% % divisionpoly.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \begin{frame}[t] \frametitle{Polynomdivision in $\mathbb{F}_3[X]$} Rechenregeln in $\mathbb{F}_3$: $1+2=0$, $2\cdot 2 = 1$ \[ \arraycolsep=1.4pt \begin{array}{rcrcrcrcrcrcrcrcrcrc} \llap{$ ($}X^4&+&X^3&+& X^2&+& X&+&1\rlap{$)$}&\;\;:&(X^2&+&X&+&2)&=&\uncover<2->{X^2}&\uncover<5->{+&2=q}\\ \uncover<3->{\llap{$-($}X^4&+&X^3&+&2X^2\rlap{$)$}}& & & & & & & & & & & & & & & \\ \uncover<4->{ & & & &2X^2&+& X&+& 1} & & & & & & & & & & \\ \uncover<6->{ & & & &\llap{$-($}2X^2&+&2X&+& 2\rlap{$)$}}& & & & & & & & & & \\ \uncover<7->{ & & & & & &2X&+&2\rlap{$\mathstrut=r$}& & & & & & & & & &} \end{array} \] \uncover<8->{% Kontrolle: \[ \arraycolsep=1.4pt \begin{array}{rclcrcr} (\underbrace{X^2+2}_{\displaystyle=q}) (X^2+X+2) &=&\rlap{$\uncover<9->{X^4+X^3+2X^2}\uncover<10->{ + 2X^2+2X+2}$} \\ \uncover<11->{&=& X^4+X^3+X^2&+&2X&+&2} \\ \uncover<12->{& & &&\llap{$r=\mathstrut$}2X&+&2} \\ \uncover<13->{&=& X^4+X^3+X^2&+&1X&+&1} \end{array} \] } \end{frame}