% % fibonacci.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \begin{frame}[t] \frametitle{Fibonacci} \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \begin{block}{Fibonacci-Rekursion} $x_i$ Fibonacci-Zahlen\uncover<2->{, d.~h.~$x_{n+1\mathstrut}=x_{n\mathstrut}+x_{n-1\mathstrut}$} \[ \uncover<3->{ v_n = \begin{pmatrix} x_{n+1}\\ x_n \end{pmatrix}} \uncover<4->{ \quad\Rightarrow\quad v_n = \underbrace{ \begin{pmatrix} 1&1\\ 1&0 \end{pmatrix} }_{\displaystyle=\Phi} v_{n-1}} \uncover<5->{ \quad\Rightarrow\quad v_n = \Phi^n v_0}\uncover<6->{, \; v_0 = \begin{pmatrix} 1\\0\end{pmatrix}} \] \end{block} \vspace{-5pt} \uncover<7->{% \begin{block}{Rekursionsformel für $\Phi$} \vspace{-12pt} \begin{align*} v_{n}&=v_{n-1}+v_{n-2} &&\uncover<8->{\Rightarrow& \Phi^n v_0 &= \Phi^{n-1} v_0 + \Phi^{n-2}v_0} &&\uncover<9->{\Rightarrow& \Phi^{n-2}(\Phi^2-\Phi-I)v_0&=0} \\ \end{align*} \vspace{-22pt}% \uncover<10->{$\Phi$ ist $\chi_\Phi(X)=m_\Phi(X) = X^2-X-1$, irreduzibel} \end{block}} \uncover<11->{% \begin{block}{Faktorisierung} \vspace{-12pt} \[ (X-\Phi)(X-(I-\Phi)) \uncover<12->{= X^2-X +\Phi(I-\Phi)} \uncover<13->{= X^2-X -(\underbrace{\Phi^2-\Phi}_{\displaystyle=I}) } \] \end{block}} \end{frame}