% % eindiomensional.tex -- Lösung der eindimensionalen DGL % % (c) 2021 Roy Seitz, Hochschule Rapperswil % % !TeX spellcheck = de_CH \bgroup \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Beispiel $\sin x$} \vspace{-20pt} %\onslide<+-> \begin{block}{Taylor-Approximationen von $\sin x$} \begin{align*} p_n(x) &= \uncover<1->{0} \uncover<2->{+ x} \uncover<3->{+ 0 \frac{x^2}{2!}} \uncover<4->{- 1 \frac{x^3}{3!}} \uncover<5->{+ 0 \frac{x^4}{4!}} \uncover<6->{+ 1 \frac{x^5}{5!}} \uncover<7->{+ \ldots} \uncover<8->{ = \sum_{k=0}^{n/2} (-1)^{2k + 1}\frac{x^{2k+1}}{(2k+1)!} } \end{align*} \end{block} \begin{center} \begin{tikzpicture}[>=latex,thick,scale=1.3] \draw[->] (-5.0, 0.0) -- (5.0,0.0) coordinate[label=$x$]; \draw[->] ( 0.0,-1.5) -- (0.0,1.5); \clip (-5,-1.5) rectangle (5,1.5); \draw[domain=-4:4, samples=50, smooth, blue] plot ({\x}, {sin(180/3.1415968*\x)}) node[above right] {$\sin(x)$}; \uncover<1>{ \draw[domain=-4:4, samples=2, smooth, red] plot ({\x}, {0}) node[above right] {$p_0(x)$};} \uncover<2>{ \draw[domain=-1.5:1.5, samples=2, smooth, red] plot ({\x}, {\x}) node[below right] {$p_1(x)$};} \uncover<3>{ \draw[domain=-1.5:1.5, samples=2, smooth, red] plot ({\x}, {\x}) node[below right] {$p_2(x)$};} \uncover<4>{ \draw[domain=-3:3, samples=50, smooth, red] plot ({\x}, {\x - \x*\x*\x/6}) node[above right] {$p_3(x)$};} \uncover<5>{ \draw[domain=-3:3, samples=50, smooth, red] plot ({\x}, {\x - \x*\x*\x/6}) node[above right] {$p_4(x)$};} \uncover<6>{ \draw[domain=-3.9:3.9, samples=50, smooth, red] plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120}) node[below right] {$p_5(x)$};} \uncover<7>{ \draw[domain=-3.9:3.9, samples=50, smooth, red] plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120}) node[below right] {$p_6(x)$};} \uncover<8->{ \draw[domain=-4:4, samples=50, smooth, red] plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120 - \x*\x*\x*\x*\x*\x*\x/5040}) node[above right] {$p_7(x)$};} \end{tikzpicture} \end{center} \end{frame} \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Taylor-Reihen} \vspace{-20pt} \onslide<+-> \begin{block}{Polynom-Approximationen von $f(t)$} \vspace{-15pt} \begin{align*} p_n(t) &= f(0) + f'(0) t + f''(0)\frac{t^2}{2} + f^{(3)}(0)\frac{t^3}{3!} + \ldots + f^{(n)}(0) \frac{t^n}{n!} = \sum_{k=0}^{n} f^{(k)} \frac{t^k}{k!} \end{align*} \end{block} \begin{block}{Die ersten $n$ Ableitungen von $f(0)$ und $p_n(0)$ sind gleich!} \vspace{-15pt} \begin{align*} p'_n(t) &= f'(0) + f''(0)t + f^{(3)}(0) \frac{t^2}{2!} + \mathcal O(t^3) &\Rightarrow&& p'_n(0) = f'(0) \\ p''_n(0) &= f''(0) + f^{(3)}(0)t + \ldots + f^{(n)}(0) \frac{t^{n-2}}{(n-2)!} &\Rightarrow&& p''_n(0) = f''(0) \end{align*} \end{block} \begin{block}{Für unendlich lange Polynome stimmen alle Ableitungen überein!} \vspace{-15pt} \begin{align*} \lim_{n\to \infty} p_n(t) = f(t) \end{align*} \end{block} \end{frame} \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Beispiel $\exp x$} \vspace{-20pt} %\onslide<+-> \begin{block}{Taylor-Approximationen von $\exp x$} \begin{align*} p_n(x) = 1 \uncover<1->{+ x} \uncover<2->{+ \frac{x^2}{2}} \uncover<3->{+ \frac{x^3}{3!}} \uncover<4->{+ \frac{x^4}{4!}} \uncover<5->{+ \frac{x^5}{5!}} \uncover<6->{+ \frac{x^6}{6!}} \uncover<7->{+ \ldots = \sum_{k=0}^{n} \frac{x^k}{k!}} \end{align*} \end{block} \begin{center} \begin{tikzpicture}[>=latex,thick,scale=1.3] \draw[->] (-4.0, 0.0) -- (4.0,0.0) coordinate[label=$x$]; \draw[->] ( 0.0,-0.5) -- (0.0,2.5); \clip (-3,-0.5) rectangle (3,2.5); \draw[domain=-4:1, samples=50, smooth, blue] plot ({\x}, {exp(\x)}) node[above right] {$\exp(x)$}; \uncover<1>{ \draw[domain=-4:1.5, samples=10, smooth, red] plot ({\x}, {1 + \x}) node[below right] {$p_1(x)$};} \uncover<2>{ \draw[domain=-4:1, samples=50, smooth, red] plot ({\x}, {1 + \x + \x*\x/2}) node[below right] {$p_2(x)$};} \uncover<3>{ \draw[domain=-4:1, samples=50, smooth, red] plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6}) node[below right] {$p_3(x)$};} \uncover<4>{ \draw[domain=-4:0.9, samples=50, smooth, red] plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24}) node[below left] {$p_4(x)$};} \uncover<5>{ \draw[domain=-4:0.9, samples=50, smooth, red] plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24 + \x*\x*\x*\x*\x/120}) node[below left] {$p_5(x)$};} \uncover<6>{ \draw[domain=-4:0.9, samples=50, smooth, red] plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24 + \x*\x*\x*\x*\x/120 + \x*\x*\x*\x*\x*\x/720}) node[below left] {$p_6(x)$};} \uncover<7>{ \draw[domain=-4:0.9, samples=50, smooth, red] plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24 + \x*\x*\x*\x*\x/120 + \x*\x*\x*\x*\x*\x/720 + \x*\x*\x*\x*\x*\x*\x/5040}) node[below left] {$p_7(x)$};} \end{tikzpicture} \end{center} \end{frame} \egroup