% % quotientv.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \definecolor{darkred}{rgb}{0.7,0,0} \definecolor{darkgreen}{rgb}{0,0.6,0} \begin{frame}[t] \frametitle{Quotient} \vspace{-18pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.33\textwidth} \begin{block}{Repräsentanten} Jeder Unterraum $W\subset V$ mit $W\cap U = \{0\}$ kann als Menge von Repräsentanten für \begin{align*} V/U &= \{v+U\;|\;v \in V\} \\ &\simeq W \end{align*} dienen. \end{block} \uncover<3->{% \begin{block}{Orthogonalraum} Mit Skalarprodukt ist $W=U^\perp$ eine bevorzugte Wahl \end{block}} \end{column} \begin{column}{0.66\textwidth} \begin{center} \begin{tikzpicture}[>=latex,thick] \only<1>{ \node at (0,0) {\includegraphics[width=8.5cm]{../slides/2/images/quotient1.jpg}}; \node[color=darkgreen] at (-0.5,0.3) {$v$}; \node[color=blue] at (0.7,-1.4) {$w$}; \node[color=orange] at (2.7,0.1) {$v+w$}; \fill[color=white,opacity=0.5] (3.7,1.0) circle[radius=0.25]; \node at (3.7,1.0) {$W$}; } \only<2->{ \node at (0,0) {\includegraphics[width=8.5cm]{../slides/2/images/quotient2.jpg}}; \node[color=darkgreen] at (-0.75,0.95) {$v$}; \node[color=blue] at (0.6,-1.05) {$w$}; \node[color=orange] at (2.36,1.05) {$v+w$}; \fill[color=white,opacity=0.5] (3.7,2.9) circle[radius=0.25]; \node at (3.7,2.9) {$W$}; } \node[color=darkred] at (-3.3,2.6) {$U$}; \node[color=darkred] at (-2.25,-1.0) {$0$}; \end{tikzpicture} \end{center} \end{column} \end{columns} \end{frame} \egroup