% % euklidmatrix.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostscheizer Fachhochschule % \begin{frame}[t] \frametitle{Matrixform des euklidischen Algorithmus} \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.52\textwidth} \begin{block}{Einzelschritt} \vspace{-10pt} \[ a_k = b_kq_k + r_k \;\Rightarrow\; \left\{ \begin{aligned} a_{k+1} &= b_k = \phantom{a_k-q_k}\llap{$-\mathstrut$}b_k \\ b_{k+1} &= \phantom{b_k}\llap{$r_k$} = a_k - q_kb_k \end{aligned} \right. \] \end{block} \end{column} \begin{column}{0.44\textwidth} \begin{block}{Matrixschreibweise} \vspace{-10pt} \begin{align*} \begin{pmatrix} a_{k+1}\\ b_{k+1} \end{pmatrix} &= \begin{pmatrix} b_k\\r_k \end{pmatrix} = \underbrace{\begin{pmatrix}0&1\\1&-q_k\end{pmatrix}}_{\displaystyle =Q(q_k)} \begin{pmatrix} a_k\\b_k \end{pmatrix} \end{align*} \end{block} \end{column} \end{columns} \vspace{-10pt} \begin{block}{Ende des Algorithmus} \vspace{-10pt} \begin{align*} \begin{pmatrix} a_{n+1}\\ b_{n+1}\\ \end{pmatrix} &= \begin{pmatrix} r_{n-1}\\ r_{n} \end{pmatrix} = \begin{pmatrix} \operatorname{ggT}(a,b) \\ 0 \end{pmatrix} = \underbrace{Q(q_n) \dots Q(q_1) Q(q_0)}_{\displaystyle =Q} \begin{pmatrix} a_0\\ b_0\end{pmatrix} = Q\begin{pmatrix}a\\b\end{pmatrix} \end{align*} \end{block} \begin{block}{Konsequenzen} \[ Q=\begin{pmatrix} q_{11}&q_{12}\\ a_{21}&q_{22} \end{pmatrix} \quad\Rightarrow\quad \left\{ \quad \begin{aligned} \operatorname{ggT}(a,b) &= q_{11}a + q_{12}b \\ 0 &= q_{21}a + q_{22}b \end{aligned} \right. \] \end{block} \end{frame}