% % euklidmatrix.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule % \begin{frame}[t] \frametitle{Matrixform des euklidischen Algorithmus} \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.52\textwidth} \begin{block}{Einzelschritt} \vspace{-10pt} \[ a_k = b_kq_k + r_k \uncover<2->{ \;\Rightarrow\; \left\{ \begin{aligned} a_{k+1} &= b_k = \phantom{a_k-q_k}b_k \\ b_{k+1} &= \phantom{b_k}\llap{$r_k$} = a_k - q_kb_k \end{aligned} \right.} \] \end{block} \end{column} \begin{column}{0.44\textwidth} \uncover<3->{% \begin{block}{Matrixschreibweise} \vspace{-10pt} \begin{align*} \begin{pmatrix} a_{k+1}\\ b_{k+1} \end{pmatrix} &= \begin{pmatrix} b_k\\r_k \end{pmatrix} = \uncover<4->{ \underbrace{\begin{pmatrix} \uncover<5->{0&1}\\ \uncover<6->{1&-q_k} \end{pmatrix}}_{\uncover<7->{\displaystyle =Q(q_k)}} } \begin{pmatrix} a_k\\b_k \end{pmatrix} \end{align*} \end{block}} \end{column} \end{columns} \vspace{-10pt} \uncover<8->{% \begin{block}{Ende des Algorithmus} \vspace{-10pt} \begin{align*} \uncover<9->{ \begin{pmatrix} a_{n+1}\\ b_{n+1}\\ \end{pmatrix} &=} \begin{pmatrix} r_{n-1}\\ r_{n} \end{pmatrix} = \begin{pmatrix} \operatorname{ggT}(a,b) \\ 0 \end{pmatrix} \uncover<11->{ = \underbrace{\uncover<15->{Q(q_n)} \uncover<14->{\dots} \uncover<13->{Q(q_1)} \uncover<12->{Q(q_0)}}_{\displaystyle =Q}} \uncover<10->{ \begin{pmatrix} a_0\\ b_0\end{pmatrix} \uncover<6->{ = Q\begin{pmatrix}a\\b\end{pmatrix} } } \end{align*} \end{block}} \uncover<16->{% \begin{block}{Konsequenzen} \[ Q=\begin{pmatrix} q_{11}&q_{12}\\ q_{21}&q_{22} \end{pmatrix} \quad\Rightarrow\quad \left\{ \quad \begin{aligned} \operatorname{ggT}(a,b) &= q_{11}a + q_{12}b = {\color{red}s}a+{\color{red}t}b\\ 0 &= q_{21}a + q_{22}b \end{aligned} \right. \] \end{block}} \end{frame}