% % kernbild.tex % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Kern und Bild} \vspace{-15pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} \begin{block}{Kern} Lineare Abbildung $f\colon V\to V$ \[ \ker f = \mathcal{K}(F) = \{v\in V\;|\; f(v)=0\} \] \end{block} \begin{block}{Kern von $A^k$} \[ \mathcal{K}^k(f) = \operatorname{ker} f^k \] \begin{align*} \mathcal{K}^k(f) &= \{v\in V\;|\; f^{k}(v)=0\} \\ &\subset \{v\in V\;|\; f^{k+1}(v)=0\} \\ &=\mathcal{K}^{k+1}(f) \end{align*} \end{block} \end{column} \begin{column}{0.48\textwidth} \begin{block}{Bild} Lineare Abbildung $f\colon V\to V$ \[ \operatorname{im}f = \mathcal{J}(f) = \{f(v)\;|\; v\in V\} \] \end{block} \begin{block}{Bild von $A^k$} \[ \mathcal{J}^k(f) = \operatorname{im}f^k \] \begin{align*} \mathcal{J}^k(f) &= \operatorname{im}f^k = \operatorname{im}(f^{k}\circ f) \\ &= \{f^{k-1} w\;|\; w = f(v)\} \\ &\subset \{f^{k-1} w\;|\; w \in V\} \\ &\mathcal{J}^{k-1}(f) \end{align*} \end{block} \end{column} \end{columns} \end{frame}