-4

Strassen
2048 2.4e-4 6.7e-4 8.8e-3 8.3e-2

4096 8.1e-5 3.4e-4 1.5e-3 5.8e-2

Winograd
2048 2.5e-4 1.9e-3 2.9e-2 6.3e-1

4096 8.1e-5 5.0e-4 3.6e-3 1.6e-1

Figure 19. Maximum errors

Algorithm τ2 2048 4096 8192 16384

O(n3) on CPU - 6.6e-8 5.5e-8 4.7e-8 3.3e-8

sgemm - 6.6e-8 5.6e-8 4.7e-8 3.3e-8

GPU8 - 6.6e-8 5.6e-8 4.7e-8 3.3e-8

Strassen
2048 2.1e-7 4.6e-7 1.4e-6 1.4e-5

4096 6.6e-8 1.7e-7 3.9e-7 2.9e-6

Winograd
2048 2.8e-7 1.3e-6 1.2e-5 1.7e-4

4096 6.6e-8 2.8e-7 1.2e-6 3.2e-5

Figure 20. Average errors

Since the use of texture memory does not impact accuracy,

Figures 19 and 20 do not explicitly show error measurements

for tStrassen and tWinograd (the errors, respectively, are

the same as for Strassen and Winograd). The maximum

and average errors for the classical CPU algorithm, sgemm,

and GPU8 algorithms are almost the same. However, the

errors for Strassen and Winograd are substantially larger

than those for the classical algorithm, sgemm and GPU8
when n > τ1 = τ2/2 (when n ≤ τ1 = τ2/2, Strassen and

Winograd reduce to GPU8). In fact, when n = 16384 and

τ2 = 2048, the maximum error for Strassen is 200 times

that for the classical algorithm, sgemm and GPU8 while

the average error is 424 times as much. The corresponding

ratios for Winograd are 1615 and 5151. We note also that

when n = 16384 and τ2 = 2048, the maximum error for

Winograd is about 7.6 times that for Strassen and the

average error is about 12 times that for Strassen.

3) Performance by Number of Levels: Because of

the large numerical errors resulting from Strassen and

Winograd, we decided to determine how the error varied

with the number of levels of recursion. Note that in a 1-

level execution, τ1 < n ≤ τ2 and in a 2-level execution,

τ2 < n ≤ 2τ2. A 0-level execution occurs when n ≤ τ1 =
τ2/2. Figures 21 and 22 give the maximum and average

errors as a function of the level of the execution for the case

n = 16384 and Figure 23 gives the reduction in run time

relative to sgemm and GPU8. As expected, the errors and

speedup (reduction in run time) increase with the number

of levels. For example, the 1-level version of Strassen
achieves almost a 15% speedup relative to sgemm at the

expense of an almost 8 fold increase in the maximum error

and an almost 2 fold increase in the average error while the

4-level version achieves a speedup of almost 29% at a cost

of an almost 213 fold increase in the maximum error and

an almost 212 fold increase in the average error.

B. Integer Matrix Multiply

As indicated earlier, the integer implementations of our

algorithms were obtained by simply changing the data
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Algorithm 0-level 1-level 2-level 3-level 4-level

Strassen 3.9e-4 3.3e-3 3.1e-2 5.8e-2 8.3e-2

Winograd 3.9e-4 1.4e-3 9.7e-3 1.6e-1 6.3e-1

Figure 21. Maximum errors when n = 16384

Algorithm 0-level 1-level 2-level 3-level 4-level

Strassen 6.6e-8 1.1e-7 4.4e-7 2.9e-6 1.4e-5

Winograd 6.6e-8 1.9e-7 1.6e-6 3.2e-5 1.7e-4

Figure 22. Average errors when n = 16384

type float in the single-precision implementation to int.
Experiments similar to those reported in section VII-A were

conducted and for n = 16, 384, a speedup, relative to

the integer version of sgemm, of 32% was observed for

Strassen and 35% for tStrassen using τ2 = 2048. The

speedup for Winograd and tWinograd was 35% and 36%,

respectively, using τ2 = 2048. As expected, the numerical

error was zero.

VIII. CONCLUSION

We have developed efficient GPU implementations of

Strassen’s and Winograd’s matrix multiplication algorithms.

Our experiments indicate that for single-precision (inte-

ger) arithmetic a speedup of 32% (35%) is achieved by

Strassen’s algorithm while Winograd’s variant achieves a

speedup of 33% (36%) relative to the sgemm (integer

version of sgemm) code in CUBLAS 3.0 when multiplying

16384 × 16384 matrices. For single-precision arithmetics,

these speedups, however, come at significant cost in the

accuracy of the computed result. The maximum numerical

error introduced by Strassen’s and Winograd’s algorithms

are about 2 orders of magnitude higher than those for

sgemm when n = 16384. Whether the loss in accuracy

is acceptable or not will depend on the application. There

is no loss in accuracy when computing over exact domain

such as the integers. We have analyzed the arithmetic,

transaction and volume complexity of the various matrix

multiplication algorithms considered in this paper (single-

precision versions). Our experiments indicate that speedup

most closely follows volume.
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