% % plancherel.tex -- slide template % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Plancherel-Gleichung} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} \begin{block}{Hilbertraum mit Hilbert-Basis} $H$ Hilbertraum mit Hilbert-Basis $\mathcal{B}=\{b_k\;|\; k>0\}$, $x\in H$ \end{block} \begin{block}{Analyse: Fourier-Koeffizienten} \begin{align*} a_k = \hat{x}_k &=\langle b_k, x\rangle \\ \hat{x}&=\mathcal{F}x \end{align*} \end{block} \vspace{-10pt} \begin{block}{Synthese: Fourier-Reihe} \begin{align*} \tilde{x} &= \sum_k a_k b_k = \sum_k \langle x,b_k\rangle b_k \end{align*} \end{block} \vspace{-6pt} \begin{block}{Analyse von $\tilde{x}$} \begin{align*} \langle b_l,\tilde{x}\rangle &= \biggl\langle b_l,\sum_{k}\langle b_k,x\rangle b_k \biggr\rangle = \sum_k \langle b_k,x\rangle\langle b_l,b_k\rangle = \sum_k \langle b_k,x\rangle\delta_{kl} = \langle b_l,x\rangle = \hat{x}_l \end{align*} \end{block} \end{column} \begin{column}{0.48\textwidth} \begin{block}{Plancherel-Gleichung} \begin{align*} \|\tilde{x}\|^2 &= \langle \tilde{x},\tilde{x}\rangle = \biggl\langle \sum_k \hat{x}_kb_k, \sum_l \hat{x}_lb_l \biggr\rangle \\ &= \sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\langle b_k,b_l\rangle = \sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\delta_{kl} \\ \|\tilde{x}\|^2 &= \sum_k |\hat{x}_k|^2 = \|\hat{x}\|_{l^2}^2 = \|\mathcal{F}x\|_{l^2}^2 \end{align*} \end{block} \vspace{-12pt} \begin{block}{Isometrie} \begin{align*} \mathcal{F} \colon H \to l^2 \colon x\mapsto \hat{x} \end{align*} Alle separablen Hilberträume sind isometrisch zu $l^2$ via %Fourier-Transformation $\mathcal{F}$ \end{block} \end{column} \end{columns} \end{frame} \egroup