% % dreieck.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \begin{frame}[t] \frametitle{Dreiecksmatrizen} \vspace{-10pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.31\textwidth} \begin{block}{Dreiecksmatrix} \begin{align*} R&= \begin{pmatrix} *&*&*&\dots&*\\ 0&*&*&\dots&*\\ 0&0&*&\dots&*\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&* \end{pmatrix} \\ U&= \begin{pmatrix} 1&*&*&\dots&*\\ 0&1&*&\dots&*\\ 0&0&1&\dots&*\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&1 \end{pmatrix} \end{align*} \end{block} \end{column} \begin{column}{0.31\textwidth} \uncover<2->{% \begin{block}{Nilpotente Matrix} \[ N= \begin{pmatrix} 0&*&*&\dots&*\\ 0&0&*&\dots&*\\ 0&0&0&\dots&*\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&0 \end{pmatrix} \] \uncover<3->{% $\Rightarrow N^n=0$ } \end{block}} \end{column} \begin{column}{0.31\textwidth} \uncover<4->{% \begin{block}{Jordan-Matrix} \[ J_\lambda=\begin{pmatrix} \lambda&1&0&\dots&0\\ 0&\lambda&1&\dots&0\\ 0&0&\lambda&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&\lambda \end{pmatrix} \] \uncover<5->{% $\Rightarrow J_\lambda -\lambda I$ ist nilpotent } \end{block}} \end{column} \end{columns} \end{frame}