\documentclass[12pt, xcolor, aspectratio=169]{beamer} % language \usepackage{polyglossia} \setmainlanguage{german} % pretty drawings \usepackage{tikz} \usetikzlibrary{positioning} % Theme \beamertemplatenavigationsymbolsempty % set look \usetheme{default} \usecolortheme{fly} \usefonttheme{serif} %% Set font \usepackage[p,osf]{scholax} \usepackage{amsmath} \usepackage[scaled=1.075,ncf,vvarbb]{newtxmath} % set colors \definecolor{background}{HTML}{202020} \setbeamercolor{normal text}{fg=white, bg=background} \setbeamercolor{structure}{fg=white} \setbeamercolor{item projected}{use=item,fg=background,bg=item.fg!35} \setbeamercolor*{palette primary}{use=structure,fg=white,bg=structure.fg} \setbeamercolor*{palette secondary}{use=structure,fg=white,bg=structure.fg!75} \setbeamercolor*{palette tertiary}{use=structure,fg=white,bg=structure.fg!50} \setbeamercolor*{palette quaternary}{fg=white,bg=background} \setbeamercolor*{block title}{parent=structure} \setbeamercolor*{block body}{fg=background, bg=} \setbeamercolor*{framesubtitle}{fg=white} \setbeamertemplate{section page} { \begin{center} \Huge \insertsection \end{center} } \AtBeginSection{\frame{\sectionpage}} % Macros \newcommand{\ten}[1]{#1} % Metadata \title{\LARGE \scshape Punktgruppen und Kristalle} \author[N. Pross, T. T\"onz]{Naoki Pross, Tim T\"onz} \institute{Hochschule f\"ur Technik OST, Rapperswil} \date{10. Mai 2021} % Slides \begin{document} \frame{\titlepage} \frame{\tableofcontents} \section{Einleitung} \frame{ \[ \psi \] } \section{Geometrische Symmetrien} %% Made in video \section{Algebraische Symmetrien} %% Made in video \section{Kristalle} \section{Anwendungen} \begin{frame}[fragile]{} \centering \begin{tikzpicture}[ box/.style = { rectangle, thick, draw = white, fill = darkgray!50!background, minimum height = 1cm, outer sep = 2mm, }, ] \matrix [nodes = {box, align = center}, column sep = 1cm, row sep = 1.5cm] { & \node (A) {32 Punktgruppe}; \\ \node (B) {11 Mit\\ Inversionszentrum}; & \node (C) {21 Ohne\\ Inversionszentrum}; \\ & \node[fill=red!20!background] (D) {20 Piezoelektrisch}; & \node (E) {1 Nicht\\ piezoelektrisch}; \\ }; \draw[thick, ->] (A.west) to[out=180, in=90] (B.north); \draw[thick, ->] (A.south) to (C); \draw[thick, ->] (C.south) to (D.north); \draw[thick, ->] (C.east) to[out=0, in=90] (E.north); \end{tikzpicture} \end{frame} \begin{frame}[fragile]{} \begin{tikzpicture}[ overlay, xshift = 1.5cm, yshift = 1.5cm, node distance = 2mm, charge/.style = { circle, draw = white, thick, minimum size = 5mm }, positive/.style = { fill = red!50 }, negative/.style = { fill = blue!50 }, ] \node[font = {\large\bfseries}, align = center] (title) at (6,0) {Mit und Ohne\\ Symmetriezentrum}; \node[below = of title] {Polarisation Feld \(\vec{E}_p\)}; \begin{scope} \matrix[nodes = { charge }, row sep = 8mm, column sep = 8mm] { \node[positive] {}; & \node[negative] (N) {}; & \node [positive] {}; \\ \node[negative] (W) {}; & \node[positive] {}; & \node [negative] (E) {}; \\ \node[positive] {}; & \node[negative] (S) {}; & \node [positive] {}; \\ }; \draw[gray, dashed] (W) to (N) to (E) to (S) to (W); \end{scope} \begin{scope}[yshift=-4.5cm] \matrix[nodes = { charge }, row sep = 5mm, column sep = 1cm] { \node[positive] (NW) {}; & \node[negative] (N) {}; & \node [positive] (NE) {}; \\ \node[negative] (W) {}; & \node[positive] {}; & \node [negative] (E) {}; \\ \node[positive] (SW) {}; & \node[negative] (S) {}; & \node [positive] (SE) {}; \\ }; \foreach \d in {NW, N, NE} { \draw[orange, very thick, <-] (\d) to ++(0,.7); } \foreach \d in {SW, S, SE} { \draw[orange, very thick, <-] (\d) to ++(0,-.7); } \draw[gray, dashed] (W) to (N) to (E) to (S) to (W); \end{scope} \begin{scope}[xshift=11cm] \foreach \x/\t [count=\i] in {60/positive, 120/negative, 180/positive, 240/negative, 300/positive, 360/negative} { \node[charge, \t] (C\i) at (\x:1.5cm) {}; } \draw[white] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); \end{scope} \begin{scope}[xshift=6cm, yshift=-4.5cm] \node[charge, positive, yshift=-2.5mm] (C1) at ( 60:1.5cm) {}; \node[charge, negative, yshift=-2.5mm] (C2) at (120:1.5cm) {}; \node[charge, positive, xshift=-2.5mm] (C3) at (180:1.5cm) {}; \node[charge, negative, yshift= 2.5mm] (C4) at (240:1.5cm) {}; \node[charge, positive, yshift= 2.5mm] (C5) at (300:1.5cm) {}; \node[charge, negative, xshift= 2.5mm] (C6) at (360:1.5cm) {}; \draw[white] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); \foreach \d in {C1, C2} { \draw[orange, very thick, <-] (\d) to ++(0,.7); } \foreach \d in {C4, C5} { \draw[orange, very thick, <-] (\d) to ++(0,-.7); } \node[white] (E) {\(\vec{E}_p\)}; \begin{scope}[node distance = .5mm] \node[blue!50, right = of E] {\(-\)}; \node[red!50, left = of E] {\(+\)}; \end{scope} \end{scope} \begin{scope}[xshift=11cm, yshift=-4.5cm] \node[charge, positive, yshift= 2.5mm] (C1) at ( 60:1.5cm) {}; \node[charge, negative, yshift= 2.5mm] (C2) at (120:1.5cm) {}; \node[charge, positive, xshift= 2.5mm] (C3) at (180:1.5cm) {}; \node[charge, negative, yshift=-2.5mm] (C4) at (240:1.5cm) {}; \node[charge, positive, yshift=-2.5mm] (C5) at (300:1.5cm) {}; \node[charge, negative, xshift=-2.5mm] (C6) at (360:1.5cm) {}; \draw[white] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); \draw[orange, very thick, <-] (C6) to ++(.7,0); \draw[orange, very thick, <-] (C3) to ++(-.7,0); \node[white] (E) {\(\vec{E}_p\)}; \begin{scope}[node distance = .5mm] \node[blue!50, right = of E] {\(-\)}; \node[red!50, left = of E] {\(+\)}; \end{scope} \end{scope} \end{tikzpicture} \end{frame} \frame{ \begin{columns}[T] \begin{column}{.5\textwidth} Symmetriegruppe und Darstellung \begin{align*} G &= \left\{\mathbb{1}, r, \sigma, \dots \right\} \\ &\Phi : G \to O(n) \end{align*} \begin{align*} U_\lambda &= \left\{ v : \Phi v = \lambda v \right\} \\ &= \mathrm{null}\left(\Phi - \lambda I\right) \end{align*} Helmholtz Wellengleichung \[ \nabla^2 \vec{E} = \ten{\varepsilon}\mu \frac{\partial^2}{\partial t^2} \vec{E} \] \end{column} \begin{column}{.5\textwidth} Ebene Welle \[ \vec{E} = \vec{E}_0 \exp\left[i \left(\vec{k}\cdot\vec{r} - \omega t \right)\right] \] Anisotropisch Dielektrikum \[ \ten{R}\ten{\varepsilon}\vec{E} = \frac{\omega^2}{\mu k^2} \vec{E} \] \[ \vec{E} \in U_\lambda \implies (\ten{R}\ten{\varepsilon}) \vec{E} = \lambda \vec{E} \] \"Ahenlich auch in der Mechanik \[ \vec{F} = \kappa \vec{x} \quad \text{(Hooke)} \] \end{column} \end{columns} } \end{document}