% % bch.tex -- slide template % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Baker-Campbell-Hausdorff-Formel} $g(t),h(t)\in G \uncover<2->{\Rightarrow \exists A,B\in LG\text{ mit } g(t)=\exp At, h(t)=\exp Bt}$ \uncover<3->{% \begin{align*} g(t) &= I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots, & h(t) &= I + Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots \end{align*}} \uncover<5->{% \begin{block}{Kommutator in G: $c(t) = g(t)h(t)g(t)^{-1}h(t)^{-1}$} \begin{align*} \uncover<6->{c(t) &= \biggl( {\color<7,9-11,13-15,19-21>{red}I} + {\color<8,16-19>{red}A}t + \frac{{\color<12>{red}A^2}t^2}{2!} + \dots \biggr) \biggl( {\color<7,8,10-12,14-15,17-18,21>{red}I} + {\color<9,16,19-20>{red}B}t + \frac{{\color<13>{red}B^2}t^2}{2!} + \dots \biggr) \exp(-{\color<10,14,17,19,21>{red}A}t) \exp(-{\color<11,15,18,20-21>{red}B}t) } \\ &\uncover<7->{={\color<7>{red}I}} \uncover<8->{+t( \uncover<8->{ {\color<8>{red}A}} \uncover<9->{+ {\color<9>{red}B}} \uncover<10->{- {\color<10>{red}A}} \uncover<11->{- {\color<11>{red}B}} )} \uncover<12->{+\frac{t^2}{2!}( \uncover<12->{ {\color<12>{red}A^2}} \uncover<13->{+ {\color<13>{red}B^2}} \uncover<14->{+ {\color<14>{red}A^2}} \uncover<15->{+ {\color<15>{red}B^2}} )} \\ &\phantom{\mathstrut=I} \uncover<12->{+t^2( \uncover<16->{ {\color<16>{red}AB}} \uncover<17->{- {\color<17>{red}A^2}} \uncover<18->{- {\color<18>{red}AB}} \uncover<19->{- {\color<19>{red}BA}} \uncover<20->{- {\color<20>{red}B^2}} \uncover<21->{+ {\color<21>{red}AB}} )} \uncover<22->{+t^3(\dots)+\dots} \\ &\uncover<23->{= I + \frac{t^2}{2}[A,B] + o(t^3) } \end{align*}} \end{block} \end{frame} \egroup