\documentclass[12pt, xcolor, aspectratio=169]{beamer} % language \usepackage{polyglossia} \setmainlanguage{german} % pretty drawings \usepackage{tikz} \usepackage{tikz-3dplot} \usetikzlibrary{positioning} \usetikzlibrary{arrows.meta} \usetikzlibrary{shapes.misc} \usetikzlibrary{calc} \usetikzlibrary{external} \tikzexternalize[ mode = graphics if exists, figure list = true, prefix=build/ ] % Theme \beamertemplatenavigationsymbolsempty % set look \usetheme{default} \usecolortheme{fly} \usefonttheme{serif} %% Set font \usepackage[p,osf]{scholax} \usepackage{amsmath} \usepackage[scaled=1.075,ncf,vvarbb]{newtxmath} % set colors \definecolor{background}{HTML}{202020} \setbeamercolor{normal text}{fg=white, bg=background} \setbeamercolor{structure}{fg=white} \setbeamercolor{item projected}{use=item,fg=background,bg=item.fg!35} \setbeamercolor*{palette primary}{use=structure,fg=white,bg=structure.fg} \setbeamercolor*{palette secondary}{use=structure,fg=white,bg=structure.fg!75} \setbeamercolor*{palette tertiary}{use=structure,fg=white,bg=structure.fg!50} \setbeamercolor*{palette quaternary}{fg=white,bg=background} \setbeamercolor*{block title}{parent=structure} \setbeamercolor*{block body}{fg=background, bg=} \setbeamercolor*{framesubtitle}{fg=white} \setbeamertemplate{section page} { \begin{center} \Huge \insertsection \end{center} } \AtBeginSection{\frame{\sectionpage}} % Macros \newcommand{\ten}[1]{#1} % Metadata \title{\LARGE \scshape Punktgruppen und Kristalle} \author[N. Pross, T. T\"onz]{Naoki Pross, Tim T\"onz} \institute{Hochschule f\"ur Technik OST, Rapperswil} \date{10. Mai 2021} % Slides \begin{document} \frame{ \titlepage \vfill \begin{center} \small \color{gray} Slides: \texttt{s.0hm.ch/ctBsD} \end{center} } \frame{\tableofcontents} \frame{ \begin{itemize} \item Was heisst \emph{Symmetrie} in der Mathematik? \pause \item Wie kann ein Kristall modelliert werden? \pause \item Aus der Physik: Licht, Piezoelektrizit\"at \pause \end{itemize} \begin{center} \begin{tikzpicture} \begin{scope}[ node distance = 0cm ] \node[ rectangle, fill = gray!40!background, minimum width = 3cm, minimum height = 2cm, ] (body) {\(\vec{E}_p = \vec{0}\)}; \node[ draw, rectangle, thick, white, fill = red!50, minimum width = 3cm, minimum height = 1mm, above = of body ] (pos) {}; \node[ draw, rectangle, thick, white, fill = blue!50, minimum width = 3cm, minimum height = 1mm, below = of body ] (neg) {}; \draw[white, very thick, -Circle] (pos.east) to ++ (1,0) node (p) {}; \draw[white, very thick, -Circle] (neg.east) to ++ (1,0) node (n) {}; \draw[white, thick, ->] (p) to[out = -70, in = 70] node[midway, right] {\(U = 0\)} (n); \end{scope} \begin{scope}[ node distance = 0cm, xshift = 7cm ] \node[ rectangle, fill = gray!40!background, minimum width = 3cm, minimum height = 1.5cm, ] (body) {\(\vec{E}_p = \vec{0}\)}; \node[ draw, rectangle, thick, white, fill = red!50, minimum width = 3cm, minimum height = 1mm, above = of body ] (pos) {}; \node[ draw, rectangle, thick, white, fill = blue!50, minimum width = 3cm, minimum height = 1mm, below = of body ] (neg) {}; \draw[orange, very thick, <-] (pos.north) to node[near end, right] {\(\vec{F}\)} ++(0,1); \draw[orange, very thick, <-] (neg.south) to node[near end, right] {\(\vec{F}\)} ++(0,-1); \draw[white, very thick, -Circle] (pos.east) to ++ (1,0) node (p) {}; \draw[white, very thick, -Circle] (neg.east) to ++ (1,0) node (n) {}; \draw[white, thick, ->] (p) to[out = -70, in = 70] node[midway, right] {\(U > 0\)} (n); \end{scope} \end{tikzpicture} \end{center} } \section{2D Symmetrien} %% Made in video { \usebackgroundtemplate{ \includegraphics[height=\paperheight]{media/images/nosignal}} \frame{} } \section{Algebraische Symmetrien} %% Made in video \frame{ \begin{columns}[T] \begin{column}{.5\textwidth} Produkt mit \(i\) \begin{align*} 1 \cdot i &= i \\ i \cdot i &= -1 \\ -1 \cdot i &= -i \\ -i \cdot i &= 1 \end{align*} \pause % Gruppe \begin{align*} G &= \left\{ 1, i, -1, -i \right\} \\ &= \left\{ 1, i, i^2, i^3 \right\} \\ C_4 &= \left\{ \mathbb{1}, r, r^2, r^3 \right\} \end{align*} \pause \end{column} \begin{column}{.5\textwidth} Darstellung \(\phi : C_4 \to G\) \begin{align*} \phi(\mathbb{1}) &= 1 & \phi(r^2) &= i^2 \\ \phi(r) &= i & \phi(r^3) &= i^3 \end{align*} \pause % Homomorphismus \begin{align*} \phi(r \circ \mathbb{1}) &= \phi(r) \cdot \phi(\mathbb{1}) \\ &= i \cdot 1 \end{align*} \pause % \(\phi\) ist bijektiv \(\implies C_4 \cong G\) \pause % \begin{align*} \psi : C_4 &\to (\mathbb{Z}/4\mathbb{Z}, +) \\ \psi(\mathbb{1}\circ r^2) &= 0 + 2 \pmod{4} \end{align*} \end{column} \end{columns} } \section{3D Symmetrien} %% Made in video { \usebackgroundtemplate{ \includegraphics[height=\paperheight]{media/images/nosignal}} \frame{} } \section{Matrizen} \frame{ \begin{columns}[T] \begin{column}{.5\textwidth} Symmetriegruppe \[ G = \left\{\mathbb{1}, r, \sigma, \dots \right\} \] \pause Matrixdarstellung \begin{align*} \Phi : G &\to O(3) \\ g &\mapsto \Phi_g \end{align*} \pause Orthogonale Gruppe \[ O(n) = \left\{ Q : QQ^t = Q^tQ = I \right\} \] \end{column} \pause \begin{column}{.5\textwidth} \begin{align*} \Phi_\mathbb{1} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \\[1em] \Phi_\sigma &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\[1em] \Phi_r &= \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{align*} \end{column} \end{columns} } \section{Kristalle} \begin{frame}[fragile]{} \begin{columns} \onslide<1->{ \begin{column}{.5\textwidth} \begin{center} \begin{tikzpicture}[ dot/.style = { draw, circle, thick, white, fill = gray!40!background, minimum size = 2mm, inner sep = 0pt, outer sep = 1mm, }, ] \begin{scope} \clip (-2,-2) rectangle (3,4); \foreach \y in {-7,-6,...,7} { \foreach \x in {-7,-6,...,7} { \node[dot, xshift=3mm*\y] (N\x\y) at (\x, \y) {}; } } \end{scope} \draw[white, thick] (-2, -2) rectangle (3,4); \draw[red!80!background, thick, ->] (N00) to node[midway, below] {\(\vec{a}_1\)} (N10); \draw[cyan!80!background, thick, ->] (N00) to node[midway, left] {\(\vec{a}_2\)} (N01); \end{tikzpicture} \end{center} \end{column} } \begin{column}{.5\textwidth} \onslide<2->{ Kristallgitter: \(n_i \in \mathbb{Z}\), } \onslide<3->{ \(\vec{a}_i \in \mathbb{R}^3\) } \onslide<2->{ \[ \vec{r} = n_1 \vec{a}_1 + n_2 \vec{a}_2 \onslide<3->{+ n_3 \vec{a}_3} \] } \vspace{1cm} \onslide<4->{ Invariant unter Translation \[ Q_i(\vec{r}) = \vec{r} + \vec{a}_i \] } \end{column} \end{columns} \end{frame} \begin{frame}[fragile]{} \begin{columns}[T] \begin{column}{.5\textwidth} \onslide<1->{ Wie kombiniert sich \(Q_i\) mit der anderen Symmetrien? } \begin{center} \begin{tikzpicture}[ dot/.style = { draw, circle, thick, white, fill = gray!40!background, minimum size = 2mm, inner sep = 0pt, outer sep = 1mm, }, ] \onslide<2->{ \node[dot] (A1) at (0,0) {}; \node[below left] at (A1) {\(A\)}; } \onslide<3->{ \node[dot] (A2) at (2.5,0) {}; \node[below right] at (A2) {\(A'\)}; \draw[red!80!background, thick, ->] (A1) to node[midway, below] {\(\vec{Q}\)} (A2); } \onslide<4->{ \node[dot] (B1) at (120:2.5) {}; \node[above left] at (B1) {\(B\)}; \draw[green!70!background, thick, ->] (A1) ++(.5,0) arc (0:120:.5) node[midway, above, xshift=1mm] {\(C_n\)}; \draw[red!80!background, dashed, thick, ->] (A1) to (B1); } \onslide<5->{ \node[dot] (B2) at ($(A2)+(60:2.5)$) {}; \node[above right] at (B2) {\(B'\)}; \draw[green!70!background, thick, dashed, ->] (A2) ++(-.5,0) arc (180:60:.5); \draw[red!80!background, dashed, thick, ->] (A2) to (B2); } \onslide<6->{ \draw[yellow!80!background, thick, ->] (B1) to node[above, midway] {\(\vec{Q}'\)} (B2); } \onslide<10->{ \draw[gray, dashed, thick] (A1) to (A1 |- B1) node (Xl) {}; \draw[gray, dashed, thick] (A2) to (A2 |- B2) node (Xr) {}; \node[above left, xshift=-2mm] at (Xl) {\(x\)}; \node[above right, xshift= 2mm] at (Xr) {\(x\)}; } \end{tikzpicture} \end{center} \end{column} \begin{column}{.5\textwidth} \onslide<7->{ Sei \(q = |\vec{Q}|\), \(\alpha = 2\pi/n\) und \(n \in \mathbb{N}\) } \begin{align*} \onslide<9->{q' = n q \onslide<10->{&= q + 2x \\}} \onslide<11->{nq &= q + 2q\sin(\alpha - \pi/2) \\} \onslide<12->{n &= 1 - 2\cos\alpha} \end{align*} \onslide<13->{ Somit muss \begin{align*} \alpha &= \cos^{-1}\left(\frac{1-n}{2}\right) \\[1em] \alpha &\in \left\{ 0, 60^\circ, 90^\circ, 120^\circ, 180^\circ \right\} \\ n &\in \left\{ 1, 2, 3, 4, 6 \right\} \end{align*} } \end{column} \end{columns} \end{frame} \begin{frame}[fragile]{M\"ogliche Kristallstrukturen} \begin{center} \begin{tikzpicture}[] \node[circle, dashed, draw = gray, thick, fill = background, minimum size = 4cm] {}; \node[gray] at (.9,-1.2) {674}; \node[circle, draw = white, thick, fill = orange!40!background, xshift = -3mm, yshift = 2mm, minimum size = 2.75cm, outer sep = 1mm] (A) {}; \node[white, yshift = 2mm] at (A) {230}; \node[white, font=\large, above right = of A] (Al) {Raumgruppe}; \draw[white, thick, ->] (Al.west) to[out=180, in=60] (A); \node[circle, draw = white, thick, fill = red!20!background, xshift = -5mm, yshift = -5mm, minimum size = 1cm, outer sep = 1mm] (B) {32}; \node[white, font=\large, below left = of B, xshift=-4mm] (Bl) {Kristallklassen}; \draw[white, thick, ->] (Bl.east) to[out = 0, in = 180] (B); \end{tikzpicture} \end{center} \end{frame} { \usebackgroundtemplate[fragile]{ \begin{tikzpicture}[ overlay, xshift = .45\paperwidth, yshift = .47\paperheight, classcirc/.style = { draw = gray, thick, circle, minimum size = 12mm, inner sep = 0pt, outer sep = 0pt, }, classlabel/.style = { below right = 5mm }, round/.style = { draw = yellow, thick, circle, minimum size = 1mm, inner sep = 0pt, outer sep = 0pt, }, cross/.style = { cross out, draw = magenta, thick, minimum size = 1mm, inner sep = 0pt, outer sep = 0pt }, ] \matrix [row sep = 3mm, column sep = 0mm] { \node[classcirc] (C1) {} node[classlabel] {\(C_{1}\)}; & \node[classcirc] (C2) {} node[classlabel] {\(C_{2}\)}; & \node[classcirc] (C3) {} node[classlabel] {\(C_{3}\)}; & \node[classcirc] (Ci) {} node[classlabel] {\(C_{i}\)}; & \node[classcirc] (Cs) {} node[classlabel] {\(C_{s}\)}; & \node[classcirc] (C3i) {} node[classlabel] {\(C_{3i}\)}; & \node[classcirc] (C2h) {} node[classlabel] {\(C_{2h}\)}; & \node[classcirc] (D2) {} node[classlabel] {\(D_{2}\)}; \\ \node[classcirc] (D3d) {} node[classlabel] {\(D_{3d}\)}; & \node[classcirc] (C2v) {} node[classlabel] {\(C_{2v}\)}; & \node[classcirc] (D2h) {} node[classlabel] {\(D_{2h}\)}; & \node[classcirc] (D3) {} node[classlabel] {\(D_{3}\)}; & \node[classcirc] (C4) {} node[classlabel] {\(C_{4}\)}; & \node[classcirc] (C6) {} node[classlabel] {\(C_{6}\)}; & \node[classcirc] (D3dP) {} node[classlabel] {\(D_{3d}\)}; & \node[classcirc] (S4) {} node[classlabel] {\(S_{4}\)}; \\ \node[classcirc] (S3) {} node[classlabel] {\(S_{3}\)}; & \node[classcirc, dashed] (T) {} node[classlabel] {\(T_{}\)}; & \node[classcirc] (C4h) {} node[classlabel] {\(C_{4h}\)}; & \node[classcirc] (C6h) {} node[classlabel] {\(C_{6h}\)}; & \node[classcirc, dashed] (Th) {} node[classlabel] {\(T_{h}\)}; & \node[classcirc] (C4v) {} node[classlabel] {\(C_{4v}\)}; & \node[classcirc] (C6v) {} node[classlabel] {\(C_{6v}\)}; & \node[classcirc, dashed] (Td) {} node[classlabel] {\(T_{d}\)}; \\ \node[classcirc] (D2d) {} node[classlabel] {\(D_{2d}\)}; & \node[classcirc] (D3h) {} node[classlabel] {\(D_{3h}\)}; & \node[classcirc, dashed] (O) {} node[classlabel] {\(O_{}\)}; & \node[classcirc] (D4) {} node[classlabel] {\(D_{4}\)}; & \node[classcirc] (D6) {} node[classlabel] {\(D_{6}\)}; & \node[classcirc, dashed] (Oh) {} node[classlabel] {\(O_{h}\)}; & \node[classcirc] (D4h) {} node[classlabel] {\(D_{4h}\)}; & \node[classcirc] (D6h) {} node[classlabel] {\(D_{6h}\)}; \\ }; \node[cross] at ($(C1)+(4mm,0)$) {}; \node[cross] at ($(C2)+(4mm,0)$) {}; \node[cross] at ($(C2)-(4mm,0)$) {}; \node[cross] at ($(C3)+( 0:4mm)$) {}; \node[cross] at ($(C3)+(120:4mm)$) {}; \node[cross] at ($(C3)+(240:4mm)$) {}; \node[cross] at ($(Ci)+(4mm,0)$) {}; \node[round] at ($(Ci)-(4mm,0)$) {}; \node[cross] at ($(Cs)+(4mm,0)$) {}; \node[round] at ($(Cs)+(4mm,0)$) {}; \node[cross] at ($(C3i)+( 0:4mm)$) {}; \node[cross] at ($(C3i)+(120:4mm)$) {}; \node[cross] at ($(C3i)+(240:4mm)$) {}; \node[round] at ($(C3i)+( 60:4mm)$) {}; \node[round] at ($(C3i)+(180:4mm)$) {}; \node[round] at ($(C3i)+(300:4mm)$) {}; \node[cross] at ($(C2h)+(4mm,0)$) {}; \node[cross] at ($(C2h)-(4mm,0)$) {}; \node[round] at ($(C2h)+(4mm,0)$) {}; \node[round] at ($(C2h)-(4mm,0)$) {}; \node[cross] at ($(D2)+( 20:4mm)$) {}; \node[cross] at ($(D2)+(200:4mm)$) {}; \node[round] at ($(D2)+(160:4mm)$) {}; \node[round] at ($(D2)+(340:4mm)$) {}; \foreach \x in {0, 120, 240} { \node[cross] at ($(D3d)+({\x+15}:4mm)$) {}; \node[cross] at ($(D3d)+({\x-15}:4mm)$) {}; } \foreach \x in {0, 180} { \node[cross] at ($(C2v)+({\x+15}:4mm)$) {}; \node[cross] at ($(C2v)+({\x-15}:4mm)$) {}; } \foreach \x in {0, 180} { \node[cross] at ($(D2h)+({\x+15}:4mm)$) {}; \node[cross] at ($(D2h)+({\x-15}:4mm)$) {}; \node[round] at ($(D2h)+({\x+15}:4mm)$) {}; \node[round] at ($(D2h)+({\x-15}:4mm)$) {}; } \foreach \x in {0, 120, 240} { \node[cross] at ($(D3)+({\x+15}:4mm)$) {}; \node[round] at ($(D3)+({\x-15}:4mm)$) {}; } \foreach \x in {0, 90, 180, 270} { \node[cross] at ($(C4)+(\x:4mm)$) {}; } \foreach \x in {0, 60, 120, 180, 240, 300} { \node[cross] at ($(C6)+(\x:4mm)$) {}; } \foreach \x in {0, 120, 240} { \node[cross] at ($(D3dP)+({\x+15}:4mm)$) {}; \node[cross] at ($(D3dP)+({\x-15}:4mm)$) {}; \node[round] at ($(D3dP)+({\x+15+60}:4mm)$) {}; \node[round] at ($(D3dP)+({\x-15+60}:4mm)$) {}; } \node[cross] at ($(S4)+(4mm,0)$) {}; \node[cross] at ($(S4)-(4mm,0)$) {}; \node[round] at ($(S4)+(0,4mm)$) {}; \node[round] at ($(S4)-(0,4mm)$) {}; \foreach \x in {0, 120, 240} { \node[cross] at ($(S3)+(\x:4mm)$) {}; \node[round] at ($(S3)+(\x:4mm)$) {}; } %% TODO: T \foreach \x in {0, 90, 180, 270} { \node[cross] at ($(C4h)+(\x:4mm)$) {}; \node[round] at ($(C4h)+(\x:4mm)$) {}; } \foreach \x in {0, 60, 120, 180, 240, 300} { \node[cross] at ($(C6h)+(\x:4mm)$) {}; \node[round] at ($(C6h)+(\x:4mm)$) {}; } %% TODO: Th \foreach \x in {0, 90, 180, 270} { \node[cross] at ($(C4v)+(\x+15:4mm)$) {}; \node[cross] at ($(C4v)+(\x-15:4mm)$) {}; } \foreach \x in {0, 60, 120, 180, 240, 300} { \node[cross] at ($(C6v)+(\x+10:4mm)$) {}; \node[cross] at ($(C6v)+(\x-10:4mm)$) {}; } %% TODO: Td \foreach \x in {0, 180} { \node[cross] at ($(D2d)+({\x+15}:4mm)$) {}; \node[round] at ($(D2d)+({\x-15}:4mm)$) {}; \node[round] at ($(D2d)+({\x+15+90}:4mm)$) {}; \node[cross] at ($(D2d)+({\x-15+90}:4mm)$) {}; } \foreach \x in {0, 120, 240} { \node[cross] at ($(D3h)+({\x+15}:4mm)$) {}; \node[cross] at ($(D3h)+({\x-15}:4mm)$) {}; \node[round] at ($(D3h)+({\x+15}:4mm)$) {}; \node[round] at ($(D3h)+({\x-15}:4mm)$) {}; } %% TODO: O \foreach \x in {0, 90, 180, 270} { \node[cross] at ($(D4)+({\x+15}:4mm)$) {}; \node[round] at ($(D4)+({\x-15}:4mm)$) {}; } \foreach \x in {0, 60, 120, 180, 240, 300} { \node[cross] at ($(D6)+({\x+10}:4mm)$) {}; \node[round] at ($(D6)+({\x-10}:4mm)$) {}; } % TODO Oh \foreach \x in {0, 90, 180, 270} { \node[cross] at ($(D4h)+(\x+15:4mm)$) {}; \node[cross] at ($(D4h)+(\x-15:4mm)$) {}; \node[round] at ($(D4h)+(\x+15:4mm)$) {}; \node[round] at ($(D4h)+(\x-15:4mm)$) {}; } \foreach \x in {0, 60, 120, 180, 240, 300} { \node[cross] at ($(D6h)+({\x+10}:4mm)$) {}; \node[cross] at ($(D6h)+({\x-10}:4mm)$) {}; \node[round] at ($(D6h)+({\x+10}:4mm)$) {}; \node[round] at ($(D6h)+({\x-10}:4mm)$) {}; } \end{tikzpicture} } \begin{frame}[fragile]{} \end{frame} } \section{Anwendungen} \begin{frame}[fragile]{} \centering \begin{tikzpicture}[ box/.style = { rectangle, thick, draw = white, fill = darkgray!50!background, minimum height = 1cm, outer sep = 2mm, }, ] \matrix [nodes = {box, align = center}, column sep = 1cm, row sep = 1.5cm] { & \node (A) {32 Kristallklassen}; \\ \node (B) {11 Mit\\ Inversionszentrum}; & \node (C) {21 Ohne\\ Inversionszentrum}; \\ & \node[fill=red!20!background] (D) {20 Piezoelektrisch}; & \node (E) {1 Nicht\\ piezoelektrisch}; \\ }; \draw[thick, ->] (A.west) to[out=180, in=90] (B.north); \draw[thick, ->] (A.south) to (C); \draw[thick, ->] (C.south) to (D.north); \draw[thick, ->] (C.east) to[out=0, in=90] (E.north); \end{tikzpicture} \end{frame} \begin{frame}[fragile]{} \begin{tikzpicture}[ overlay, xshift = 1.5cm, yshift = 1.5cm, node distance = 2mm, charge/.style = { circle, draw = white, thick, minimum size = 5mm }, positive/.style = { fill = red!50 }, negative/.style = { fill = blue!50 }, ] \node[font = {\large\bfseries}, align = center] (title) at (5.5,0) {Mit und Ohne\\ Symmetriezentrum}; \pause \begin{scope} \matrix[nodes = { charge }, row sep = 8mm, column sep = 8mm] { \node[positive] {}; & \node[negative] (N) {}; & \node [positive] {}; \\ \node[negative] (W) {}; & \node[positive] {}; & \node [negative] (E) {}; \\ \node[positive] {}; & \node[negative] (S) {}; & \node [positive] {}; \\ }; \draw[gray, dashed] (W) to (N) to (E) to (S) to (W); \end{scope} \pause \begin{scope}[xshift=11cm] \foreach \x/\t [count=\i] in {60/positive, 120/negative, 180/positive, 240/negative, 300/positive, 360/negative} { \node[charge, \t] (C\i) at (\x:1.5cm) {}; } \draw[white] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); \node[circle, draw=gray, fill=gray, outer sep = 0, inner sep = 0, minimum size = 3mm] {}; % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); \end{scope} \pause %% \node[below = of title] {Polarisation Feld \(\vec{E}_p\)}; %% hex with vertical pressure \begin{scope}[xshift=11cm, yshift=-4.5cm] \node[charge, positive, yshift=-2.5mm] (C1) at ( 60:1.5cm) {}; \node[charge, negative, yshift=-2.5mm] (C2) at (120:1.5cm) {}; \node[charge, positive, xshift=-2.5mm] (C3) at (180:1.5cm) {}; \node[charge, negative, yshift= 2.5mm] (C4) at (240:1.5cm) {}; \node[charge, positive, yshift= 2.5mm] (C5) at (300:1.5cm) {}; \node[charge, negative, xshift= 2.5mm] (C6) at (360:1.5cm) {}; \draw[white] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); \foreach \d in {C1, C2} { \draw[orange, very thick, <-] (\d) to ++(0,.7); } \foreach \d in {C4, C5} { \draw[orange, very thick, <-] (\d) to ++(0,-.7); } \node[white] (E) {\(\vec{E}_p\)}; \begin{scope}[node distance = .5mm] \node[red!50, right = of E] {\(+\)}; \node[blue!50, left = of E] {\(-\)}; \end{scope} % \draw[gray, thick, dotted] (E) to ++(0,2); % \draw[gray, thick, dotted] (E) to ++(0,-2); \end{scope} \pause %% square with vertical pressure \begin{scope}[yshift=-4.5cm] \matrix[nodes = { charge }, row sep = 5mm, column sep = 1cm] { \node[positive] (NW) {}; & \node[negative] (N) {}; & \node [positive] (NE) {}; \\ \node[negative] (W) {}; & \node[positive] {}; & \node [negative] (E) {}; \\ \node[positive] (SW) {}; & \node[negative] (S) {}; & \node [positive] (SE) {}; \\ }; \foreach \d in {NW, N, NE} { \draw[orange, very thick, <-] (\d) to ++(0,.7); } \foreach \d in {SW, S, SE} { \draw[orange, very thick, <-] (\d) to ++(0,-.7); } \draw[gray, dashed] (W) to (N) to (E) to (S) to (W); \end{scope} \pause %% hex with horizontal pressure \begin{scope}[xshift=5.5cm, yshift=-4.5cm] \node[charge, positive, yshift= 2.5mm] (C1) at ( 60:1.5cm) {}; \node[charge, negative, yshift= 2.5mm] (C2) at (120:1.5cm) {}; \node[charge, positive, xshift= 2.5mm] (C3) at (180:1.5cm) {}; \node[charge, negative, yshift=-2.5mm] (C4) at (240:1.5cm) {}; \node[charge, positive, yshift=-2.5mm] (C5) at (300:1.5cm) {}; \node[charge, negative, xshift=-2.5mm] (C6) at (360:1.5cm) {}; \draw[white] (C1) to (C2) to (C3) to (C4) to (C5) to (C6) to (C1); % \draw[gray, dashed] (C2) to (C4) to (C6) to (C2); \draw[orange, very thick, <-] (C6) to ++(.7,0); \draw[orange, very thick, <-] (C3) to ++(-.7,0); \node[white] (E) {\(\vec{E}_p\)}; \begin{scope}[node distance = .5mm] \node[blue!50, right = of E] {\(-\)}; \node[red!50, left = of E] {\(+\)}; \end{scope} % \draw[gray, thick, dotted] (E) to ++(0,2); % \draw[gray, thick, dotted] (E) to ++(0,-2); \end{scope} \pause \end{tikzpicture} \end{frame} \frame{ \frametitle{Licht in Kristallen} \begin{columns}[T] \begin{column}{.45\textwidth} \onslide<2->{ Helmholtz Wellengleichung \[ \nabla^2 \vec{E} = \ten{\varepsilon}\mu \frac{\partial^2}{\partial t^2} \vec{E} \] } \onslide<3->{ Ebene Welle \[ \vec{E} = \vec{E}_0 \exp\left[i \left(\vec{k}\cdot\vec{r} - \omega t \right)\right] \] } \onslide<4->{ Anisotropisch Dielektrikum \[ (\ten{K}\ten{\varepsilon})\vec{E} = \frac{k^2}{\mu \omega^2} \vec{E} \implies \Phi \vec{E} = \lambda \vec{E} \] } \end{column} \begin{column}{.55\textwidth} \onslide<5->{ Eingenraum \begin{align*} U_\lambda &= \left\{ v : \Phi v = \lambda v \right\} = \mathrm{null}\left(\Phi - \lambda I\right) \end{align*} }\onslide<6->{ Symmetriegruppe und Darstellung \begin{align*} G &= \left\{\mathbb{1}, r, \sigma, \dots \right\} \\ &\Phi : G \to O(n) \end{align*} }\onslide<7->{ Kann man \(U_\lambda\) von \(G\) herauslesen? \only<7>{ \[ U_\lambda \stackrel{?}{=} f\left(\bigoplus_{g \in G} \Phi_g\right) \] }\only<8>{ \begin{align*} \mathrm{Tr}\left[\Phi_r(g)\right] &= \sum_i n_i \mathrm{Tr}\left[\Psi_i(g)\right] \\ |G| &= \sum_i\mathrm{Tr}\left[\Psi_i(\mathbb{1})\right] \end{align*} } } \end{column} \end{columns} } % \begin{frame}[fragile] % \centering % \tdplotsetmaincoords{70}{110} % \begin{tikzpicture}[scale=2, tdplot_main_coords] % \node[draw=white, thick, minimum size = 3cm, circle] {}; % % \foreach \x in {0, 120, 240} { % % } % \end{tikzpicture} % \end{frame} \end{document}