% % skalarprodukt.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Skalarprodukt} \vspace{-15pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} \begin{block}{Positiv definite, symmetrische Bilinearform} $\langle \;\,,\;\rangle\colon V\times V\to \mathbb{R}$ \begin{itemize} \item<2-> Bilinear: \begin{align*} \langle \alpha u+\beta v,w\rangle &= \alpha\langle u,w\rangle + \beta\langle v,w\rangle \\ \langle u,\alpha v+\beta w\rangle &= \alpha\langle u,v\rangle + \beta\langle u,w\rangle \end{align*} \item<3-> Symmetrisch: $\langle u,v\rangle = \langle v,u\rangle$ \item<4-> $\langle x,x\rangle >0 \quad\forall x\ne 0$ \end{itemize} \end{block} \end{column} \begin{column}{0.48\textwidth} \uncover<5->{% \begin{block}{Positive definite, hermitesche Sesquilinearform} $\langle \;\,,\;\rangle\colon V\times V\to \mathbb{C}$ \begin{itemize} \item<6-> Sesquilinear: \begin{align*} \langle \alpha u+\beta v,w\rangle &= \overline{\alpha}\langle u,w\rangle + \overline{\beta}\langle v,w\rangle \\ \langle u,\alpha v+\beta w\rangle &= \alpha\langle u,v\rangle + \beta\langle u,w\rangle \end{align*} \item<7-> Hermitesch: $\langle u,v\rangle = \overline{\langle v,u\rangle}$ \item<8-> $\langle x,x\rangle >0 \quad\forall x\ne 0$ \end{itemize} \end{block}} \end{column} \end{columns} \begin{columns}[t,onlytextwidth] \begin{column}{0.28\textwidth} \uncover<9->{% \begin{block}{$2$-Norm} $\|v\|_2^2 = \langle v,v\rangle$ \\ $\|v\|_2 = \sqrt{\langle v,v\rangle}$ \end{block}} \end{column} \begin{column}{0.78\textwidth} \uncover<10->{% \begin{itemize} \item<11-> $\|v\|_2 = \sqrt{\langle v,v\rangle} > 0\quad\forall v\ne 0$ \item<12-> $\| \lambda v \|_2 = \sqrt{\langle \lambda v,\lambda v\rangle\mathstrut} = \sqrt{\overline{\lambda}\lambda\langle v,v\rangle} = |\lambda|\cdot \|v\|_2$ \item<13-> \raisebox{-8pt}{ $\begin{aligned} \|u+v\|_2^2 &= \|u\|_2^2 + 2{\color{red}\operatorname{Re}\langle u,v\rangle} + \|v\|_2^2 \\ (\|u\|_2+\|v\|_2)^2 &= \|u\|_2^2 + 2{\color{red}\|u\|_2\|v\|_2} + \|v\|_2^2 \end{aligned}$} \end{itemize}} \end{column} \end{columns} \end{frame}