\documentclass[border=10pt,varwidth]{standalone} \usepackage[left=25mm,right=25mm,top=25mm,bottom=25mm]{geometry} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{times} \usepackage{geometry} \usepackage{amsmath} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{lipsum} \usepackage{amscd} \usepackage{graphicx} \usepackage{fancyhdr} \usepackage{textcomp} \usepackage{txfonts} \usepackage[all]{xy} \usepackage{paralist} \usepackage[colorlinks=true]{hyperref} \usepackage{array} \usepackage{tikz} \usepackage{slashed} \usepackage{pdfpages} \usepackage{cite} \usepackage{url} \usepackage{amsmath,amsfonts,amssymb} \usepackage{tikz} \usetikzlibrary{arrows,matrix,positioning} \usetikzlibrary{overlay-beamer-styles} \usetikzlibrary{matrix.skeleton} \usetikzlibrary{automata,positioning} \usepackage{listings} \usepackage{multirow} \usepackage{color} \begin{document} $ A= \begin{bmatrix} A_{11} & A_{12}\\ A_{21} & A_{22} \end{bmatrix}, B= \begin{bmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{bmatrix}, C= \begin{bmatrix} C_{11} & C_{12}\\ C_{21} & C_{22} \end{bmatrix} $ \medskip $ A \cdot B = C $ \medskip $ C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}\\ C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}\\ C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}\\ C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} $ \medskip \begin{math} \begin{aligned} \text{I} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ \text{II} &= (A_{21} + A_{22}) \cdot B_{11} \\ \text{III} &= A_{11} \cdot (B_{12}-B_{22}) \\ \text{IV} &= A_{22} \cdot (-B_{11}+B_{21}) \\ \text{V} &= (A_{11} + A_{12}) \cdot B_{22} \\ \text{VI} &= (-A_{11} + A_{21}) \cdot (B_{11} + B_{12})) \\ \text{VII} &= (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \\ \end{aligned} \end{math} \medskip \begin{math} \begin{aligned} C_{11} &= \text{I} + \text{IV} - \text{V} + \text{VII} \\ C_{21} &= \text{II} + \text{IV} \\ C_{12} &= \text{III} + \text{V}\\ C_{22} &= \text{I} + \text{III} - \text{II} + \text{VI} \\ \end{aligned} \end{math} \medskip \begin{math} \begin{aligned} C_{11} &= \text{II} + \text{IV} \\ C_{11} &= (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) + A_{22} \cdot (-B_{11}+B_{21}) - (A_{11} + A_{12}) \cdot B_{22} + (A_{12} - A_{22}) \cdot (B_{21} + B_{22})C_{21} \\ C_{11} &= A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} -A_{22}B_{11}+A_{22}B_{21} - A_{11}B_{22} - A_{12}B_{22}+ A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22} \\ C_{11} &= A_{11}B_{11} + A_{12}B_{21} \end{aligned} \end{math} \section{Winograd} $ x_1 y_1 + x_2 y_2 = (x_1 +y_2)(y_1 + x_2)-x_1 x_2 - y_1 y_2 $ $ x = (x_1, \cdots, x_n), y=(y_1, \cdots, y_n) $ \[ \xi = \sum_{j=1}^{ \lfloor n/2 \rfloor} x_{2j-1} \cdot x_{2j} \] \[ \eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j} \] \[ \langle x,y \rangle = \begin{cases} \displaystyle \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{if $n$ is even}\\ \displaystyle \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{if $n$ is odd} \end{cases} \] \end{document}